Honour Moderations: Linear Algebra Problem Sheet 1 (To be done in Third Week)

Michaelmas Term 2005

- 1. (a) Find a vector perpendicular to all vectors $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ such that x + y + z = 0.
 - (b) Find two vectors $\begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix}$ and $\begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}$, neither of which is a scalar multiple of the other, such that the co-ordinates of both satisfy x + y + z = 0.
 - (c) Show that a vector $\begin{pmatrix} x \\ y \\ z \end{pmatrix}$ satisfies x + y + z = 0 if and only if there exist scalars c_1 and c_2 such that

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = c_1 \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} + c_2 \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix}.$$

What is the geometrical significance of this?

- (d) Is the following statement true or false? $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ is perpendicular to $\begin{pmatrix} 1\\1\\-2 \end{pmatrix}$, so the planes x+y+z=0 and x+y-2z=0 are orthogonal.
- 2. Prove that if I, J and K are the complex matrices

$$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$$

respectively, then $I^2 = J^2 = K^2 = -1$, IJ = -JI = K, JK = -KJ = I, and KI = -IK = J.

- 3. For each of the following values of the 2×2 matrix A, evaluate the product $A\begin{pmatrix} x\\ y \end{pmatrix}$, and give a geometric interpretation of the function taking $\begin{pmatrix} x\\ y \end{pmatrix}$ to $A\begin{pmatrix} x\\ y \end{pmatrix}$.
 - (i) $A = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} (k \in \mathbb{R})$

(remember to take into account the sign of k when giving your interpretation);

(ii)
$$A = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix} (k \in \mathbb{R});$$

(iii)
$$A = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} k & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} (\theta \in \mathbb{R})$$

(hint: do the much easier special case $\theta = 0$ first).

4. (a) For
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, find A^{-1} , B^{-1} and $(AB)^{-1}$

(b) Show that the 2×2 matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ has an inverse if and only if $ad-bc \neq 0$. Find the inverse of A.

(c) Determine all 2×2 matrices A with real entries such that $A^2 = I$.

5. (i) Let A and B be $n \times n$ matrices with A symmetric and B skew-symmetric. Determine which of the following are symmetric and which are skew-symmetric:

- (a) AB + BA;
- (b) AB BA;
- (c) A^2 ;
- (d) B^2 .

(ii) Let A be an $n \times n$ matrix over \mathbb{R} , so $A = (a_{ij}), 1 \leq i \leq n, 1 \leq j \leq n$, where $a_{ij} \in \mathbb{R}$. We define the trace of A as follows:

$$trace A = \sum_{i=1}^{n} a_{ii} = tr A.$$

Show that if B is another $n \times n$ matrix over \mathbb{R} , then $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

G.A.S.