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Abstract

We study the algebra A = K〈x, y〉/(x2, y2, (xy)k + q(yx)k) over the
field K where k ≥ 1, and where 0 6= q ∈ K. We determine a minimal
projective bimodule resolution of A. In the case when q is not a root of
unity, we compute its Hochschild cohomology. In particular we show
that for n ≥ 3, the n-th part HHn(A) has dimension k− 1 if char(K)
does not divide k. We also show that every element in HHn(A) for
n ≥ 1 is nilpotent. This is motivated by the problem of understanding
why the finite generation condition (Fg) fails which is needed to ensure
existence of support varieties.
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To Dave

1 Introduction

Assume A is a finite-dimensional selfinjective algebra over some field. We would like
to have support varieties for A-modules, similar to those for representations of finite
groups. If G is a finite group then such varieties are constructed using group coho-
mology, which is graded commutative and noetherian. These varieties have very good
properties and have proved to be a powerful tool in many contexts.

In [12] this is extended to finite-dimensional algebras, by defining support vari-
eties based on Hochschild cohomology. It is shown in [6] that with suitable finiteness
conditions, many of the properties in the group setting generalize.

Following the account of [13], the finiteness condition needed is called (Fg), and
it states that the Hochschild cohomology HH∗(A) should be noetherian, and the ext-
algebra ExtA(A/J,A/J) of A should be finitely generated as a module over HH∗(A),
here J is the radical of A.

Here we study the local selfinjective algebras of dimension 4k,

A = K〈x, y〉/(x2, y2, (xy)k + q(yx)k)

where k ≥ 1 and 0 6= q ∈ K. When char(K) = 2 and k is a power of 2 and moreover
q = −1, this is isomorphic to the group algebra of a dihedral 2-group. It is known that
the indecomposable non-projective modules are independent of q, and their parametri-
sation is independent of the characteristic (see 2.4). One would therefore expect that
its homological algebra should be similar to the group situation.

However this is not the case. Take k = 1 and q not a root of unity, then the
algebra is precisely the famous example of [4] which is selfinjective but its Hochschild
cohomology is finite-dimensional. In particular condition (Fg) fails. For general k,
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there is a problem as well. Namely as it is shown in [8], when q is not a root of unity,
there are A-modules with complexity one (that is, with bounded projective resolutions)
which are not periodic. By Theorem 5.3 in [6] this implies that (Fg) cannot hold. One
would like to understand why.

We determine explicitly a minimal projective bimodule resolution for A, for arbi-
trary characteristic, and arbitrary non-zero q. Furthermore, assume that q is not a root
of unity. For such algebras, we compute the dimensions of the homogeneous parts of
the Hochschild cohomology. We show that for n ≥ 3, the n-th Hochschild cohomology
HHn(A) has dimension k − 1 if the characteristic of the field does not divide k, and
otherwise it has dimension k. Moreover, we show that every element of positive degree
is nilpotent. This uses a general result of [12] (see 2.3). In particular this shows that
the Hochschild cohomology algebra is not noetherian for k ≥ 2.

When k = 1 this shows again that the Hochschild cohomology is finite-dimensional,
as in [4]: In this case the characteristic does not divide k and hence HHn(A) = 0 for
n ≥ 3.

In general we see that the dimension of HHn(A) is bounded when q is not a root
of unity. Given that the algebra A is of infinite representation type, this may be
unexpected. It also is different from the group setting, see [10].

We describe now the content of this paper. The second section collects relevant
background. In the third section we determine a minimal projective bimodule resolu-
tion, and in the fourth section we compute the cohomology.

2 Preliminaries

2.1 The algebras

The algebra A with q = −1 is symmetric, and it is one of the algebras of dihedral type
introduced in [5]. In general, the socle of A is spanned by (xy)k, and the factor algebra
A/soc(A) is independent of q. That is, the general algebra A is a socle deformation of
an algebra of dihedral type.

Indecomposable non-projective A-modules are annihilated by soc(A), and hence
they are independent of q. However the action of the Heller operator Ω does depend
on q: As mentioned above, for q not a root of unity there are modules of complexity one
which are not Ω-periodic. On the other hand, when q = −1, all modules of complexity
one have Ω-period ≤ 2.

Recall that if R is a finite-dimensional algebra then every finite-dimensional R-
module M has a projective cover π : P →M , and Ω(M) is the kernel of π. The kernels
of the maps in a minimal projective resolution of M are the modules Ωn(M) for n ≥ 1,
called syzygies. We use this when R = A as above. As well, for Hochschild cohomology
we use this when R is the enveloping algebra of A, that is R = Ae = A ⊗K Aop, and
when M = A. We write ΩA(−) and we write just Ω for ΩAe .
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2.2 Hochschild cohomology

The Hochschild cohomology HH∗(A) is isomorphic to Ext∗Ae(A,A). Here A is viewed
as a left module for the enveloping algebra Ae. We will compute this from a minimal
projective resolution of A as an Ae-module, equivalently, as A− A−bimodule:

(P) . . .→ Pn
dn→ Pn−1 → . . .

d1→ P0
d0→ A→ 0

Here the kernel of dn−1 is the bimodule Ωn(A). We identify HHn(A) with ExtnAe(A,A),
and to compute the dimension of HHn(A) we will use the exact sequence

0→ HomAe(Ωn−1(A), A)→ HomAe(Pn−1, A)→ HomAe(Ωn(A), A)→ HHn(A)→ 0.

The terms of a minimal projective bimodule resolution can be described more gen-
erally, by a result of Happel, see [9]. In our case, K is the only simple A-module,
and Ae (∼= Ae(1 ⊗ 1)) is the only indecomposable projective Ae-module (up to iso-
morphism), so each Pn is isomorphic to a direct sum of copies of Ae. Happel’s result
becomes the following.

Proposition 2.1. The multiplicity of Ae as a direct summand of Pn is equal to the
dimension of ExtnA(K,K).

In fact, tensoring (P) over A with K on right gives a minimal projective resolution
of K as a left A-module which is perhaps implicit in Happel’s proof. The syzygies of
K as a left A-module are well understood, we describe them below. This motivates
the bimodule resolution we will construct in the next section.

2.2.1 The modules Ωn
A(K)

The algebra A is tame, and the indecomposable A-modules are classified. It is impor-
tant for our context that the indecomposable non-projective modules are independent
of q as explained above.

There is a parametrisation of indecomposables, originally due to C. M. Ringel
[11]. The description can also be found in the appendix of [2] (the assumption on the
characteristic and on k is not needed). The non-projective indecomposables come in
two types, now called string modules and band modules, originally called modules ’of
the first kind’ and ’of the second kind’.

The syzygies of K are string modules. A string module for A can be visualized by
a linear quiver where each vertex corresponds to a basis vector. Each arrow is labelled
either by x or by y alternating, and the length of a maximal path with no change of
orientation is bounded by 2k − 1. We describe ΩA(K) and Ω2

A(K) when k = 2.
(a) The module ΩA(K) may be written as:

Kv1
x−→ Kv2

y−→ Kv3
x−→ Kv4

y←− Kv5
x←− Kv6

y←− Kv7.

This means that x takes v1 → v2, v3 → v4 and v6 → v5 and it maps all other basis
vectors to zero. Moreover y acts by v2 → v3, v7 → v6 and v5 → v4, and all other basis
vectors are mapped to zero.
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This module is generated by v1, v7 and can be identified with ΩA(K), that is,
Ax + Ay ⊂ A, by mapping x → v7 and y 7→ v1 which extends to an A-module
isomorphism.

(b) Ω2
A(K) is the following: We use shorthand notation, and write just vi instead

of Kvi.

v1
x−→ v2

y−→ v3
x−→ v4

y←− v5
x−→ v6

y←− v7
x←− v8

y←− v9.

One can turn this into an exact sequence of A-modules. The submodule generated by
v9 is isomorphic to Ax, and the submodule generated by v1 is isomorphic to Ay. These
two submodules have trivial intersection and span a maximal submodule. We have an
exact sequence

0→ Ax⊕ Ay → Ω2
A(K)→ K ∼= Ω0

A(K)→ 0.

(c) This generalizes. To obtain the description of Ωn+2
A (K) one may start with

Ωn(K) and extend the quiver describing it at each end by a maximal linear subquiver
of length 2k − 1. This reflects the fact that there is a short exact sequence of left
A-modules

0→ Ax⊕ Ay → Ωn+2(K)→ Ωn(K)→ 0.

Since K is simple, we have for each n that

ExtnA(K,K) ∼= HomA(Ωn(K), K).

The non-zero homomorphisms from Ωn(K) map a vector corresponding to a sink to
some scalar and map any other basis vector to zero. Hence we see that

dim ExtnA(K,K) = n+ 1.

For the group setting, see also [1].

2.2.2 Small degrees

The first two terms of a minimal bimodule resolution can be described explicitly, more
generally, for a finite-dimensional algebra of the form A = KQ/I where Q is a finite
quiver and I is an admissible ideal of KQ. Let Q0 be the set of vertices of the quiver,
and Q1 be the set of arrows. If α : i → j is an arrow, write sα = i and tα = j. We
have

P0 =⊕i∈Q0 A
e(ei ⊗ ei)

P1 =⊕α∈Q1 A
e(esα ⊗α etα).

We must label the generators of P1 by arrows, so that we can distinguish equal
idempotents in case of multiple arrows. The first two differentials are defined by

d0(ei ⊗ ei) := ei

d1(esα ⊗α etα) := α(etα ⊗ etα)− (esα ⊗ esα)α,

and the images of the generators of P1 labelled by arrows are minimal generators of
Ω(A).

To describe minimal generators for Ω2(A) the following notation is convenient.
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Notation 2.2. (1) If a1a2 . . . am is a monomial in KQ then define

ρ(a1 . . . am) :=
m∑
j=1

a1a2 . . . aj−1(esaj ⊗aj etaj)aj+1 . . . am.

This is an element in P1, and ρ extends to a linear map KQ → P1.
(2) Then minimal generators for Ω2(A) can be written down, roughly speaking, by

the images of minimal relations under ρ.
(3) We return to the algebra A. Its quiver has one vertex, with idempotent 1A,

and two loops, x and y, and minimal relations x2, y2, (xy)k + q(yx)k. We label the
generator 1 ⊗ 1 of P0 as [f 0

0 ]. The generators of P1 are written as [f 1
0 ], corresponding

to x, and [f 1
1 ], corresponding to y. Note that as elements of Ae, each of these is 1⊗ 1.

With this,
d1([f

1
0 ]) = x⊗ 1− 1⊗ x = x[f 0

0 ]− [f 0
0 ]x =: f 1

0

and
d1([f

1
1 ]) = y ⊗ 1− 1⊗ y = y[f 0

0 ]− [f 0
0 ]y =: f 1

1 .

(4) The module ker(d1) = Ω2(A) has generators ρ(x2) and ρ(y2) and ρ((xy)k+q(yx)k).
Here

f 2
0 := ρ(x2) = x[f 1

0 ] + [f 1
0 ]x and f 2

2 := ρ(y2) = y[f 1
1 ] + [f 1

1 ]y.

We will introduce a shorthand notation for the element ρ((xy)k + q(yx)k) of P1.
We define the following linear maps: If M is an A − A−bimodule, define a linear

map Trxy : M → M which substitutes for each occurence of x, and a linear map
Tryx : M →M which substitutes for each occurence of y,

Trxy(m) :=
k−1∑
t=0

(xy)t(m)(yx)k−1−t

Tryx(m) :=
k−1∑
t=0

(yx)t(m)(xy)k−1−t.

With this, we have the formula

ρ((xy)k + q(yx)k) = (Trxy[f
1
0 ])y + qy(Trxy[f

1
0 ]) + x(Tryx[f

1
1 ]) + q(Tryx[f

1
1 ])x.

The maps Trxy and Tryx will appear again later.

2.3 Nilpotent elements

We wish to identify nilpotent elements of Hochschild cohomology. This can sometimes
be done without knowing the algebra structure of HH∗(A) explicitly, by exploiting a
more general result, that is Proposition 4.4 of [12].

Proposition 2.3. Assume K is a field and A is a finite-dimensional K-algebra with
radical J .
Let η ∈ HHn(A) such that η ⊗A A/J is zero in ExtnA(A/J,A/J). Then η is nilpotent
in HH∗(A) with nilpotency index at most the radical length of A.
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2.4 Independence of q

The indecomposable non-projective A-modules are independent of q. This holds be-
cause the socle of A (spanned by (xy)k) annihilates any indecomposable non-projective
module. This is more general, we give the argument as it might be useful elsewhere,
and we could not find it in the literature.

Lemma 2.4. Assume A is a finite-dimensional selfinjective K-algebra. If M is in-
decomposable and not projective (hence not injective) then the socle of A annihilates
M .

Proof Assume the socle of A does not annihilate M . Then there is a primitive
idempotent ei of A such that soc(Aei)M 6= 0. Choose and fix m ∈ M such that
ωm 6= 0 for ω = ωei ∈ socAei. Then Aω = soc(Aei) since soc(Aei) is simple. We
have an A-module homomorphism ϕ : Aei → M defined by ϕ(aei) = aeim. Then
ϕ(soc(Aei)) = ϕ(Aω) = Aωm 6= 0. Hence the kernel of ϕ is zero, and ϕ is a split
monomorphism since Aei is also injective. It follows that M ∼= Aei and M is injective
and projective.

3 A minimal bimodule resolution

3.1 From now we assume that A is a local algebra of dihedral type as above. In
this section we will construct a minimal resolution of A as an Ae-module. Here the
parameter q is arbitrary, as well the field is arbitrary. As we have seen, the n-th term
of a minimal bimodule resolution is free of rank n+ 1.

Our aim is to find recursively generators for the kernel of Ωn(A). By the above
there will be n + 1 generators, and we will write these as fn0 , . . . , f

n
n . Then we label

generators of Pn as
[fn0 ], . . . , [fnn ]

( each of these is equal to 1⊗1 as an element in Ae but of course we need to distinguish
different copies). With this, we define the differential dn : Pn → Pn−1 by

[fni ] 7→ fni ∈ Pn−1.

We will show that the fni are in the kernel of dn−1. To see that they are generators,
there are several general arguments in the literature. In this case, one can even see
directly that if Un is the sub-bimodule generated by the fni then Un ⊗A K ∼= Ωn

A(K).

In Notation 2.2, we have already fixed the generators of P0, the differential d0,
generators for Ω(A), the differential d1 and generators for Ω2(A).
3.2 Before giving the general definition, we will explain why Ωr(A)⊗AK is isomorphic
to Ωr

A(K) for r = 1, 2. Since (−)⊗A K annihilates the radical, we see

A(f 1
0 )⊗A K = Ax(1⊗ 1)⊗A K ∼= Ax
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and similarly A(f 1
1 )⊗A K ∼= Ay and we see directly that Ker(d0)⊗A K ∼= Ax+ Ay =

ΩA(K).
Similarly consider Ker(d1)⊗A K, this has submodules

A(f 2
0 )⊗A K ∼= Ax, and A(f 2

2 )⊗A K ∼= Ay.

Consider ζ := f 2
1 ⊗A K. This has only two terms, namely

ζ = (xy)k−1x[f 1
1 ]⊗A K + q(yx)k−1y[f 1

0 ]⊗A K.

This generates a 3-dimensional left A-submodule of P1, isomorphic to A/J2. We can
also see that the intersection of Aζ with A(f 2

0 )⊗AK is equal to yζ, and the intersection
with A(f 2

2 ) ⊗A K is equal to xζ, both one-dimensional. We see that Ω2(A) ⊗A K ∼=
Ω2
A(K).

The formulae below for generators may similarly be thought of as being a lift of a
one-sided minimal projective resolution.

3.3 We will inductively define explicit minimal generators of Ωn(A), they will be
denoted by fni for 0 ≤ i ≤ n, they are elements of Pn−1. Then we fix generators
of Pn and label them by [fni ] for 0 ≤ i ≤ n. With this, we define the differential
dn : Pn → Pn−1

dn : [fni ] −→ fni (0 ≤ i ≤ n).

Note that the elements fni will be expressed in terms of [fn−1i ].

3.3.1 For any n ≥ 1, we may set

fn0 := x[fn−10 ] + (−1)n[fn−10 ]x, fnn := y[fn−1n−1 ] + (−1)n[fn−1n−1 ]y.

We can see directly, using the recipe for the differentials, that these elements are in
the kernel of dn−1.

These may be thought of a lift to Ae of the process of ’extending by Ax and Ay’.
When n = 1, these two elements generate Ω(A). We have also already written down
generators for Ω2(A).

3.3.2 We write down the remaining generators for Ω3(A), the kernel of d2 : P2 → P1.

f 3
1 := ([f 2

0 ](yx)k−1y − q2(yx)k−1y[f 2
0 ]) − (x[f 2

1 ]− q[f 2
1 ]x)

f 3
2 = ([f 2

1 ]y − qy[f 2
1 ]) − ((xy)k−1x[f 2

2 ]− q2[f 2
2 ](xy)k−1x).

It is straightforward to check that these are in the kernel of d2. By Proposition 2.1 we
know that Ω3(A) has four independent generators, and then by general arguments or
directly it follows that the f 3

i for 0 ≤ i ≤ 3 generate Ω3(A).

Now we state the answer for degrees n ≥ 4. Here the field is arbitrary, and q can
be any non-zero element of K.
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Proposition 3.1. Assume n ≥ 4. Then generators for Ωn(A) may be taken as follows:
(a) Let 1 ≤ i < (n/2). Then

fni = ([fn−1i−1 ](yx)k−1y + (−1)nqn−i(yx)k−1y[fn−1i−1 ]) + (−1)i(x[fn−1i ] + (−1)nqi[fn−1i ]x).

(b) If n is even and i = (n/2) then we have a generator fni equal to

fni = (Trxy[f
n−1
i−1 ])y + qi(yTrxy[f

n−1
i−1 ]) + (−1)ix(Tryx[f

n−1
i ]) + (−1)iqi(Tryx[f

n−1
i ])x

with the notation as in 2.2.
(c) If (n/2) < i ≤ n− 1 then

fni = ([fn−1i−1 ]y + (−1)nqn−iy[fn−1i−1 ]) + (−1)i((xy)k−1x[fn−1i ] + (−1)nqi[fn−1i ](xy)k−1x)

(d) For any n, we have

fn0 = x[fn−1n ] + (−1)n[fn−10 ]x, fnn = y[fn−1n−1 ] + (−1)n[fn−1n−1 ]y.

Proof Part (d) has already been explained above. Parts (a) to (c) are proved by
induction. We give details for part (b) and leave the proof for (a) and (c) to the
reader, it is fairly straightforward.
Assume i = n/2 and n ≥ 4, and we have the formulae for degree n−1 as the inductive
hypothesis.
We take the stated expression fni , and we must show that dn−1 maps this to zero.
Recall that dn−1 is obtained by ’removing brackets’, that is, by substituting fn−1i−1 and

fn−1i into the relevant terms.

We first substitute fn−1i−1 , which occurs in the first two terms of (b). Since i − 1 <
(n− 1)/2 we must use the formula from part (a), that is

fn−1i−1 = [fn−2i−2 ](yx)k−1y+(−1)n−1qn−i(yx)k−1y[fn−2i−2 ]+(−1)i−1x[fn−2i−1 ]+(−1)n−iqi−1[fn−2i−1 ]x.

(1) We substitute [fn−2i−2 ](yx)k−1y into fni . Since y2 = 0, all terms from fni with a

factor [fn−1i−1 ]y become zero. This leaves only one term, namely

qi(yx)k−1y[fn−2i−2 ](yx)k−1y.

(2) We substitute (−1)n−1qn−i(yx)k−1y[fn−2i−2 ]. Similarly almost all terms are zero, and
we are left with

(−1)n−1qn−i(yx)k−1y[fn−2i−2 ](yx)k−1y.

Since i = n/2 we have n− i = i and also (−1)n−1 = (−1) and this term cancels against
the term in (1).

(3) Substituting (−1)i−1x[fn−2i−1 ] + (−1)n−iqi−1[fn−2i−1 ]x into fni gives the four terms

(−1)i−1Trxy(x[fn−2i−1 ])y + (−1)i−1qiyTrxy(x[fn−2i−1 ])

+(−1)n−iqi−1(Trxy(f
n−2
i−1 ]x)y + (−1)n−iq2i−1y(Trxy([f

n−2
i−1 ]x).
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(4) Now we apply dn−1 to the terms of fni with [fn−1i ]. We substitute using the formula
from part (c), note that i > (n− 1)/2. This has two terms with [fn−2i ]. We substitute
these, and exactly as in (1) and (2), most of these are zero and the two terms left
cancel out.

(5) We substitute the contribution

[fn−2i−1 ]y + (−1)n−1qn−1−iy[fn−2i−1 ]

into the last two terms of fni . These are four terms, namely

(−1)ixTryx([f
n−2
i−1 ]y) + (−1)iqi(Tryx[f

n−2
i−1 ]y)x

+ (−1)i+n−1qn−1−ix(Tryx(y[fn−2i−1 ]) + (−1)i+n−1qn−1(Tryx(y[fn−2i−1 ])x.

(6) We compare (3) and (5). The first term of (5) cancels against the first term of (3)
since x(Tryx[f

n−2
i−1 ]y) = Trxy(x[fn−2i−1 ])y. Similarly the last term of (5) cancels agains

the last term of (3).

Now consider the second term (3), which is

(−1)i−1qi
k−1∑
t=0

(yx)t+1[fn−2i−1 ](yx)k−1−t.

We add to this the second term of (5). All but two terms cancel and we are left with

(∗) (−1)i−1qi(yx)k[fn−2i−1 ] + (−1)iqi[fn−2i−1 ](yx)k.

Similarly adding the third term of (3) and the third term of (5) has just two terms left,

(∗∗) (−1)n−iqi−1[fn−2i−1 ](xy)k + (−1)n+i−1qi−1(xy)k[fn−2i−1 ].

In (*), we substitute (−q)(yx)k = (xy)k, and adding (*) and (**) gives zero, as required.
�

4 Homomorphisms and HHn(A)

We assume from now that q is not a root of unity. The aim is to prove the following.

Theorem 4.1. The dimension of HHn(A) is
k + 1 n = 1
k n = 2
k n ≥ 3, char(K) |k
k − 1 n ≥ 3, else.

That is, as a bimodule, A has bounded cohomology. When k = 1, this recovers the
result of [4]. On the way we will also see the following.
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Theorem 4.2. Let n ≥ 2. If ϕ : Ωn(A)→ A is a homomorphism then the image of ϕ
is contained in the radical of A. Hence the class of ϕ in HHn(A) is nilpotent.

To prove Theorem 4.1, we determine the dimensions of the relevant spaces of homo-
morphisms.

Proposition 4.3. Let rn := dim HomAe(Ωn(A), A) for n ≥ 0.
We have r0 = k + 1 and r1 = 4k; and
(i) If n = 2t ≥ 2 then rn = 2kn+ k.
(ii) If n = 2t+ 1 ≥ 3 then

rn =

{
2kn+ 2k char(K)|k
2kn+ (2k − 1) else

4.1 Fix n ≥ 1. We may identify

HomAe(Ωn(A), A) = {ϕ : Pn → A | ϕ(Ωn+1(A)) = 0}

Recall that Pn is the projective Ae-module with generators [fnj ] for 0 ≤ j ≤ n. A
homomorphism from Pn to A is therefore determined by the images

ζj := ϕ([fnj ]) (0 ≤ j ≤ n).

The submodule Ωn+1(A) of Pn is generated by the fn+1
i for 0 ≤ i ≤ n + 1 as defined

in Proposition 3.1 for n + 1 ≥ 4 and for n = 1, 2 in Notation 2.2 and 3.3. To find the
homomorphisms we must determine precisely the ζj such that ϕ(fn+1

i ) = 0 for all i,
that is, where we get zero if we substitute the ζj into the formula for fn+1

i . Therefore
we must solve the following system of equations for ζj:

We start with n such that n+ 1 ≥ 4, then by Proposition 3.1 the equations are

(E0) xζ0 + (−1)n+1ζ0x = 0 and (En+1) ζny + (−1)n+1yζn = 0

(Ei) ζi−1(yx)k−1y+(−1)n+1qn+1−i(yx)k−1yζi−1 = (−1)i+1(xζi+(−1)n+1qiζix) (1 ≤ i < (n+1)/2)

(Ei) ζi−1y+(−1)n+1qn+1−iyζi−1 = (−1)i+1[(xy)k−1xζi+(−1)n+1qiζi(xy)k−1x] ((n+1)/2 < i ≤ n)

and if n+ 1 is even, also i = (n+ 1)/2 and

(E(n+1)/2) Trxy(ζi−1)y + qiyTrxy(ζi−1) = (−1)i+1(xTryx(ζi + qi(Tryx(ζi)x))

The form of these identities shows that we must understand the spaces

Xα := {η ∈ A : xη + αηx = 0}, and Yα := {η ∈ A : ηy + αyη = 0}

for 0 6= α ∈ K. One checks that

Xα =


Sp{1, x}+ X̂α α = −1

Sp{x, (yx)k−1y}+ X̂α α = q

Sp{x}+ X̂α else
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Yα =


Sp{1, y}+ X̂α α = −1

Sp{y, (xy)k−1x}+ Ŷα α = q

Sp{y}+ Ŷα else

where

X̂α := Sp{(xy)i − α(yx)i : 1 ≤ i ≤ k − 1} ∪ {(xy)ix, 1 ≤ i ≤ k − 1} ∪ {(xy)k}

Ŷα := Sp{(xy)i − α(yx)i : 1 ≤ i ≤ k − 1} ∪ {(yx)iy, 1 ≤ i ≤ k − 1} ∪ {(xy)k}

and X̂α and Ŷα each has dimension 2k − 1.

4.1 The proof of 4.3 for n+ 1 ≥ 4

Assume n+ 1 ≥ 4, where n = 2t or n = 2t+ 1. We will prove the following:

(1) ζ0 = b0x+ ζ̂0 with ζ̂0 ∈ X̂(−1)n+1 and b0 ∈ K. Moreover b0 = 0 if (−1)n = 1.

(2) For 1 ≤ i ≤ t we have ζi = b1x+ci(yx)k−1y+ ζ̂i where ζ̂1 ∈ X̂(−1)n+1qi and bi, ci ∈ K
and ci is a function of bi−1, except that if (−1)n = 1 then c1 is arbitrary.

(3) ζn = bny + ζ̂n with ζ̂n ∈ Ŷ(−1)n+1 and bn ∈ K. If (−1)n = 1 then bn = 0.

(4) For t + 1 ≤ i ≤ n− 1, we have ζi = biy + ci(xy)k−1x + ζ̂i with ζ̂i ∈ Ŷ(−1)n+1qi and
bi, ci ∈ K and where ci is a function of bi+1; except if (−1)n = 1 then cn−1 is arbitrary.

When n = 2t there is an additional condition on ζt, and when n = 2t+ 1 we may have
an extra condition relating ζt and ζt+1:

(5) Suppose n = 2t. Then ζt = ct(yx)k−1y+ c′t(xy)k−1x+ ζ̃t with ζ̂t ∈ X̂−qt ∩ Ŷ−qt and
ct, c

′
t ∈ K where ct is a function of bt−1 and c′t is a function of bt+1.

(6) Suppose n = 2t+ 1. If char(K) does not divide k then bt = (−1)tbt+1. Otherwise
bt, bt+1 are arbitrary.

Proof One checks that the elements listed satisfy the identities. We show that these
are all.
(1) For identity (E0) we require ζ0 ∈ X(−1)n+1 , and hence ζ0 = a0 + b0x + ζ̂0 with

a0, b0 ∈ K and ζ̂0 ∈ X̂−1. We substitute into (E1) and get

a0(1− qn)(yx)k−1y + b0(1 + qn−1)(xy)k = xζ1 + (−1)n+1qζ1x.

The element (yx)k−1y is not of the form xη+ qηx for η ∈ A and hence a0 = 0, and the
claim holds for ζ0. Moreover, the element (xy)k is not of the form xη + qηx for η ∈ A.
So if (−1)n+1 = 1 then also b0 = 0.

If (−1)n+1 = 1 then ζ1 ∈ X(−1)n+1q and we may write ζ1 = b1x + c1(yx)k−1Y ζ̂1 with

b1, c1 ∈ K arbitrary, and ζ̂1 ∈ X̂(−1)n+1q.
Suppose (−1)n+1 6= 1, then the identity (E1) is satisfied for ζ1 = c1(yx)k−1y+ ζ ′1 where

c1 is a function of b0, and where xζ ′1 + (−1)n+1qζ ′1x = 0. That is ζ ′1 = b1x + ζ̂1 and

ζ̂1 ∈ X̂(−1)n+1q. This proves the claim for ζ1.
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(2) The case i = 1 is done, and we continue by induction: Assume true for i− 1, and
i < t. Then we substitute ζi−1 into (Ei) and get

bi−1(1 + (−1)nqn−i)(xy)k = (−1)i+1(xζi + (−1)n+1qiζix).

This is satisfied with ζi = ci(yx)k−1y+ ζ ′i where ci ∈ K is a function of bi−1 and where
xζ ′i + (−1)n+1qiζ ′ix = 0. Then

ζ ′i = bix+ ζ̂i

and bi ∈ K and ζ̂i ∈ X̂(−1)n+1qi .

(3) For (En+1) we require ζn ∈ Y(−1)n+1 and hence ζn = an + bny + ζ̂(−1)n+1 . We
substitute into identity (En) and get

ζn−1y+(−1)n+1qζn−1y = (−1)n+1[an(1+(−1)n+1qn)(xy)k−1x+bn(1+(−1)nqn−1)(xy)k].

As in (1) we deduce an = 0. If (−1)n = 1 then ζn ∈ Y(−1)n+1q and ζn−1 = bn−1x +

cn−1(yx)k−1y + ζ̂n−1 with bn−1 and cn−1 ∈ K and ζ̂n−1 ∈ Ŷ(−1)n+1q. Otherwise we get
the same description but now cn−1 is a function of bn−1.
(4) By downwards induction, one obtains the stated expression for ζi from (Ei+1) for
t+ 1 ≤ i ≤ n.
(5) Assume n = 2t. Then we have an expression for ζt from the last step of (4). We
also have an expression for ζt from the last step of (3). These must be the same, and
we deduce that it has no terms with x, y and that it is of the stated form.
(6) Assume n = 2t + 1. Then by (1) to (4) we have expressions for all ζi, and all
identities (Ej) for j 6= t+ 1 are satisfied.
We substitute ζt and ζt+1 into (Et+1). This gives

bt[Trxy(x)y + qt+1yTrxy(x)] = (−1)t+2bt+1[xTryx(y) + qt+1Tryx(y)x].

That is
kbt(1− qt)(xy)k = (−1)tkbt+1(1− qt)(xy)k.

If char(K) does not divide k, we need bt = (−1)tbt+1. Otherwise bt, bt+1 are arbitrary.

We compute now the dimension to complete the proof of Propositon 4.3. We have
n = 2t or 2t+ 1 and n ≥ 4.
(1) Assume n is even. For each i 6= t with 0 ≤ i ≤ n we have the summand ζ̂i which

can be arbitrary in a space of dimension 2k−1. We have also ζ̃t in a space of dimension

k, the intersection of X̂−qt ∩ Ŷ−qt . Moreover we have n independent scalar parameters
(in all cases). This gives in total

rn = n(2k − 1) + k + n = 2kn+ k,

as stated.
(2) Now assume n is odd. Then for each i with 0 ≤ i ≤ n we have the summand

ζ̂i which can be arbitrary in a space of dimension 2k − 1. Moreover we have n + 1
independent scalars if char(K) divides k and n independent scalars otherwise. So the
dimension is either rn = (n+ 1)(2k − 1) + (n+ 1) = (n+ 1)2k or is (n+ 1)(2k)− 1.
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4.2 Small cases

4.2.0 Let n = 0. The dimension r0 = dimZ(A) is equal to the dimension of X−1∩Y−1
which is equal to k + 1, see 4.1.

4.2.1 We find r1. Let ϕ : P1 → A be a homomorphism such that ϕ(Ω2(A)) = 0. Then
ϕ is determined by elements ϕ([f 1

i ]) = ζi in A, for i = 0, 1. We have ϕ(Ω2(A)) = 0 if
and only if the following identities (Ei) hold, obtained from Notation 2.2:

(E0) xζ0 + ζ0x = 0 and (E2) ζ1y + yζ1 = 0

(E1) Trxy(ζ0)y + qyTrxy(ζ0) = −(xTryx(ζ1) + qTr(ζ1)x).

We will show that these are satisfied if and only if

(1) ζ0 = b0x+ ζ̂0 with b0 ∈ K and ζ̂0 ∈ X̂1 and

(2) ζ1 = b1y + ζ̂1 with b1 ∈ K and ζ̂1 ∈ Ŷ1.

These satisfy the (Ei) and we show that there are no others. By (E0) we may write

ζ0 = a0 + b0x + ζ̂0 where a0, b0 ∈ K and where ζ̂0 ∈ X̂1. Similarly by (E2) we have

ζ1 = a1 + b1y + ζ̂1 with a1, b1 ∈ K and where ζ̂1 ∈ Ŷ1. We substitute ζ0 and ζ1 into

(E1), the terms with ζ̂i become zero. The terms with b0 and b1 satisfy

kb0((xy)k + q(yx)k) = −[kb1((xy)k + q(yx)k)],

namely both sides are zero because of the relation. The terms with with a0 and a1
must satisfy

a0(1 + q)(yx)k−1y = −[a1(1 + q)(xy)k−1y],

and hence a0 = 0 = a1.
With (1) and (2) we have

r1 = dim X̂1 + dim Ŷ1 + 2 = 2(2k − 1) + 2 = 4k.

4.2.2 We find r2. Consider a homomorphism ϕ : P2 → A which maps Ω3(A) to
zero. The homomorphism ϕ is determined by ϕ[f 2

i ] = ζi ∈ A for 0 ≤ i ≤ 2. Then
ϕ(Ω3(A)) = 0 if and only if the following identities (Ei) hold, obtained from 3.3:

(E0) xζ0 − ζ0x = 0 and (E3) ζ2y − yζ2 = 0;

(E1) ζ0(yx)k−1y − q2(yx)k−1yζ0 = xζ1 − qζ1x;

(E2) ζ1y − qyζ1 = (xy)k−1xζ2 − q2ζ2(xy)k−1x.

Precisely as in the proof for the general case, one shows that these hold if and only if

(1) ζ0 = b0x+ ζ̂0 with b0 ∈ K and ζ̂0 ∈ X̂−1, and b0 = 0 if char(K) = 2.

(2) ζ2 = b2y + ζ̂2 with b2 ∈ K and ζ̂2 ∈ Ŷ−1, and b2 = 0 if char(K) = 2.

(3) ζ1 = c1(yx)k−1y + c′1(xy)k−1x + ζ̃1 with ζ̃1 ∈ X̂−q ∩ Ŷ−q, and where c1, c
′
1 ∈ K. If

char(K) 6= 2 then c1 is a function of b0 and c′1 is a function of b2. If char(K) = 2 then
c1, c

′
1 are arbitrary.

13



With this, we note that the number of independent scalar parameters is the same
whether or not the characteristic is 2, and we compute that

r2 = dim X̂−1 + dim Ŷ−1 + 2 + dim(X̂−q ∩ Ŷ−q) = 4kn+ k.

We prove Theorem 4.1, using the exact sequence

0→ HomAe(Ωn−1(A), A)→ HomAe(Pn−1, A)→ HomAe(Ωn(A), A)→ HHn(A)→ 0.

The dimension of HomAe(Pn−1, A) is 4kn and hence

dimHHn(A) = rn + rn−1 − 4kn

and we get the stated answer.

We prove Theorem 4.2. The description of the most general homomorphism Ωn(A)→
A in 4.3 and in the small cases shows that its image is contained in the radical of A.
Hence by Proposition 2.3 every element of positive degree is in HH∗(A) is nilpotent.
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