Decomposition numbers for symmetric groups

Karin Erdmann
University of Oxford, UK

erdmann@maths.ox.ac.uk

FPSAC, July 2009

Representations of symmetric groups

 $G = S_n$, V = finite-dimensional K-vector space.

Representation = group homomorphism $\rho: G \to GL(V)$.

$$V = G$$
-module $[vg := (v)(g\rho), g \in G, v \in V.]$

$$\Omega^{\{2\}}$$
 = 2-element subsets of $\{1, 2, \dots, n\}$.

$$K=\mathbb{Z}_2$$
.

$$K\Omega^{\{2\}} = M^{(n-2,2)}$$
 permutation module of S_n .

$${i,j}g = {(i)g,(j)g}$$

- **Qu.** Composition factors? Same for $M^{(n-3,3)}$?
- **Qu.** Same for eg $M^{(n-5,3,2)}$?

Specht modules

 λ partition of n, $S^{\lambda} :=$ Specht module.

- characteristic-free.
- explicit: submodule of permutation module.

Eg $S^{(n)}$ = the trivial module.

$$\Omega = \{1, 2, ..., n\}, \quad K\Omega = \operatorname{Span}\{v_i\} \cong M^{(n-1,1)}.$$

$$S^{(n-1,1)} \cong \{\sum_i c_i v_i : \sum_i c_i = 0\} \subset K\Omega.$$

- $K = \mathbb{C}$: S^{λ} is simple. $\chi^{\lambda} =$ the character of S^{λ}
- char(K) = p > 0:

If μ is p-regular, S^{μ} has a unique simple quotient D^{μ} .

 β^{μ} = the Brauer character of D^{μ} .

$$[\beta^{\mu}(g) = \operatorname{tr}_{D^{\mu}}(g) \text{ if } g \in \mathcal{S}_n \text{ is p-regular}].$$

 μ is p-regular if it does not have p equal parts: $6551 \vdash 17$ is 3-regular, but is not 2-regular.

g is p-regular if p does not divide any cycle length of g.

Decomposition numbers

 $d_{\mu,\lambda} := [S^{\mu} : D^{\lambda}] = \#D^{\lambda}$ in a composition series of S^{μ} ,

Decomposition number.

On p-regular elements of S_n ,

$$\chi^{\lambda} = \sum_{\mu} d_{\lambda,\mu} \beta^{\mu}$$

EX $D^{(n)} = \text{trivial module.}$

$$[S^{(n-1,1)}:D^{(n)}] = \begin{cases} 1 & p|n \\ 0 & \text{else} \end{cases}$$

If p|n then $\chi^{(n-1,1)} = \beta^{(n-1,1)} + \beta^{(n)}$.

Decomposition matrix

The decomposition matrix $D = [d_{\mu,\lambda}]_{\lambda \vdash n, \mu \vdash_p n}$.

- $d_{\lambda,\mu} \neq 0 \Rightarrow \lambda \geq \mu$
- $d_{\mu,\mu} = 1$.

D is upper uni-triangular.

Some examples See Pictures.

Problem Find decomposition numbers!!

Column removal

Example p = 2

... =
$$(S^{(5,3)}: D^{(6,2)}) = (S^{(4,2)}: D^{(5,1)}) = (S^{(3,1)}: D^{(4,0)}) = 1$$

General Assume $\hat{\lambda}$ [$\hat{\mu}$] is obtained from λ [μ] by removing the first column.

Theorem [G.D.James] If λ, μ have n non-zero parts and $|\lambda| = |\mu|$ then

$$(S^{\lambda}:D^{\mu}) = (S^{\widehat{\lambda}}:D^{\widehat{\mu}}).$$

Similarly 'row removal' & removal of 'blocks', [S. Donkin]).

Proof (Column removal) The same holds for GL_n . Prove this, then apply Schur functor.

 GL_n : Write $\lambda = \lambda_n(1^n) + \hat{\lambda}$, factorize the Schur polynomial:

$$s_{\lambda} = (s_{(1^n)})^{\lambda_n} \cdot s_{\widehat{\lambda}}.$$

Similarly for the formal characters of simple modules. Cancel the determinant part.

Two-part partitions

• λ with r parts and $d_{\lambda,\mu} \neq 0 \Rightarrow \mu$ has $\leq r$ parts.

Theorem [G.D. James '76] r = 2:

$$(S^{(n-k,k)}:D^{(n-j,j)}) = \begin{cases} 1 & \binom{n-2j+1}{k-j} \equiv 1 \pmod{p} \\ 0 & \text{else} \end{cases}$$

[Column removal]: Get two quarter-infinite matrices which contain the decomposition matrices for all 2-part partitions.

Example p = 2 and n even. See pointures file.

 $r \geq 3$ open.

Blocks

If λ, μ are in different blocks, then $d_{\lambda,\mu} = 0$.

Nakayama conjecture

 λ and γ are in the same p-block

 $\Leftrightarrow \lambda, \gamma$ have the same p-core and the same p-weight;

 $\Leftrightarrow \lambda, \gamma$ are in the same 'block' of the decomposition matrix.

Display partitions in B on an abacus with p runners, with $\geq pw$ beads. See the Pictures file.

Equivalences

Suppose $B=B_{\kappa,w}$ is obtained from $\bar{B}=B_{\rho,w}$ by swapping runners i,i+1.

• Assume # beads on runners i, i+1 differ by $\geq w$.

Theorem [J. Scopes] Swapping runners induces

- (i) a bijection on partitions,
- (ii) preserves p- regularity and decomposition numbers.

The block algebras B and \bar{B} are Morita equivalent.

For a fixed w, only finitely many blocks (up to Morita equivalence) as n varies.

The first example in the pictures file satisfies the assumption. The second example does not.

The decomposition map

Let
$$R^n:=\sum_{\lambda\vdash n}\mathbb{Z}\chi^\lambda$$
, $R^n_{br}:=\sum_{\mu\vdash pn}\mathbb{Z}\beta^\mu$. Decomposition map: $\xi:R^n\to R^n_{br}$, restrict to p-regular elements

Recall On p-regular elements, $\chi^{\lambda} = \sum_{\mu} d_{\lambda,\mu} \beta^{\mu}$.

Decomposition numbers: express the kernel of ξ w.r.to bases χ^{λ} and β^{μ} .

Question Other descriptions of $ker(\xi)$?

 $\Lambda = \bigoplus_{n \geq 0} \Lambda^n$ symmetric functions, characteristic isomorphism

char:
$$\Lambda \to R := \bigoplus_{n \geq 0} R^n$$

 $\operatorname{char}(s_{\lambda}) = \chi^{\lambda}$

• $M = GL_n$ -module, $M^F =$ its Frobenius twist \Rightarrow char (χ_{M^F}) is in $\ker(\xi)$.

DEF: $\psi^p:\Lambda\to\Lambda,\quad x_i\to x_i^p$, ring homomorphism. Then $\psi^p(\chi_M)=\chi_{M^F}$

Via char : $\Lambda \xrightarrow{\sim} R$, get ring homomorphism $\psi^p : R \to R$.

Theorem R^n has \mathbb{Z} -basis

$$\{\psi^p(\chi^\lambda)\cdot\chi^\mu:\mu \text{ p-regular}\}$$

The subset of those with $\lambda \neq \emptyset$ are a \mathbb{Z} basis for $\ker(\xi)$.

Proof via symmetric functions. If χ^{γ} occurs in $\psi^p(\chi^{\lambda}) \cdot \chi^{\mu}$ then $\gamma \geq \lambda^p \cup \mu$. And $\chi^{\lambda^p \cup \mu}$ occurs with multiplicity ± 1]

$$\delta$$
 p-singular \Rightarrow $\delta = \lambda^p \cup \mu$. $\delta \leftrightarrow \text{row } [d_{\delta,*}]$ of D

EX p = 2, n = 4.

$$\psi^{2}(\chi^{(2)}) = \chi^{(4)} - \chi^{(3,1)} + \chi^{(2,2)}$$

$$\psi^{2}(\chi^{(1)}) \cdot \chi^{(2)} = \chi^{(4)} + \chi^{(2,2)} - \chi^{(2,1^{2})}$$

$$\psi^{2}(\chi^{(1^{2})}) = \chi^{(2,2)} - \chi^{(2,1^{2})} + \chi^{(1^{4})}$$

Question at the beginning:

 $M^{(n-k,k)}$ has Specht filtration with Specht quotients

$$S^{(n)}, S^{(n-1,1)}, S^{(n-2,2)}, \ldots, S^{(n-k,k)}.$$

Add corresponding rows of the decomposition matrix. [Depends on 2-adic expansion of n]

 $M^{(n-5,3,2)}$ has Specht filtration, quotients from LR rule. Decomposition numbers not known.