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Abstract. We shall discuss the idea of finding all rational points on a
curve C by first finding an associated collection of curves whose ratio-
nal points cover those of C. This classical technique has recently been
given a new lease of life by being combined with descent techniques on
Jacobians of curves, Chabauty techniques, and the increased power of
software to perform algebraic number theory. We shall survey recent ap-
plications during the last 5 years which have used Chabauty techniques
and covering collections of curves of genus 2 obtained from pullbacks
along isogenies on their Jacobians.

1 Introduction

We consider a general curve of genus 2 defined over an number field K

C : Y 2 = F (X) = f6X
6 + f5X

5 + . . .+ f0 = F1(X) . . . Fk(X), (1)

where F1(X), . . . , Fk(X) are the irreducible factors of F (X) over K; we assume
that F (X) has no repeated roots and that f6 6= 0 or f5 6= 0. The intention is to
describe, in a way accessible to a non-specialist, recent developments in Chabauty
and covering techniques. These techniques all use essentially the same idea; we
first find an Abelian variety A which maps to J , the Jacobian of C, under an
isogeny φ. The pullbacks under φ of a suitably chosen set of embeddings of C
in J , give a collection of curves lying on A whose rational points cover those
of C. Despite this rather geometric description, the mechanics of this, in the
cases we shall consider, do not in fact require any difficult geometry. Provided
the reader is prepared to take on faith a few standard results, the equations for
the covering collections of curves can be obtained directly from that of C.

In Section 2, we shall define the Jacobian of a curve of genus 2, and outline
a few standard techniques for trying to find its rank. In Section 3, we describe
Chabauty’s Theorem and, in particular, how it can be applied to the problem of
finding the K-rational points on a curve of genus 2 defined over K; similar ideas
can also be applied to an elliptic curve E defined over a number field K, when
one wants to find all points in E(K) subject to some arithmetic condition, such
as the Q-rationality of the x-coordinate. In Sections 4,5, we describe the covering
collections associated to various choices of isogeny, and give applications. Finally,
in Section 6, we compare these techniques with a more classical approach using



resultants. We shall try, in all sections, to provide sufficient detail that the non-
specialist reader gains an impression of the techniques and difficulties involved.

We shall have in mind several motivating examples. The first of these concerns
cycles of quadratic polynomials. Given a quadratic polynomial az2 + bz + c,
with a, b, c ∈ Q and a 6= 0, we say that z ∈ Q is a point of exact period N
if gN (z) = z and gn(z) 6= z for all n < N . For example, z = 0 is a point of
exact period 2 for z2 − 1. It is easy to find such examples for N = 1, 2, 3, and it
was shown in [19] that none exist for N = 4. We shall later summarise the proof
in [14] of the fact that none exist for N = 5 also. It remains an unsolved problem
whether any examples exist for N ≥ 6. Applying a linear transformation on z,
we can assume that our quadratic is monic and has no linear term; that is, it
is of the form g(z) = z2 + c for some c ∈ Q. Suppose that z is a point of exact
period 5; then z, c must satisfy the curve (g5(z)− z)/(g(z)− z) = 0. This curve
in z, c is of degree 30 and genus 14, but it has a quotient C1 of genus 2, derived
in [14], given by

C1 : Y 2 = X6 + 8X5 + 22X4 + 22X3 + 5X2 + 6X + 1. (2)

There are six obvious points ∞±, (0,±1), (−3,±1), where ∞+,∞− denote the
points on the non-singular curve that lie over the singular point at infinity on C
(for any curve (1) with f6 6= 0 both ∞+ and ∞− are in C(K) when f6 ∈ (K∗)2).
These six points do not have preimages corresponding to z, c ∈ Q with z a
point of exact period 5, and so the following Lemma gives a way of resolving the
case N = 5.

Lemma 1 Let C1 be as in (2). If C1(Q) = {∞±, (0,±1), (−3,±1)} then there is
no quadratic polynomial in Q[z] with a rational point of exact period 5.

Another application is to the equation

a2 + b2 = c2, a3 + b3 + c3 = d3, a, b, c, d ∈ Z. (3)

There are the obvious solutions (3, 4, 5, 6), (4, 3, 5, 6), (1, 0,−1, 0), (0, 1,−1, 0),
and we would like to show that these are all of them up to scalar multiplication.
The first solution, the so-called “Nuptial Number of Plato”, is thought (see [29])
to be mentioned indirectly in Plato’s Republic, as being a special relationship
between the 3-4-5 triangle (viewed at the time as the marriage triangle between
the “male” number 3 and “female” number 4) and the first perfect number 6.
It is shown in [29] that there are no other solutions, using 15 pages of lengthy
but elementary resultant and congruence arguments. We shall give a different
proof here, using the ideas of the next two sections. For the moment, we merely
observe that, on dividing through by c, we get equations in the three affine vari-
ables A = a/c,B = b/c,D = d/c. Furthermore, the solutions to A2 + B2 = 1
can be parametrised as A = (1 − s2)/(1 + s2), B = 2s/(1 + s2). We substitute
these into A3 + B3 + 1 = D3, multiply though by (1 + s2)3, and replace D
by t = D(1 + s2) to give the curve

t3 = 6s4 + 8s3 + 2, (4)



which is a plane quartic with a double point at s = −1, t = 0, and no other
singularities, and so is of genus 2. Using a standard trick (see p.4 of [7]) which
involves mapping the double point to (0, 0) and then completing a square, we
can birationally change variable to X = t/(1 + s), Y = 12s − 4 − t3/(1 + s)3,
which gives the equation Y 2 = X6 + 32X3 − 32, with our four known solutions
to (3) corresponding to ∞±, (1,±1).

Lemma 2 Let C2 : Y 2 = X6 + 32X3 − 32. If C2(Q) = {∞±, (1,±1)} then the
only solutions to (3) are (3, 4, 5, 6), (4, 3, 5, 6), (1, 0,−1, 0), (0, 1,−1, 0) up to
scalar multiples.

Also of historical interest is Problem 17 of book VI of the Arabic manuscript
of Arithmetica [22]. Diophantus poses a problem equivalent to finding a non-
trivial rational point on the genus 2 curve

C3 : Y 2 = X6 +X2 + 1. (5)

The related problem of finding all rational points has recently been solved by
Wetherell [28], who showed that C3(Q) = {∞±, (0,±1), (±1/2,±9/8)} using
Jacobians and covering techniques. We shall later give a sketch of the proof. This
appears to be the only curve considered by Diophantus which has genus > 1.

Another application, close to the heart of anyone who wants to construct ex-
ercises for a calculus class, is that of Q-derived polynomials; that is, polynomials
defined over Q, with all derivatives having all of their roots in Q. An example
is f(x) = x(x − 1)(x − 8/3), f ′(x) = (3x − 4/3)(x − 2), f ′′(x) = 6x − 22/3. We
say that a polynomial is of type pm1,...,mr

if it has r distinct roots, and each mi

is the multiplicity of the i-th root. Two Q-derived polynomials q1(x) and q2(x)
are equivalent if q2(x) = rq1(sx+ t), for some constants r, s, t ∈ Q, with r, s 6= 0.
The problem of classifying all Q-derived polynomials has been reduced in [5] to
showing the following two conjectures.

Conjecture 1 No polynomial of type p1,1,1,1 is Q-derived.

Conjecture 2 No polynomial of type p3,1,1 is Q-derived.

Indeed, the following is shown in [5].

Theorem 1 If Conjectures 1 and 2 are true then all Q-derived polynomials are
equivalent to one of

xn, xn−1(x−1), x(x−1)
(
x− v(v − 2)

v2 − 1
)
, x2(x−1)

(
x− 9(2w + z − 12)(w + 2)

(z − w − 18)(8w + z)
)
,

for some n ∈ Z+, v ∈ Q, (w, z) ∈ E0(Q), where E0 : z2 = w(w − 6)(w + 18) is
an elliptic curve of rank 1.

For Conjecture 2, we let q(x) be a Q-derived polynomial of type p3,1,1, which
we may take to be in the form q(x) = x3(x − 1)(x − a), for some a ∈ Q with
a 6= 0, 1. The discriminants of the quadratics q′′′(x), q′′(x)/x and q′(x)/x2, must



all be rational squares, and so must be their product. This implies that a satisfies
(4a2 − 7a + 4)(9a2 − 12a + 9)(4a2 − 2a + 4) = b2, for some b ∈ Q. Using the
transformation a = (X − 3)/(X + 3), b = 6Y/(X + 3)3 gives the genus 2 curve

C4 : Y 2 = (X2 + 15)(X2 + 45)(X2 + 135). (6)

The obvious points ∞±, (±3,±432) correspond to the illegal values a = 0, 1,∞,
and so it is sufficient to show there are no others.

Lemma 3 Let C4 be as in (6). If C4(Q) = {∞±, (±3,±432)} then Conjecture 2
is true.

In Section 4, we shall sketch the proof in [16] that this is indeed all of C4(Q),
and so now only Conjecture 1 (a surface) remains unsolved.

A very recent result has been the solution in [17] of the “Serre curve”

D : x4 + y4 = 17. (7)

Serre asks (p.67 of [21]) whether (x, y) = (±1,±2), (±2,±1) are the only x, y ∈ Q
satisfying (7). This curve is the only Fermat quartic of the type x4 + y4 = c,
with c ≤ 81, which cannot trivially be solved by local methods or by a map onto
an elliptic curve of rank 0. It has gained some notoriety as being resistant to
various methods of attack, but has finally succumbed to the general method we
shall briefly mention in Section 5.

The work of Bruin develops related ideas, which have been applied with great
success to equations of the type xp + yq = zr. We shall mention two of these,
and give an indication of the approach used.

2 Preliminary Definitions

At the risk of insulting the reader’s intelligence, we shall briefly summarise a few
standard facts about elliptic curves. Consider the elliptic curve defined over K

E : y2 = G(x) = g3x
3 + g2x

2 + g1x+ g0 = G1(x) . . . Gk(x), (8)

where G(x) has no repeated roots, g3 6= 0, and G1(x), . . . , Gk(x) are the irre-
ducible factors of G(x) over K. Let ∞ denote the point at infinity, which we
take to be the identity in the group E(K) of K-rational points on E . The rules
−(x, y) = (x,−y) and P+Q+R = ∞ ⇐⇒ P,Q,R are collinear, are sufficient to
compute the group law on E(K), and the points of order 2 are of the form (x, 0),
where x ∈ K is a root of G(x). The Mordell-Weil Theorem gives that E(K) is
isomorphic to E(K)tor × Zr, where E(K)tor is the subgroup of E(K) consisting
of points of finite order, and r is the rank of E(K). The finite group E(K)tor is
normally found by using reduction maps modulo primes of good reduction. For
each i ∈ {1, . . . , k} let αi be a root of Gi(x) and let Li = K(αi).

Define the homomorphism

µ : E(K) → L∗1/(L
∗
1)

2×. . .×L∗k/(L∗k)2, (x, y) 7→ [g3(x−α1), . . . , g3(x−αk)], (9)



which has kernel 2E(K). Here, g3(x − αj) is taken to be 1 when (x, y) = ∞,
and

∏
i 6=j(x− αi) when x = αj . If we let S = {2, p1, . . . , pm}, where p1, . . . , pm

are the rational primes of bad reduction, then the image of q is contained in-
side the finite group M , consisting of those [d1, . . . , dk] such that all of the field
extensions L1(

√
d1) : L1, . . . , Lk(

√
dk) : Lk are unramified outside of primes ly-

ing over primes of S. Once M is determined, one eliminates members of M as
potential members of im(q) by local (congruence) arguments. What remains is
the 2-Selmer group, and one hopes that this is enough to determine the 2-rank
of im(q), and hence that of E(K)/2E(K). If so, then one will have performed a
successful complete 2-descent. On subtracting the 2-rank of E(K)tor/2E(K)tor,
the remainder is the rank of E(K). A benefit of recent developments in algebraic
number theory software, such as PARI/GP [1] and KASH [10], is that the above
approach has become possible for elliptic curves defined over increasingly compli-
cated number fields. Some of the methodology is described in [11],[20],[23],[24];
see also the program [4]. We mention here two such computations in the litera-
ture ([15], [16], respectively) which will be relevant to later sections.

Example 1 Let α satisfy α3+α+1 = 0, and define over Q(α) the elliptic curves
E1 : y2 = x(x2 + αx + (α2 + 1)) and E2 : y2 = −αx(x2 + αx + (α2 + 1)). Then
E1(Q(α)) has rank 1, with generators given by (0, 0), (−α, 1), where (0, 0) is of
order 2 and (−α, 1) is of infinite order. Also, E2(Q(α)) has rank 0 and consists
only of ∞ and (0, 0).

Example 2 Let β =
√
−15 and let E3 : y2 = 6(54 + 6β)(−45x2 + 1)(βx + 1)

and E4 : y2 = 6(9 + β)(−45x2 + 1)(βx + 1). Then E3(Q(β)) has rank 1 and
is generated by the 2-torsion point (−1/β, 0) and the point (1/6 + β/30, 24) of
infinite order. Similarly, E4(Q(β)) has rank 1 and is generated by the 2-torsion
point (−1/β, 0) and the point (−1/6 + β/30, 9 + β) of infinite order.

Given a curve C of genus 2, as in (1) with f6 6= 0, we use∞+,∞− as described
after (2). When f6 = 0 (and so f5 6= 0), we let ∞ denote the point at infinity,
which is always in C(K). Following Chapter 1 of [7], any member of J (K), the
K-rational points on the Jacobian, may be represented by a divisor of the form
P1 + P2 −∞+ −∞−, where P1, P2 are points on C and either P1, P2 are both
K-rational or P1, P2 are quadratic over K and conjugate. We shall abbreviate
such a divisor by: {P1, P2}. This representation gives a 1-1 correspondence with
members of J (K), except that everything of the form {(X,Y ), (X,−Y )} must
be identified into a single equivalence class O, which serves as the group identity
in J (K). Note that −{(x1, y1), (x2, y2)} = {(x1,−y1), (x2,−y2)}; furthermore
{P1, P2} + {Q1, Q2} + {R1, R2} = O if and only if there exists Υ (X) of de-
gree ≤ 3 such that Y = Υ (X) meets C at P1, P2, Q1, Q2, R1, R2. These two
rules are sufficient for computing the group law on J (K). Clearly, an element
of order 2 in J (K) is given by {(X1, 0), (X2, 0)}, where X1, X2 are the roots
of quadratic Q(X) defined over K, satisfying Q(X)|F (X). The Mordell-Weil
Theorem gives that J (K) is isomorphic to J (K)tor × Zr, where J (K)tor is the
subgroup of J (K) consisting of points of finite order, and r is the rank of J (K).



The finite group J (K)tor is normally found by using reduction maps modulo
primes of good reduction. For each i ∈ {1, . . . , k} let αi be a root of Fi(x) and
let Li = K(αi). When f6 6= 0, we define the homomorphism

µ : J (K) →
(
L∗1/(L

∗
1)

2 × . . .× L∗k/(L
∗
k)2

)
/˜,

: {(X1, Y1), (X2, Y2)} 7→ [(X1 − α1)(X2 − α2), . . . , (X1 − αk)(X2 − αk)],
(10)

where the equivalence relation ˜ is defined by

[a1, . . . , ak]˜[b1, . . . , bk] ⇐⇒ a1 = wb1, . . . , ak = wbk, for some w ∈ K∗. (11)

The interpretations of Xi − αj in special cases where (Xi, Yi) is a point at
infinity, or Xi = αj , are as described immediately after (9). Either 2J (K) is
the kernel of q or it has index 2 in the kernel of q (see [14]). The image of q
is contained inside a finite group M , which is as described above for elliptic
curves. Once M is determined, one proceeds in a similar manner to the complete
2-descent for elliptic curves described above, and hopes to find [26] the 2-rank of
J (K)/2J (K). There is some extra finesse here in determining the whether or not
the kernel of q is 2J (K), and in the interpretation of the local information; there
is also the potential for difficult computations in number fields of higher degree
over the ground field than for elliptic curves. When f6 = 0, the relation ˜ can be
removed, and the mechanics become more similar to that of complete 2-descent
on an elliptic curve. As with elliptic curves, the final step is to subtract the 2-rank
of J (K)tor/2J (K)tor from that of J (K)/2J (K) to obtain the rank of J (K).
Recent developments in canonical heights and infinite descent ([13],[25],[27]) also
allow actual generators for J (K) to be computed in many cases. We mention
here three ranks computed in the literature ([14], [28], [16], respectively), which
we shall require later. Only the first of these is a genuine genus 2 computation,
the other three ranks being computable via maps to elliptic curves.

Example 3 Let C1 : Y 2 = X6 + 8X5 + 22X4 + 22X3 + 5X2 + 6X + 1, as
in (2), with Jacobian J1. Then J1(Q)tor = {O}; the rank of J1(Q) is 1, and it
is generated by {∞+,∞+}.

Example 4 Let C2 : Y 2 = X6 + 32X3 − 32, as in Lemma 2, with Jacobian J2.
Then J2(Q)tor = {O, {∞+,∞+}, {∞−,∞−}}; the rank of J2(Q) is 1, and it is
generated by J2(Q)tor and {(1, 1),∞+}.

Example 5 Let C3 : Y 2 = X6+X2+1, with Jacobian J3. Then J3(Q)tor = {O};
the rank of J3(Q) is 2, and it is generated by {(0, 1), (0, 1)} and {(0, 1),∞+}.

Example 6 Let C4 : Y 2 = F1(X)F2(X)F3(X), with Jacobian J4, where:
F1(X) = X2 + 15, F2(X) = X2 + 45, F3(X) = X2 + 135,

and let αi, βi be the roots of Gi(X) for 1 ≤ i ≤ 3. Then
J4(Q)tor = {O, {(α1, 0), (β1, 0)}, {(α2, 0), (β2, 0)}, {(α3, 0), (β3, 0)}};

the rank of J4(Q) is 2, and it is generated by the 2-torsion above, together with
{∞+,∞+} and {(3, 432),∞+}.



3 Chabauty’s Theorem

Let E be an elliptic curve, as in (8), defined over a number field K = Q(α) of
degree d. We shall consider the problem of trying to find all

(x, y) ∈ E(Q(α)) with x ∈ Q. (12)

Imitating Chapter IV of [24] (with the difference that our equations in-
clude g3, the coefficient of x3), we introduce the variables s = −x/y,w = −1/y.
Then w = g3s

3+g2s2w+g1sw2+g0w3, and recursive substitution gives w = w(s),
a power series in the local parameter s, with initial term g3s

3. Then 1/x = w(s)/s
is a power series

1
x

(s) = g3
(
s2 + g2s

4 + (g1g3 + g2
2)s6 +O(s8)

)
∈ Z[g0, g1, g2, g3][[s]]. (13)

If (x0, y0) is another point on E , then the x-coordinate of (x0, y0) + (x, y) is a
power series

x-coord of
(

(x0, y0) + (x, y)
)

= x0 + 2y0s+ (3g3x2
0 + 2g2x0 + g1)s2 +O(s3)

∈ Z[g0, g1, g2, g3, x0, y0][[s]].
(14)

If (s, w(s)), (t, w(t)) are two points in s-w coordinates then the s-coordinate of
the sum can be written as F(s, t) ∈ Z[g0, g1, g2, g3][[s, t]], the formal group. There
are then power series

log(t) = t+
1
3
g2t

3 +
1
5
(g2

2 + 2g1g3)t5 +O(t7) ∈ Q[g0, g1, g2, g3][[t]], (15)

exp(t) = t− 1
3
g2t

3 +
1
15

(2g2
2 − 6g1g3)t5 +O(t7) ∈ Q[g0, g1, g2, g3][[t]], (16)

satisfying log(F(s, t)) = log(s) + log(t), F(exp(s), exp(t)) = exp(s+ t). In either
power series, the denominator of the coefficient of tk divides k!.

We now suppose that the rank r of E(Q(α)) is less than d = [Q(α) : Q], and
that we have found generators for E(Q(α)):

E(Q(α)) = 〈E(Q(α))tor, P1, . . . , Pr〉. (17)

Suppose that p is an odd prime such that |α|p = 1, Q(α) is unramified at p,
E has good reduction at p, [Qp(α) : Qp] = [Q(α) : Q] = d, and |gi|p ≤ 1, for
i = 1, . . . , 3. These restrictions on p (which cannot be satisfied for some choices
of α) are only for the sake of simplifying the exposition. Let α̃, Ẽ , P̃1, . . . , P̃r

represent, respectively, the reductions mod p of α, E , P1, . . . , Pr. Further define
mi, Qi, xi, yi, s

(i) by

mi = order of P̃i in Ẽ(Fp(α̃)), Qi = miPi = (xi, yi), s(i) = −xi/yi, (18)

so that each Qi ∈ E(Q(α)) is in the kernel of the reduction map from E(Q(α))
to Ẽ(Fp(α̃)), giving |s(i)|p ≤ p−1. Now, let S be a set (which must be finite) of



representatives of E(Q(α)) modulo 〈Q1, . . . , Qr〉, so that every P ∈ E(Q(α)) can
be written uniquely in the form

P = S + n1Q1 + . . .+ nrQr, (19)

for some S ∈ S and n1, . . . nr ∈ Z. We can now express the s-coordinate of
n1Q1 + . . .+nrQr, using (15),(16), as: exp(n1log(s(1))+ . . .+nrlog(s(r))), which
is a power series in n1, . . . , nr. Substituting this power series for s in (13) when
S = ∞, and in (14) when S = (x0, y0) 6= ∞ gives

θS(n1, . . . , nr) = xS(S + n1Q1 + . . .+ nrQr) ∈ Zp[α][[n1, . . . , nr]], (20)

where xS means x-coordinate, when S 6= ∞, and 1/x-coordinate when S = ∞.
It is clear, from the standard estimate |k!|p ≥ p−(k−1)/(p−1), that the coefficient
of nk1

1 . . . nkr
r is in Zp[α], and converges to 0 as k1 + . . .+ kr →∞. Splitting θS

into its components

θS = θ
(0)
S +θ(1)S α+. . .+θ(d−1)

S αd−1, each θ(i)S (n1, . . . nr) ∈ Zp[[n1, . . . , nr]], (21)

we obtain power series satisfying

(x-coord of P ) ∈ Q ⇒ θ
(1)
S = . . . = θ

(d−1)
S = 0. (22)

We now make use of the following theorem (p.62 of [6]).

Theorem 2 (Strassmann). Let θ(X) = c0 + c1X + . . . ∈ Zp[[X]] satisfy cj → 0
in Zp. Define ` uniquely by: |c`|p > |cj |p for all j > 0, and |c`|p > |cj |p for
all j > `. Then there are at most ` values of x ∈ Zp such that θ(x) = 0.

When r, the rank of E(Q(α)), is 1 (as will be the case in the following ex-
amples), and d = [Q(α) : Q] > 1, then we can apply Strassmann’s Theorem
to bound, for example, the number of roots of θ(1)S (n1). In view of (22), sum-
ming these bounds over all S ∈ S gives an upper bound on the total number
of (x, y) satisfying (12), which we hope to be the number of known such (x, y).
When r > 1 and r < d, we can in principle try to perform repeated appli-
cations if the Weierstrass Preparation Theorem (see p.108 of [6]) and resultant
computations to derive univariate power series from d power series in r variables.

Example 7 Let α, E1, E2 be as in Example 1. Then the only (x, y) ∈ E1(Q(α))
with x ∈ Q are ∞, (0, 0),±(1/4, 1/8− α/2 + α2/4). The only (x, y) ∈ E2(Q(α))
with x ∈ Q are ∞, (0, 0).

Proof (see [15] for details): The result on E2(Q(α)) follows immediately from
Example 1, since the rank is 0, and ∞, (0, 0) are the only members of E2(Q(α)).

For E1(Q(α)), let P1 = (−α, 1), p = 5, m1 = 28; then 28P1 is in the kernel
of reduction mod 5, but it is more efficient to take Q1 = 14P1 + (0, 0), which is
also in the kernel of reduction mod 5. Let

S = {kP1 : −6 ≤ k ≤ 7} ∪ {(0, 0) + kP1 : −6 ≤ k ≤ 7}, (23)



so that any P ∈ E1(Q(α)) can be written as S + n1Q1, for some S ∈ S, n1 ∈ Z.
Let us first consider S = −2P1 = (1/4, 1/8 − α/2 + α2/4). Applying (15),(16),
gives the s-coordinate of n1Q1 as:

exp(n1 log(s-coordinate of Q1)) ≡ 5(21 + 15α+ 21α2)n1 (mod 53). (24)

Replacing (x0, y0) by (1/4, 1/8 − α/2 + α2/4) and s by (24) in (14) gives the
x-coordinate of −2P1 + n1Q1 as:

θ−2P1(n1) ≡ 94 + 5(17α+ 9α2)n1 + 52(2 + α+ α2)n2
1 (mod 53). (25)

We may consider either θ(1)−2P1
or θ(2)−2P1

, due to the fact that the rank of E(Q(α))

is two less than [Q(α) : Q]. Taking θ(2)−2P1
(n1) ≡ 5 · 9 · n1 + 52 · n2

1 (mod 53), and
applying Strassmann’s Theorem, gives that there is at most one root; but we
know that n1 = 0 is a root, since −2P1 + 0 · Q1 has x-coordinate = 1/4 ∈ Q.
Hence n1 = 0 is the only solution. Similarly, for S = ∞, (0, 0), 2P1 we can
show that n1 = 0 is the value of n1 for which S + n1Q1 can have Q-rational
x-coordinate. For the remaining ten values of S ∈ S, we find that θ(2)S (n1) has
constant term of 5-adic norm strictly greater than all subsequent coeffients; hence
there are no roots in these cases. In summary, we have shown that ∞, (0, 0),±P1

are the only members of E(Q(α)) with Q-rational x-coordinate, as required. �

A similar argument (see [16]), working mod 113, shows the following.

Example 8 Let β, E3, E4 be as in Example 2. Then the only (x, y) ∈ E3(Q(β))
with x ∈ Q are ∞,±(−1/3, 12 + 12β),±(1/9, 12 + 4β/3). Similarly, the only
(x, y) ∈ E4(Q(β)) with x ∈ Q are ∞,±(1/3, 12− 4β),±(−1/9, 16/3).

Now, consider a curve (1) of genus 2; suppose that it is defined over Q and
that J (Q) has rank 1. Given D = {(X1, Y1), (X2, Y2)} ∈ J (Q), it is possible to
describe a local parameter s = (s1, s2) given by

s1 = (G1(X1, X2)Y1 − G1(X2, X1)Y2)(X1 −X2)/(F0(X1, X2)− 2Y1Y2)2,
s2 = (G0(X1, X2)Y1 − G0(X2, X1)Y2)(X1 −X2)/(F0(X1, X2)− 2Y1Y2)2,

(26)

where

F0(X1, X2) = 2f0 + f1(X1 +X2) + 2f2(X1X2) + f3(X1X2)(X1 +X2)
+2f4(X1X2)2 + f5(X1X2)2(X1 +X2) + 2f6(X1X2)3,

G1(X1, X2) = 2f0(X1 +X2) + f1X2(3X1 +X2) + 4f2(X1X
2
2 )

+f3(X2
1X

2
2 + 3X1X

3
2 ) + f4(2X2

1X
3
2 + 2X1X

4
2 )

+f5(3X2
1X

4
2 +X1X

5
2 ) + 4f6(X2

1X
5
2 ),

G0(X1, X2) = 4f0 + f1(X1 + 3X2) + f2(2X1X2 + 2X2
2 ) + f3(3X1X

2
2 +X3

2 )
+4f4(X1X

3
2 ) + f5(X2

1X
3
2 + 3X1X

4
2 ) + f6(2X2

1X
4
2 + 2X1X

5
2 ).

The derivations of the above definitions are given in Chapter 7 of [7]. The reader
can at least observe that s1, s2 will both be small when D is close to O. It
is sufficient, in what follows, to accept on faith that s = (s1, s2) performs the



same role on J (Q) as s = −x/y does on an elliptic curve. Let D0, D ∈ J (Q),
with s = s(D) = (s1(D), s2(D)) being the local parameter for D, and let
D0 + D = {(X ′

1, Y
′
1), (X ′

2, Y
′
2)}. Then the group law on J (Q) can be applied

to find ψ(1)
D0

(s), ψ(2)
D0

(s), ψ(3)
D0

(s), power series in s, such that

(1 : X ′
1 +X ′

2 : X ′
1X

′
2) = (ψ(1)

D0
(s) : ψ(2)

D0
(s) : ψ(3)

D0
(s)), (27)

where both sides should be viewed as projective triples. Associated to our lo-
cal parameter is F(s, t), the two-parameter formal group of J (Q), the formal
logarithm L = (L1, L2) and exponential map E = (E1, E2), given by

L1(s) = s1 + 1
3 (−2f4s31 + f1s

3
2) + . . . E1(s) = s1 + 1

3 (2f4s31 − f1s
3
2) + . . .

L2(s) = s2 + 1
3 (−2f2s32 + f5s

3
1) + . . . E2(s) = s2 + 1

3 (2f2s32 − f5s
3
1) + . . .

(28)

These satisfy L(F(s, t)) = L(s) + L(t) and E(s + t) = F(E(s), E(t)). Now,
suppose that J (Q) = 〈J(Q)tor, D1〉, and let p be a prime of good reduction.
Let J̃ and D̃1 represent, respectively, the reductions mod p of J and D1. Further
define m1, E1, s(1) by

m1 = order of D̃1 in J̃ (Fp), E1 = m1D1, s(1) = s(D1), (29)

so that E1 ∈ J (Q) is in the kernel of the reduction map from J (Q) to J̃ (Fp),
giving |s(1)1 |p, |s(1)2 |p ≤ p−1. Now, let S be a set (which must be finite) of rep-
resentatives of J (Q) modulo 〈E1〉, so that every D ∈ J (Q) can be written
uniquely in the form

D = S + n1E1, (30)

for some S ∈ S and n1 ∈ Z. Now express s(D), using (28), as: exp(n1log(s(1))),
which is a power series in n1. Substitute this power series for s in (27) and
take D0 = S to obtain

θ
(i)
S (n1) = ψ

(i)
S (exp(n1log(s(1)))) ∈ Zp[[n1]], for i = 1, 2, 3. (31)

As with elliptic curves, the standard estimate |k!|p ≥ p−(k−1)/(p−1), can be used
to show that the coefficient of nk

1 is in Zp, and converges to 0 as k →∞.
So far, what we have achieved is to find a finite set of triples of power series,

namely (θ(1)S (n1), θ
(2)
S (n1), θ

(3)
S (n1)) for S ∈ S, such that any D ∈ J (Q) has

(1 : X1 +X2 : X1X2) equal to one of them. Now recall our original purpose, to
find all of C(Q). The strategy is to embed the curve C into its Jacobian; we shall
choose the map P 7→ {P, P}, for any P ∈ C(Q). This is not quite an injection,
since any (X, 0) 7→ O; however, it is straightforward to find all Q-rational roots
of the sextic F (X), and so all points (X, 0) ∈ C(Q). Therefore, we can set these
aside and concentrate on P = (X,Y ) with Y 6= 0, where P 7→ {P, P} is injective.
It is sufficient, then, to find all D ∈ J (Q) of the form D = {P, P}. Note that
this implies X1 = X2, and so (X1 +X2)2 − 4X1X2 = 0, giving

θ
(2)
S (n1)2 − 4θ(1)S (n1)θ

(3)
S (n1) = 0, (32)



for some S ∈ S – namely the S ∈ S such that D = S mod 〈E1〉. Our strategy,
then, is to compute the power series in (32) and use Strassmann’s Theorem to
find an upper bound on the number of possible n1. Adding these bounds together
gives an upper bound on the number of (X,Y ) ∈ C(Q) with Y 6= 0, which we
hope to be the same as the number of known points. We illustrate this with the
following example from [14].

Example 9 Let C1 be as in Example 3. Then C1(Q) = {∞±, (0,±1), (−3,±1)}.
Proof: We already know from Example 3 that J1(Q) has no nontrivial torsion
and has rank 1, with J1(Q) = 〈D1〉, where D1 = {∞+,∞+}. Let p = 3, which
is a prime of good reduction, since the discriminant of the sextic is 212 · 3701.
Let D̃1 ∈ J̃ (F3) denote the reduction of D1 mod 3. The following lists the
first few multiples of D1 and D̃1. In the table, which is reproduced from [14],
P0 = (−2 + 1

3

√
33,− 17

3 + 10
9

√
33) and Q0 = (− 1

2 + 1
6

√
−87, 22

3 + 5
9

√
−87), and

P 0 and Q0 are their conjugates over Q.

n nD1 n eD1

0 O O
1 {∞+,∞+} {∞+,∞+}
2 {(0, 1), (−3, 1)} {(0, 1), (0, 1)}
3 {(0,−1),∞−} {(0,−1),∞−}
4 {(0,−1),∞+} {(0,−1),∞+}
5 {(−3, 1),∞−} {(0, 1),∞−}
6 {(−3, 1),∞+} {(0, 1),∞+}
7 {(0,−1), (0,−1)} {(0,−1), (0,−1)}
8 {P, P} {∞−,∞−}
9 {(0,−1), (−3, 1)} O
10 {Q, Q} {∞+,∞+}
11 {(−3, 1), (−3, 1)} {(0, 1), (0, 1)}

Table 1. The first 11 multiples of D1 and eD1.

It is apparent that ±D1,±7D1,±11D1 are all of the form {P, P}, and it is
sufficient to show that no other member of J1(Q) is of this form. Let E1 = 9D1,
which is in the kernel of reduction mod 3 since 9D̃1 = O, with corresponding
local parameter (−9/14, 426/49). Applying equation (28) we find that the local
parameter of n1E1 is (36n1, 3n1+9n3

1) mod 33. Any D ∈ J1(Q) can be written as
D = S + n1E1, for some S ∈ S = {O, D1, 2D1 . . . , 8D1}. Consider, for example,
S = 2D1. Using the group law to compute (27) mod 33 at D0 = S = 2D1, and
then substituting (36n1, 3n1 + 9n3

1) for (s1, s2) gives (31) as

θ
(1)
2D1

(n1) ≡ 25 + 15n1 + 18n2
1 + 18n3

1 (mod 33),
θ
(2)
2D1

(n1) ≡ 6 + 24n1 + 9n2
1 + 18n2

1 (mod 33),
θ
(3)
2D1

(n1) ≡ 18n1 + 18n2
1 (mod 33),

(33)



and so θ(2)2D1
(n1)2 − 4θ(1)2D1

(n1)θ
(3)
2D1

(n1) ≡ 9 + 18n2
1 (mod 33). Strassmann’s The-

orem tells us that there are at most two roots. In fact we know that n1 = ±1
are solutions, since 2D1 + E1 = 11D1 = {(−3, 1), (−3, 1)} and 2D1 − E1 =
−7D1 = {(0, 1), (0, 1)} are both of the form {P, P}. Therefore, n1 = ±1 are the
only n1 ∈ Z such that 2D1 + n1E1 is of the form {P, P}. Similar arguments
show that: the only n1 ∈ Z such that D1 +n1E1 is of the form {P, P} is n1 = 0;
the only n1 ∈ Z such that 7D1 + n1E1 is of the form {P, P} are n1 = 0,−2;
the only n1 ∈ Z such that 8D1 + n1E1 is of the form {P, P} is n1 = −1.
For the remaining five S ∈ S, Strassmann’s Theorem shows that S + n1E1 is
never of this form. Hence the upper bound on the order of C1(Q) is six, and
so ∞±, (0,±1), (−3,±1) must give all of C1(Q). �

Combining Lemma 1 and Example 9 gives us the result shown in [14]

Theorem 3 There is no quadratic polynomial in Q[z] with a rational point of
exact period 5.

A similar argument, but using the prime p = 43, shows that C2(Q) =
{∞±, (1,±1)}, where C2 is as in (3) and Example 4 (which showed that J2(Q)
has rank 1). In view of Lemma 2, this gives a new proof of the result originally
shown in [29] by an elaborate set of resultant and congruence arguments.

Theorem 4 The only integer solutions to a2 + b2 = c2, a3 + b3 + c3 = d3 are
(3, 4, 5, 6), (4, 3, 5, 6), (1, 0,−1, 0), (0, 1,−1, 0) up to scalar multiplies.

Both of the above examples are special cases of the following theorem of
Chabauty [8].

Theorem 5 Let C be a curve of genus g defined over a number field K, whose
Jacobian has Mordell-Weil rank 6 g − 1. Then C has only finitely many K-
rational points.

Apparent from the above examples is the similarity between the strategy for
finding all (x, y) ∈ E(K) with x ∈ Q, where E is an elliptic curve, [K : Q] = 2,
and E(K) has rank 1 (sometimes called “Elliptic Curve Chabauty”), and that
for finding C(Q), where C is a curve of genus 2 and J (Q) has rank 1. In each
case, E(K) or J (Q), the group law is locally described by a 2-parameter system
over Q, and an arithmetic condition, x ∈ Q or X1 = X2, gives a power series in
one variable n1. In general the local methods for finding all (x, y) ∈ E(K) with
x ∈ Q, where E is an elliptic curve, [K : Q] = g, and E(K) has rank less than g,
will be similar to those for finding C(Q), where C is a curve of genus g and J (Q)
has rank less than g. Sometimes one can even choose between either of these to
solve the same problem. The work done in Example 1 turns out to be equivalent
to showing F1(Q) = {∞, (0,±1)} and F2(Q) = {∞}, where

F1 : t2 = (s4 − 2s2 − 8s+ 1)(s3 + s+ 1),
F2 : t2 = (s4 − 8s− 4)(s3 + s2 + 1), (34)

both of genus 3. The derivation of F1,F2 will be made clear in the next section.
We conclude this section with the result in [2], which also makes use of

Chabauty’s Theorem.



Theorem 6 The only x, y, z ∈ Z with (x, y, z) = 1, satisfying x2 + y8 = z3 are
(±1, 0, 1), (0,±1, 1) and (±1549034,±33, 15613).

The proof uses a parametrisation of x2 + v4 = z3 to obtain a covering of the
solutions by the Q-rational points on five curves of genus 2. Two of these can
be resolved by maps to elliptic curves. The remaining three all have J (Q) of
rank 1, and an argument similar to that used in the above examples can be used
to find the rational points on each of them.

We should also mention that it is also possible to use differentials instead
of the formal group as way of applying Chabauty’s Theorem. This approach
is described, for example, in [28]. For other work on Chabauty’s Theorem, see
also [9], [12], [18].

4 Coverings of Bielliptic Curves

We shall suppose, in this section, that our curve of genus 2 is defined over Q and
has a Q-rational point, which has been mapped to infinity. Suppose also that
there are only quadratic terms in X.

C : Y 2 = G(X2), where G(x) = (x− e1)(x− e2)(x− e3). (35)

The map X 7→ −X swaps roots of the sextic of (35) in pairs, and the func-
tion x = X2 is invariant under this map. There are then maps (X,Y ) 7→ (X2, Y )
and (X,Y ) 7→ (1/X2, Y/X3) from C to the elliptic curves

Ea : Y 2 = G(x) = (x− e1)(x− e2)(x− e3),
Eb : Y 2 = x3G(1/x) = (−e1x+ 1)(−e1x+ 1)(−e3x+ 1),

(36)

respectively. As in [28], these induce isogenies φ1 : A1 → J and φ′1 : J → A1,
where A1 = Ea × Eb.

φ1 : [(x, Y ), (x, Y )] 7→ {(
√
x, Y ), (−

√
x, Y )}+ {( 1√

x ,
Y

x
√

x ), (− 1√
x ,−

Y
x
√

x )},
φ′1 : {(X1, Y1), (X2, Y2)} 7→ [(X2

1 , Y1) + (X2
2 , Y2), ( 1

X2
1
, Y1

X3
1
) + ( 1

X2
2
, Y2

X3
2
)].

(37)
Both of φ1, φ

′
1 have kernels of order 4, and φ′1◦φ1, φ1◦φ′1 both give multiplication

by 2 maps. There is furthermore an injective homomorphism (a special case
of [20]):

µ1 : J(Q)/φ1

(
A1(Q)

)
−→ L∗1/(L

∗
1)

2 × L∗2/(L
∗
2)

2 × L∗3/(L
∗
3)

2

: D 7→ [µ(1)
1 (D), µ(2)

1 (D), µ(3)
1 (D)],

where µ(j)
1 : {(X1, Y1), (X2, Y2)} 7→ (X2

1 − ej)(X2
2 − ej), for j = 1, 2, 3,

(38)
and where Li = Q(ei) for i = 1, 2, 3. This map is analogous to the map (x, y) 7→ x
used to perform descent via 2-isogeny on an elliptic curve y2 = x(x2 + ax + b)
(see p.302 of [24]).



Suppose that, after performing a descent, we have determined the set

J(Q)/φ1

(
A1(Q)

)
= {D1, . . . , Dm}. (39)

Let (X,Y ) ∈ C(Q). Then {(X,Y ),∞+} = Di in J(Q)/φ1

(
A1(Q)

)
, for some 1 ≤

i ≤ m, and so µ(j)
1 ({(X,Y ),∞+} = µ(j)(Di) for j = 1, 2, 3, which is the same

as (X2− ej) = µ(j)(Di) in L∗j/(L
∗
j )

2 for j = 1, 2, 3. Since also G(X2) is a square
by (35), we have

Y 2
i,j = µ(j)(Di)G(X2)/(X2 − ej), (40)

which is a curve of genus 1 defined over Lj (note that the right hand side is
a quartic polynomial in X, after cancelling X2 − ej). Multiplying both sides
by X2, we see that the variables yi,j = XYi,j and x = X2 satisfy

y2
i,j = µ(j)(Di)xG(x)/(x− ej), (41)

an elliptic curve isogenous to the Jacobian of (40). We now have a strategy for
trying to find the Q-rational points on the curve C in (35), even when J (Q) has
rank at least 2. Namely, for each i, one tries to find all (x, yi,j) on (41) using the
techniques at the beginning of Section 3. The following was proved first in [28]
and then [15]. The proof we sketch here is a blend of those two proofs.

Theorem 7 Let C3 : Y 2 = X6 + X2 + 1, the Diophantus curve of (5) and
Example 5. Then C3(Q) = {∞±, (0,±1), (±1/2,±9/8)}.

Proof We take e1 = α where α3 + α + 1 = 0, and note that G(x) = x3 +
x + 1 = (x − α)(x2 + αx + (α2 + 1)). From Example 5 we know that J3(Q)
has rank 2 and is generated by {(0, 1), (0, 1)} and {(0, 1),∞+}. We first note
that {(0, 1), (0, 1)} is trivial in J3(Q)/φ1

(
A1(Q)

)
, as can be seen either by ap-

plying (37) to get {(0, 1), (0, 1)} = φ1([(0, 1),∞]), or by applying (38) to get
µ1({(0, 1), (0, 1)}) = [1, 1, 1]. Applying (38) also gives that {(0, 1),∞+} 6= O
in J3(Q)/φ1

(
A1(Q)

)
. We conclude that J3(Q)/φ1

(
A1(Q)

)
has exactly two mem-

bers: D1 = O and D2 = {(0, 1),∞+}.
Let (X,Y ) ∈ C3(Q). Then {(X,Y ),∞+} = D1 or D2 in J3(Q)/φ1

(
A1(Q)

)
.

Applying (41) gives that x = X2 ∈ Q satisfies one of the equations

y2
1,1 = x(x2 + αx+ (α2 + 1)),
y2
2,1 = −αx(x2 + αx+ (α2 + 1)). (42)

We know from Example 7 that the only possible x ∈ Q are x = ∞, 0, 1/4, and
so any (X,Y ) ∈ C3(Q) must satisfy X = ∞, 0,±1/2, as required. �

As an alternative, note that if {(X,Y ),∞+} = D1 = O in J3(Q)/φ1

(
A1(Q)

)
then {(X,Y ),∞+} = φ1([Ra, Rb]) for some Ra ∈ Ea(Q), Rb ∈ Eb(Q). Taking φ′1
of both sides gives [(X2, Y ) +∞, (1/X2, Y/X3) + (0, 1)] = [2Ra, 2Rb]. Let s be
the x-coordinate of Ra, and let [2]a denote the x-coordinate duplication map
on Ea. Then

X2 = [2]a(s) = (s4 − 2s2 − 8s+ 1)/4(s3 + s+ 1). (43)



Letting t = 2(s3 + s+ 1)X gives the model F1 in (34).
Similarly, if {(X,Y ),∞+} = D2 = {(0, 1),∞+} in J3(Q)/φ1

(
A1(Q)

)
then

{(X,Y ),∞+} − D2 = {(X,Y ), (0,−1)} = O in J3(Q)/φ1

(
A1(Q)

)
, so that

{(X,Y ), (0,−1)} = φ1([Sa, Sb]) for some Sa ∈ Ea(Q), Sb ∈ Eb(Q). Taking φ′1
of both sides gives [(X2, Y ) + (0,−1), (1/X2, Y/X3) + ∞] = [2Sa, 2Sb]. Let s
be the x-coordinate of Sb, and let [2]b denote the x-coordinate duplication map
on Eb. Then

1/X2 = [2]b(s) = (s4 − 8s− 4)/4(s3 + s2 + 1). (44)

Letting t = 2(s3 + s2 + 1)/X gives the model F2 in (34). One can either, as we
have done above, find all points the curves (42) with Q-rational x-coordinate;
or, as in [28], one can find all members of F1(Q), F2(Q).

The underlying geometry is described in [28]. Each Di corresponds to an
embedding of C into its Jacobian, given by P 7→ {P,∞+} −Di. If the Di give a
complete set of representatives for J(Q)/φ1

(
A1(Q)

)
, then every member of C(Q)

will be ‘hit’ by φ1(A(Q)) via one of these embeddings. It is therefore sufficient
to find each Di(Q), where Di is the pullback of the embedded curve. Each Di is
a curve of genus 5 lying on A. and it has a hyperelliptic genus 3 quotient Fi. In
our example, these are the F1,F2 of (34). Furthermore, the Jacobians of F1,F2

are isogenous to the Weil restriction of scalars from Q(α) to Q of the curves
in (42).

If we try solve C4 : Y 2 = (X2 + 15)(X2 + 45)(X2 + 135) of (6) by the
same technique, a problem arises. Here, e1 = −15, e2 = −45, e3 = −135, and
every elliptic curve given by (41) is defined over Q. This means that, if the
method is to work, for every i at least one curve (41) for j = 1, 2 or 3 has to
have rank 0. Applying (38) to the generators of J4(Q) given in Example 6, we
find that the torsion group and {∞+,∞+} are all trivial in J4(Q)/φ1

(
A1(Q)

)
.

Hence J4(Q)/φ1

(
A1(Q)

)
just consists of the two elements O and {(3, 432),∞+}.

Let (X,Y ) ∈ C4(Q). Then {(X,Y ),∞+} is equal to either D1 = O or D2 =
{(3, 432),∞+} in J4(Q)/φ1

(
A1(Q)

)
. Consider first the case {(X,Y ),∞+} =

D1 = O in J4(Q)/φ1

(
A1(Q)

)
. Then, using (41), we know that x = X2 satis-

fies y2
1,1 = x(x + 45)(x + 135), for some y1,1 ∈ Q. This is an elliptic curve of

rank 0 over Q, which has only the 2-torsion points with x = ∞, 0,−45,−135.
None of 0,−45,−135 are rational squares and so they do not correspond to
points (X,Y ) ∈ C(Q).

The case {(X,Y ),∞+} = D2 = {(3, 432),∞+} is more troublesome. Us-
ing (41), we know that x = X2 satisfies y2

2,1 = 24x(x + 45)(x + 135), y2
2,2 =

54x(x+15)(x+135) and y2
2,3 = 144x(x+15)(x+45), for some y2,1, y2,2, y2,3 ∈ Q.

These are elliptic curves of ranks 2,1,1, respectively, over Q, and so they do
not restrict x to a finite number of choices. At this point, we have not deter-
mined C4(Q), but we have shown

(X,Y ) ∈ C4(Q) ⇒ {(X,Y ),∞+} = {(3, 432),∞+} in J4(Q)/φ1

(
A1(Q)

)
. (45)



For the curve C4, the map X 7→ −X is not the only way of permuting the roots
of the sextic. The curve is a special case of

Y 2 = (X2 − k)(X2 − rk)(X2 − r2k), r, k ∈ Q, (46)

which has the involution (X,Y ) 7→ (−rk/X, rk
√
−rk Y/X3). The functions U =

(X+
√
−rk)/(−X+

√
−rk) and V = (8

√
−rk Y )/(X−

√
−rk)3 are invariant, and

(X,Y ) 7→ (U2, V ), (X,Y ) 7→ (1/U2, V/U3) are maps from (46) to the quotient

v2 = −2k
(
u+ 1

)(
(r + 1)2u2 − 2(r2 − 6r + 1)u+ (r + 1)2

)
, (47)

defined over Q. Viewing (47) as being defined over Q(
√
−rk), let A2 be its Weil-

restriction over Q. The maps (X,Y ) 7→ (U2, V ), (X,Y ) 7→ (1/U2, V/U3) induce
isogenies φ2 : A2 → J and φ′2 : J → A2, analogous to φ1 of (37), where here J
is the Jacobian of (46). There is also an injective homomorphism

µ2 : J(Q)/φ2

(
A2(Q)

)
−→ Q∗/(Q∗)2 ×K∗/(K∗)2, : D 7→ [µ(1)

2 (D), µ(2)
2 (D)],

µ
(1)
2 : {(X1, Y1), (X2, Y2)} 7→ (X2

1 − rk)(X2
2 − rk),

µ
(2)
2 : {(X1, Y1), (X2, Y2)} 7→ (X1 −

√
k)(X1 + r

√
k)(X2 −

√
k)(X2 + r

√
k),

(48)
where K = Q(

√
k). Suppose that, after performing a descent, we have deter-

mined the set
J(Q)/φ2

(
A2(Q)

)
= {D′

1, . . . , D
′
n}. (49)

Let (X,Y ) ∈ Q. Then {(X,Y ),∞+} = Di in J(Q)/φ1

(
A1(Q)

)
, for some 1 ≤

i ≤ n, and so µ(j)
2 ({(X,Y ),∞+} = µ(j)(D′

i) for j = 1, 2. By a similar argument
to that used for (41), we can show (see [16] for details) that u = 2X/(X2 − rk)
satisfies

y2
i = µ

(1)
2 (D′

i)µ
(2)
2 (D′

i)(rku
2 + 1)((r − 1)

√
k u/2 + 1), (50)

for some yi ∈ K. If this is an elliptic curve of rank 1, then we can try to apply
the Elliptic Curve Chabauty techniques described at the beginning of Section 3.
For our curve C4 of (6), a special case of (46) with r = 3, k = −15, we apply (38)
to the generators of J4(Q) given in Example 6, and find that {∞+,∞+} is
trivial in J4(Q)/φ2

(
A2(Q)

)
. Hence J4(Q)/φ2

(
A2(Q)

)
just consists of the eight

elements generated by the 2-torsion and {(3, 432),∞+}, that is: D′
1 = O, D′

2 =
{(β, 0), (−β, 0)}, D′

3 = {(
√
−45, 0), (−

√
−45, 0)}, D′

4 = {(3β, 0), (−3β, 0)}, D′
5 =

{(3, 432),∞+}, D′
6 = D′

5+D
′
2, D

′
7 = D′

5+D
′
3, D

′
8 = D′

5+D
′
4. Let (X,Y ) ∈ C4(Q).

Then {(X,Y ),∞+} = D′
i in J4(Q)/φ2

(
A2(Q)

)
for some 1 ≤ i ≤ 8. Now, for

i = 1, . . . , 4, D′
i = O in J4(Q)/φ1

(
A1(Q)

)
, which has already been discounted

by (45). For i = 6, 7, one can use a straightforward 5-adic argument (see [16])
to show the nonexistence of u ∈ Q5, yi ∈ Q5(β), and hence the nonexistence
of u ∈ Q, yi ∈ Q(β), satisfying (50).

In summary, if (X,Y ) ∈ C4(Q), where C4 is as in (6), then {(X,Y ),∞+} = D′
i

in J4(Q)/φ2

(
A2(Q)

)
for i = 5 or i = 8. Therefore u = 2X/(X2−rk) = 2X/(X2+

45) ∈ Q satisfies (50) for i = 5 or i = 8 (with r = 3, k = −15); that is, it satisfies



one of the two equations

y2
5 = 6(54 + 6β)(−45u2 + 1)(βu+ 1),
y2
8 = 6(9 + β)(−45u2 + 1)(βu+ 1), (51)

for some y5 or y8 in K = Q(β) = Q(
√
−15). We have already seen, in Example 8,

that the only u ∈ Q on either curve are u = ∞,±1/3,±1/9. For u = ∞,±1/3,
there are no X ∈ Q satisfying u = 2X/(X2 + 45). For u = ±1/9, there are X =
±3,±15; however, substituting X = ±15 into (X2 + 15)(X2 + 45)(X2 + 135)
gives 23328000, which is nonsquare, and so there is no (X,Y ) ∈ C(Q) with X =
±15. This leavesX = ±3 as the only possibleX-coordinates of an affine (X,Y ) ∈
C(Q). This proves that C(Q) = {∞±, (±3, 432)}. In view of Lemma 3 this proves
Conjecture 2, as in [16].

Theorem 8 No polynomial of type p3,1,1 is Q-derived.

A feature of the above proof is that covers via both φ1 and φ2 were required;
neither the φ1 nor the φ2 information on its own is sufficient to determine C4(Q).

5 Coverings of a General Curve of Genus 2

The next two sections use ideas of Nils Bruin, as in [2],[3], and variations by
Flynn and Wetherell, as in [15],[17]. Let C : Y 2 = F (X) = F1(X) . . . Fk(X) be
a curve of genus 2, as in (1). We shall not assume that C is of any of the special
types in the last section, although we shall continue to assume that C has a
Q-rational point that has been mapped to infinity. Let µ be the map on J (K)
defined in (10), and suppose, as usual, that we have found J(K)/2J(K). It is
then straightforward to deduce J(K)/ker(µ), which we list as

J(K)/ker(µ) = {D1, . . . , Dn}. (52)

Let P = (X,Y ) ∈ C(K) so that {P,∞+} ∈ J(K). Then, for some i ∈ {1, . . . , n},
we must have µ({(X,Y ),∞+}) = µ(Di). Let G(X) be any polynomial of even
degree such that G(x)|F (x). Then there is an induced map

µG : J(K) → L∗
G
/(L∗

G
)2 : [

∑̀
j=1

nj(xj , yj)] 7→
∏̀
j=1

G(xj)nj , (53)

where LG denotes the smallest field containing K over which G(x) is defined. Is
follows that

qG(Di)G(x) ∈ (L∗
G
)2 for all G(x)|F (x) with 2|deg(G(x)). (54)

Each choice of G therefore gives a hyperelliptic curve v2
i,G = qG(Di)G(x), de-

fined over LG, on which there must be an LG-rational point with K-rational
x-coordinate. When G(x) has degree 4, it may be that this is an elliptic curve
whose rank over LG is less that [LG : K]. In such cases, the Elliptic Curve



Chabauty techniques at the beginning of Section 3 can be applied. This idea has
recently been applied in [17] to D : x4 + y4 = 17, the “Serre curve”, as in (7).
This is a curve of genus 3 whose Jacobian has rank 6. It is shown on pp.187–189
of [7] that the rearrangement(

17 + (5x2− 4xy+ 5y2)
)(

17− (5x2− 4xy+ 5y2)
)

= −2(2x2− 5xy+ 2y2)2 (55)

can be used, together with a resultant argument, to show that it is sufficient to
find all Q-rational points on the curve of genus 2

C5 : Y 2 = (9X2 − 28X + 18)(X2 + 12X + 2)(X2 − 2). (56)

Specifically, if C5(Q) has no affine points, then D(Q) has only the affine points
(±1,±2), (±2,±1). Equations (7) and (56) have stubbornly resisted the tech-
niques described in the last two sections, as well as the method of Dem’yanenko
(see [21], p.67). However, [17] finally showed, using the ideas sketched above,
that it is sufficient to find all points on an elliptic curve over Q(

√
2,
√

17)
with Q-rational x-coordinate. This elliptic curve, which we do not reproduce
here (see [17]) has rank 1 over Q(

√
2,
√

17); the Elliptic Curve Chabauty tech-
niques at the beginning of Section 3 can be applied to show that indeed C5(Q)
has no affine points, from which D(Q) can be deduced, as in [17].

Theorem 9 The only x, y ∈ Q satisfying x4 + y4 = 17 are (±1,±2), (±2,±1).

The technique to obtain the genus 2 cover (56) generalises to other Fermat
quartics x4 + y4 = c, and so the methods of [17] are potentially applicable to
other nontrivial values of c; that is, to the cases where x4 + y4 = c cannot be
trivially solved by a direct local argument or a map to a rank 0 elliptic curve.
There are only four such cases with c ≤ 300, namely: c = 17, 82, 97, 257.

6 A Classical Approach via Resultants

Given a curve such as

C6 : Y 2 = (X2 + 1)(X4 + 1), (57)

one could, if desired, apply the techniques described above. Here, J6(Q) has
rank 2, and one can find J6(Q)/2J6(Q), followed by a set of coverings curves
as described in the last two sections. However, it is worth bearing in mind that
more than enough techniques were available to deal with such a curve long before
recent methods for finding J (Q)/2J (Q). Letting X = a/b, where a, b ∈ Z and
gcd(a, b) = 1, and multiplying through by b6, we have that fg is an integer
square, where f = a2+b2 and g = a4+b4. Now, if d = gcd(f, g) then d divides g−
(a2 − b2)f = 2b4 and g + (a2 − b2)f = 2a4. Since gcd(a, b) = 1, this means that
d|2 and so d = ±1,±2. Combining this with the fact that fg is an integer square
gives that, for some choice of d = ±1,±2, both of df and dg are integer squares.
Dividing dg through by b4 we have, in particular that d(X4 + 1) is a Q-rational



square, for some choice of d = ±1,±2. The negative values of d give no such X ∈
R and so no X ∈ Q. This means that (X,Y ) ∈ C6(Q) satisfies Y 2

1 = X4 + 1 for
some Y1 ∈ Q or Y 2

2 = 2(X4+1) for some Y2 ∈ Q. Both of these are rank 0 elliptic
curves over Q, the first having only the points ∞±, (0,±1) and the second having
only the points (±1,±2), defined over Q. We can therefore say that C6(Q) =
{∞±, (0,±1), (±1,±2)}, without having done anything sophisticated.

In principle, this idea can be attempted even when F (X) is written as a
product of factors not defined over the ground field. When F (X) is written
as F (X) = Q1(X)Q2(X), where Q1(X) is a quadratic and Q2(X) is a quartic,
then resultant arguments (similar to those above) give a finite number of curves
of genus 1 of the form: y2 = dQ2(X), defined over an extension field, which
need to be considered. One can then hope to apply Elliptic Curve Chabauty
to each of these, and solve for C(Q) without ever having been required to com-
pute J (Q)/2J (Q). In [3], this strategy is used to solve the following Diophantine
problem.

Theorem 10 The only x, y, z ∈ Z with (x, y, z) = 1 and xyz 6= 0, satisfying
x8 + y3 = z2 are (x, y, z) = (±1, 2,±3), (±43, 96222,±3004207).

In the proof of this result, ten associated curves of genus 2 are found, as in
Theorem 6. Of these, there are three difficult cases which required the technique
outlined in this section, together with the Elliptic Curve Chabauty technique at
the beginning of Section 3. It would also be possible to solve these three cases
using the strategy in Section 5. It is, to some extent, a matter of taste. The
resultant method in [3] bypasses the need to find J (Q)/2J (Q). On the other
hand, an initial computation of J (Q)/2J (Q) is often a straightforward and
efficient way of removing many of the curves y2 = dQ2(X) from consideration.

The author thanks Nils Bruin, Bjorn Poonen and Michael Stoll for their
helpful comments on an earlier draft of this manuscript.
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