
ANALYSIS I

5 Real and complex sequences

5.1 Real numbers in practice

How do we get hold of a real number? Answer, we look at successive approximations. E.g.:

1,
14
10

,
141
100

,
1414
1000

, . . .←−
√

2

Our task is to make all this precise . . .

5.2 Sequences

A sequence of real numbers is a function α : N −→ R.
A sequence of complex numbers is a function α : N −→ C.
E.g. σ(n) = (−1)n, e.g. ζ(n) = 0; e.g. ι(n) = n etc. etc.
Note, we usually just give the values, and say “the sequence 1, 1

2 , 1
4 , . . . ” if it is clear what

the function “must be”. Or better we write “the sequence (an)∞n=1” or “the sequence (an)”.
Take care!

5.3 New sequences from old

Suppose (an) and (bn) are sequences of real numbers and c ∈ R. We define the sequences
(an + bn), (can), (anbn), (an/bn) in the obvious way. All are well defined except possibly the
quotient.

Example. an = (−1)n, bn = 1 ∀n:

(an + bn) = (0, 2, 0, 2, . . . )
(−an) = ((−1)n+1)
(anbn) = (an)

5.4 Tails

Let (an) be a sequence of real numbers and let k > 0. Define bn = an+k then (bn) is a
sequence. Usually we write (an+k)∞n=1. This we call the tail of the given sequence.

5.5 Definition of convergence

Let (an) be a sequence of real numbers, and let l ∈ R. We say “(an) converges to l”, and
write an → l as n→∞, if for every positive real number ε > 0 there exists a natural number
N ∈ N such that

n > N =⇒ |an − l| < ε

If this happens, we say l is the limit of (an) and we say that (an) is convergent if for some
l ∈ R, (an) converges to l.

Note. Some people say “tends to”. We also write lim an = l, limn→∞ an = l.
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5.6 Examples

(i) an = 2n−1
2n . Then an → 1

Proof. Look at

|an − 1| =
∣∣∣∣2n − 1

2n
− 1

∣∣∣∣ =
1
2n

.

Given ε > 0, how do we find N? Well notice that 1
2n < 1

n [Prove n < 2n by induction! ].
Use our Archimedean Property to find N such that 1

N < ε. Then for n > N , 1
n < 1

N .
So

|an − 1| 6 1
2n

6
1
n

<
1
N

< ε

(ii) The sequence

an =
n2 + n + 1
3n2 + 4

is convergent.

Proof. (a) How do we guess l? Well

1 + 1
n + 1

n2

3 + 4
n2

≈ 1
3

∣∣∣∣∣∣
NOT PART

OF
OUR PROOF

(b) Now suppose ε > 0
(c) Look at ∣∣∣∣an −

1
3

∣∣∣∣ =

∣∣∣∣∣1 + 1
n + 1

n2

3 + 4
n2

− 1
3

∣∣∣∣∣ =
3
n −

1
n2

3
(
3 + 4

n2

) =
3n− 1

3(3n2 + 4)

6
3n

3(3n2 + 4)
6

3n

3 · 3n2
6

1
n

(d) By Archimedean Property there exists N ∈ N such that N > 1
ε

(e) n > N =⇒ 1
n 6 1

N 6 ε so done.

(iii) Let

an =
n2 + (−1)n

n2 + 1
.

Proof. (a) Guess a = 1
(b) Let ε > 0
(c)

|an − 1| =
∣∣∣∣n2 + (−1)n − n2 − 1

n2 + 1

∣∣∣∣ 6
2

n2 + 1
6

1
n

(d) By Archimedean Property there exists N such that N > 1
ε

(e) Done
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5.7 Complex Sequences

Let (zn) be a sequence of complex numbers and let w ∈ C. We say that (zn) converges to w
and write zn → w (or lim zn = w etc.) if for every positive real number ε > 0, there exists a
natural number N such that

n > N =⇒ |zn − w| < ε

Theorem. Let zn = xn + iyn.

(i) zn → z =⇒ xn → <z, yn → =y

(ii) xn → x, yn → y =⇒ zn → x + iy

Proof. (i) Put x = <z. |xn −X| = <(zn − z) 6 |zn − z|. So given ε > 0 use the same N .

(ii)

|zn − z| 6 |xn − x|+ |yn − y| by ∆ law

Find N1 to ensure first term is less than ε/2, and N2 to ensure second is less than
ε/2—then use N := min(N1, N2).

Note. A 2ε argument.

5.8 Example

Let zn =
(

1
1+i

)n
. Then zn → 0.

Proof.

|zn − 0| =
∣∣∣∣( 1

1 + i

)n∣∣∣∣ =
∣∣∣∣ 1
1 + i

∣∣∣∣n =
1

|1 + i|n
=

1
|
√

2|n
=

1
2n/2

6
1
n

< ε︸ ︷︷ ︸
Arch.

5.9 Uniqueness of Limits

Theorem. suppose that an → e1 and an → e2. Then e1 = e2.

Proof. Suppose ε > 0. Then ε/2 > 0 so there exists N1 such that

n > N1 =⇒ |an − e1| < ε/2 (†)

Again ε/2 > 0 so there exists N2 such that

n > N2 =⇒ |an − e2| < ε/2. (‡)

Suppose now n > max(N1, N2). Then

|e1 − e2| 6 |e1 − an| + |e2 − an| by the ∆ law
< ε/2 + ε/2 = ε

If e1 6= e2 then |e1 − e2| > 0. Chose ε = |e1 − e2| which contradicts to |e1 − e2| < ε by (†)
and (‡).

3



5.10 The secret of success

Compare the sequence you’re looking at with ones you already know about.

5.11 Inequalities preserved

Theorem. Let (an) and (bn) be real sequences, which an → a and bn → b. Suppose that
an 6 bn for all n. Then a 6 b.

Proof. Suppose, as the contrary, that b < a. Then a − b > 0. Chose ε = a−b
2 > 0. Then

there exists

N1 such that n > N1 =⇒ |an − a| < ε

N2 such that n > N2 =⇒ |bn − b| < ε

So

n > N1 =⇒ a− ε < an < a + ε

n > N2 =⇒ b− ε < bn < b + ε

So for n > max(N1, N2)

an > a− ε > a− a− b

2
=

a + b

2
(as a > b)

bn < b + ε < b +
b− a

2
=

3b− a

2

Therefore an > bn which is contradiction.

5.12 A corollary

Corollary. Suppose an → a, bn → b and an 6 bn for all n > K. Then a 6 b.

Proof. For you.

5.13 Sandwich rule

Suppose xn → a and yn → a. If xn 6 an 6 yn then an → a.

5.14 The tail wags the dog

Theorem.

Let (an) be a sequence, and let k ∈ N. Put bn = an+k. Then the followings are equivalent:

(i) an → l

(ii) bn → l

Proof.
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(i)⇒(ii) Let ε > 0. Then there exists N1 such that n > N1 =⇒ |an − l| < ε. With N2 = N1

n > N2 =⇒ n + k > N1 =⇒ |an+k − l| < ε =⇒ |bn − l| < ε

So bn → l.

(ii)⇒(i) Let ε > 0. Then there exists N2 such that n > N2 =⇒ |bn − l| < ε. With N1 = N2 + k

n > N1 =⇒ (n− k) > N2 =⇒ |bn−k − l| < ε =⇒ |an − l| < ε.

5.15 Some notation

Let an, bn be sequences. We write an = O(bn) if there exist c such that for some N

n > N =⇒ |an| < cbn

We write an = o(bn) if an
bn

is defined and

an

bn
→ 0

Example. (i) n = O(n2)

(ii) n = o(n2)

(iii) sinnθ = O(1)

(iv) sinnθ = o(n)
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6 What it’s about

6.1 The “Algebra of limits”

Most sequences can be built up from simpler ones using the addition, multiplication, and so
on. The algebra of limits tells us how the limits behave.

6.2 AOL: Constants

If an = a for all n then an → a.

Proof. Take N = 1; n > N =⇒ |an − a| = 0 < ε

6.3 AOL: Sums

If an → a and bn → b as n→∞ then an + bn → a + b.

Proof. Let ε > 0 Then ε/2 > 0. So

∃N1 : n > N1 =⇒ |an − a| < ε/2
∃N2 : n > N2 =⇒ |bn − b| < ε/2

Put N3 = max(N1, N2). Then

n > N3 =⇒ |(an + bn) − (a + b)|
6 |an − a| + |bn − n| by the ∆ law
< ε/2 + ε/2
= ε

[A 2ε-proof]

6.4 AOL: Differences

If an → a and bn → b as n→∞ then an − bn → ab.

Proof. You do it!

6.5 AOL: Translation

If n → a as n→∞ then an − c→ a− c.

Proof. |(an − c)− (a− c)| = |an − a| so proof is done.

6.6 AOL: Scalar product

If an → a as n→∞ and λ ∈ R then λan → λa.

Proof. Let ε > 0. Then there exists N : |an − a| < ε for all n > N and

|λan − λa| = |λ||an − a| 6 |λ|ε

for all n > N . So case
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(i) if λ = 0 then λan = 0, λa = 0.

(ii) if λ 6= 0 then ε/|λ| > 0 so there exists N such that n > N =⇒ |an − a| < ε/|λ|. Then
|λan − λa| 6 |λ|ε/|λ| = ε.

6.7 AOL: Products

If an → a and bn → b as n→∞ then anbn → ab.

Proof.
anbn − ab = (an − a)(bn − b) + b(an − a) + a(bn − b)

Lemma. If xn → 0 and yn → 0 then xnyn → 0.

Proof of Lemma. Given ε > 0, let ε1 = min(1, ε) then

∃N1, n > N1 =⇒ |xn| < ε1

∃N2, n > N2 =⇒ |yn| < ε1

Then
n > max(N1, N2) =⇒ |xnyn| 6 |xn||yn| 6 ε2

1 < ε1 6 ε

Now
an − a→ 0 by (6.5)
bn − b→ 0 by (6.5)

}
=⇒ (an − a)(bn − b)→ 0 by Lemma

and
b(an − a)→ 0 by (6.6)
a(bn − b)→ 0 by (6.6)

Then the proof is completed by (6.3).

6.8 AOL: Reciprocals

If an → an0 and an 6= 0 for all n. Then 1
an
→ 1

a .

Needs care. We prove it first for the case a > 0.

(i) As a/2 > 0 there exists N1 such that

n > N1 =⇒ |an − a| < a/2 =⇒ an > a/2

=⇒ 1
an

<
2
a

(ii) Now let ε > 0; so a2 ε
2 > 0. So there exist N2 such that

n > N2 =⇒ |an − a| < a2 ε

2

(iii) Put N3 = max(N1, N2). Then

n > N3 =⇒
∣∣∣∣ 1
an
− 1

a

∣∣∣∣ 6
|an − a|
|an||a|

6
(
a2 ε

2

) 2
a

1
a

= ε

Now if a < 0 we can deduce the result from the above and scalar multiplication by λ =
−1.
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6.9 AOL: Quotients

If an → a, bn → b 6= 0 and bn 6= 0 for all n. Then an/bn → a/b

Proof. (6.8) and (6.7).

6.10 AOL: Modulus

If an → a then |an| → |a|.

Proof. ∣∣|an| − |a|
∣∣ 6 |an − a|

by Exercise sheet 1.

6.11 Examples

(i)
n2 + n + 1
3n2 + 4

→ 1
3

Proof. • 1
n → 0 [Proof: By Arch.]; 1→ 1, 3→ 3

• 1
n2 → 0 by (6.7)

• 1 + 1
n + 1

n2 → 1 by (6.3)2

• 3 + 4
n2 → 3 by (6.3)

• 1
3+ 4

n2
by (6.8)

(ii) Suppose a1 = 1, a2 = 2 and an+2 = an+1 + an, n > 1 [Fibonacci numbers.] Then (an)
is convergent.

Proof. By induction, an > 1 for all n.So for n > 1(
an+2

an+1

)
= 1 +

(
an + 1

an

)−1

Write xn = an+1

an
for n > 1. xn > for all n. Then x1 = 2 and xn+1 = 1 + 1

xn
.

Suppose xn → x. By Tails: xn+1 → x and 1 + 1
xn
→ 1 + 1

x by AOL. So x = 1 + 1
x by

Uniqueness of Limits. So x2 − x − 1 = 0. So x = 1±
√

5
2 . But xn > 0 for all n, and so

x > 0 by 5.11. So x = 1+
√

5
2 > 1.

Now

xn+1 −
1 +
√

5
2︸ ︷︷ ︸

=:τ

= 1 +
1
xn
− τ = 1 +

1
xn
− 1− 1

τ
=

1
xn
− 1

τ

as τ2 = τ + 1. So ∣∣∣∣xn+1 − τ

xn − τ

∣∣∣∣ =
1

|xn||τ |
=

1
τxn

6
1
τ
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Then
− 1

τ2︸︷︷︸
→0

6 (xn+1 − τ) 6
1

τn−1︸ ︷︷ ︸
→0

so we get xn+1 → τ by Sandwich rule and xn → τ by Tail.
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