5. The Jacobson Radical

We want to study finite-dimensional algebras R which are not semi-simple. There are no such general structure theorems as Wedderburn’s Theorem. But as a ‘first approximation’ one can ask how close is R from being semi-simple. A natural question: Is there a largest factor algebra of R which is semi-simple? Answer- yes, and the ideal to factor out is the ‘Jacobson Radical’.

5.1 Definition The Jacobson radical (or just ‘radical’) of R is defined to be $J(R) :=$ the intersection of all maximal left ideals of R. This is then a left ideal but it is even an ideal, by the following theorem.

Every left ideal I of R with $I \neq R$ is contained in some maximal left ideal M of R (by JH for R finite-dimensional, even in general for R with identity, by Zorn’s Lemma). So $J(R) \neq R$.

5.2 Theorem We have

$$J(R) = \{ a \in R : aS = 0 \text{ for all simple } R\text{-modules } S \}.$$

In particular $J(R)$ is a 2-sided ideal of R.

Proof \supseteq Suppose $a \in R$ and $aS = 0$ for all simple R-modules S.

Take a maximal left ideal M of R, then R/M is a simple R-module and hence $a(R/M) = 0$. That is $a(1 + M) = 0 + M$ and $a \in M$. So $a \in J(R)$.

Assume for a contradiction that the RHS is a proper subset of $J(R)$. Then there is a simple module S such that $J(R)S \neq 0$. Pick $s \in S$ such that $J(R)s \neq 0$. But $J(R)s$ is a submodule of S and S is simple and it follows that $J(R)s = S$. Then

$$xs = s$$

for some $x \in J(R)$. So $(x - 1)s = 0$ and $(x - 1)$ belongs to the left ideal $\text{Ann}(s)$ of R. This is not equal to R and therefore

$$\text{Ann}(s) \subseteq M \subseteq R$$

for some maximal left ideal M. We also have $x \in J(R) \subseteq M$ and therefore $1 = x - (x - 1) \in M$, and $M = R$, a contradiction.
5.2.1 Example
Let $R = KG$, where G is a group of order p^n and K is a field of size $q = p^k$.

Then the trivial module is the only simple R-module:

Suppose V is a simple R-module. View the set V as a G-set (by $g(x) := v_g x$). Then V is a disjoint union of orbits. The size of an orbit is a power of p and also $|V| = q^d = p^{kd}$ where $d = \dim(V)$. So the number of orbits of size 1 is divisible by p.

There is at least one such orbit, namely $\{0\}$. So there is some $0 \neq v \in V$ with $v_g x = v$ for all $g \in G$. Then v spans a 1-dimensional trivial submodule of V and hence $V = \langle v \rangle$.

$J(R) = \text{span}\{v_g - 1 : 1 \neq g \in G\}$:

Each $v_g - 1$ annihilates the trivial module, so by 5.3 lies in $J(R)$ and since $J(R)$ is an ideal the span is contained in $J(R)$.

The set $\{v_g - 1 : 1 \neq g \in G\}$ is linearly independent and has $|G| - 1$ elements in it. And $\dim(R) = |G|$. But $J(R) \neq R$, so we must have equality.

5.3 'Construction' of $J(R)$
Recall R is finite-dimensional. Then one can express $J(R)$ as the intersection of finitely many maximal left ideals:

We aim to construct maximal left ideals M_i of R with

\[(*) \quad M_1 \supset M_1 \cap M_2 \supset M_1 \cap M_2 \cap M_3 \supset \ldots \]

Suppose M_1, \ldots, M_r are found and let $N_r := \cap_{i=1}^r M_i$. Suppose there is some maximal left ideal M with $N_r \not\subset M$. Then $M \cap N_r \subset N_r$. Set $M_{r+1} = M$ and continue $(*)$.

Since R is finite-dimensional, this must stop. So for some n the intersection N_n contains all maximal left ideals M of R. And then N_n is automatically the intersection of all maximal left ideals of R, ie $\cap_{i=1}^n M_i = N_n = J(R)$.

5.4 (Reminder) Suppose I is a left ideal of R. Then

(a) R/I-modules are the same as R-modules M such that $IM = 0$ (see qu. 1 sheet 1).

This only changes point of view. So 'simple' remains 'simple', ie the simple R/I-modules are precisely the simple R-modules S with $IS = 0$. Same with 'semi-simple'.

(b) Recall the left ideal correspondence. Submodules of R/I are in 1-1 correspondence with submodules of R containing I. In particular M/I maximal in R/I iff $I \subseteq M$ and M maximal in R.

5.5 Theorem
(i) The algebra $R/J(R)$ is semi-simple.

(ii) If I is a 2-sided ideal of R such that R/I is semi-simple then $J(R) \subseteq I$.

2
5.5.1 Corollary

R is semi-simple if and only if \(J(R) = 0 \).

(Proof of the Corollary: \(\Leftarrow \) by (i). \(\Rightarrow \) Take \(I = \{0\} \) in (ii).)

Proof of 5.5 (i) To show that \(R/J(R) \) is semi-simple as \(R/J(R) \)-module. By 5.4(a) we must show that it is semisimple as an \(R \)-module.

Take \(M_1, \ldots, M_n \) as in 5.3. Define \(\phi : R/J(R) \rightarrow R/M_1 \oplus R/M_2 \oplus \ldots \oplus R/M_n \) by \(\phi(x + J(R)) := (x + M_1, x + M_2, \ldots, x + M_n) \). This is a (well-defined) \(R \)-homomorphism and it is 1-1 (check, this is because of the construction 5.3).

Both sides have the same composition factors:

\[M_r \subset W := \cap_{i=1}^{r-1} M_i + M_r \subseteq R \]

and \(M_r \) is maximal but not = \(W \), so the middle is \(R \) and then

\[R/M_r = W/M_r \cong \cap_{i=1}^{r-1} M_i / \cap_{i=1}^{r-1} M_i. \]

by some isomorphism theorem. It follows that \(\phi \) is an isomorphism.

(ii) By the hypothesis \(R/I = L_1 \oplus L_2 \oplus \ldots \oplus L_n \) with \(L_i \) simple \(R/I \)-modules and then simple \(R \)-modules. Let \(a \in J(R) \), by 5.3 we know \(aL_i = 0 \) for all \(i \) and then \(a(R/I) = 0 \) and \(a(1 + I) = 0 + I \) and \(a \in I \). So \(J(R) \subseteq I \).

5.6 Corollary An \(R \)-module \(M \) is semisimple if and only if \(J(R)M = 0 \).

Proof \(\Rightarrow \) By 5.2 we know \(J(R)M = 0 \).

\(\Leftarrow \) If \(J(R)M = 0 \) then we can view \(M \) as a module for the algebra \(R/J(R) \). This algebra is semi-simple and hence every \(R/J(R) \)-module is semi-simple and so is \(M \). Then \(M \) is also simple as an \(R \)-module (see 5.4).

5.7 What is a ‘smallest possible’ module which is not semi-simple?

Consider \(M \) with two composition factors. When is \(M \) not semi-simple? It must have a simple submodule (take first step of a comp-series).

Can \(M \) have two simple submodules \(S_1 \neq S_2 \)?

If so then \(S_1 \cap S_2 = \{0\} \) and then \(M = S_1 \oplus S_2 \) and is semi-simple! !!!!

So if \(M \) is not semi-simple then it can only have one simple submodule and hence \(M \) has a unique composition series. [Conversely if \(M \) so then \(M \) is even indecomposable and not simple and therefore not semi-simple.]

Corollary 5.7 says that \(M \) is not semi-simple if and only if \(J(R)M \neq 0 \). But \(J(R)M \neq M \) (if \(N \) is a maximal submodule of \(M \) then \(J(R)(M/N) = 0 \) since \(M/N \) is simple and so \(J(R)M \subseteq N \)).

So for \(M \) with two composition factors which is not semi-simple we must have that \(0 \neq J(R)M \subset M \) is a composition series, and it is the only composition series.
5.9 More Examples
(1) Suppose R is local. Then $U^c(R)$ is the unique maximal submodule. See next sheet.

(2) $R = T_n(K)$, then $J(R) = N$, the strict upper triangular matrices. Proof later.

(3) $R = KQ$, the path algebra of a quiver Q (It is finite-dimensional if and only if no oriented cycles). Then $J(R)$ is the span of all paths of length ≥ 1. Proof later.