Suprema and completeness

- 1 Determine whether each of the following sets S is (a) bounded above (b) bounded below. Where possible find $\sup(S)$ and $\inf(S)$, and decide whether $\max(S)$ and $\min(S)$ exist. Give proofs of your assertions.
 - (i) $S = \{2^n : n \in \mathbb{N}\}$; (and, for more practice later, $S = \{a^n : n \in \mathbb{N}\}$, where a > 1);
 - (ii) $S = \{(-1)^n + 1/n : n \in \mathbb{N}\};$
- (iii) $S = \{2^{-m} + 3^{-n} : m, n \in \mathbb{N}\}.$

[In this question you may use only the axioms and properties of real numbers we have already established; in particular you may not use logarithms.]

- **2** Prove that there is a unique real number a such that $a^3 = 2$.
- **3** Let S, T be non-empty bounded subsets of \mathbb{R} . Let $f : \mathbb{R} \to \mathbb{R}$ be an increasing function; that is, $x < y \Rightarrow f(x) < f(y)$.

Prove that

- (i) $S \cup T$ is bounded above and $\sup(S \cup T) = \max(\sup S, \sup T)$;
- (ii) $S+T:=\{s+t:s\in S,t\in T\}$ is bounded below and $\inf(S+T)=\inf S+\inf T;$
- (iii) f(S) is bounded above and $\sup(f(S)) = f(\sup(S))$;

Later, for more practice, you may like to use (iii), and what was proved in the lectures about $\sup\{-s|s\in S\}$, to prove that if c<0 then $cS:=\{cs:s\in S\}$ is bounded above and $\sup(cS)=c\inf S$.

4 Let $a, b \in \mathbb{R}$ with a < b. Prove that there is an irrational c such that a < c < b. [This can be done in a few lines using facts from lectures.]

The complex numbers

- **5** (a) Prove that there does not exist a subset \mathbb{P} of \mathbb{C} satisfying the positivity axioms:
- (P1) If $\alpha, \beta \in \mathbb{P}$ then $\alpha + \beta \in \mathbb{P}$;
- (P2) If $\alpha, \beta \in \mathbb{P}$ then $\alpha\beta \in \mathbb{P}$;
- (P3) For each $\alpha \in \mathbb{C}$, exactly one of the following holds: $\alpha \in \mathbb{P}$, $\alpha = 0, -\alpha \in \mathbb{P}$.

[Apply the trichotomy axiom (P3) to 0 + 1i (usually written i).]

(b) Let z be the complex number with real part x and imaginary part y, so that z = x + yi. Suppose that y = 0. Prove that |z| = |x|.

[Before you start this part, refresh your memory by re-reading the definitions of the modulus of a complex number and the modulus of a real number.]