Analysis I Sheet 4

MT05

Algebra of limits, subsequences

1 For which of the following a_n does the sequence (a_n) converge? Find the value of the limit when it exists.

(i)
$$\frac{3n^3 + n^2 + 1}{2n^3 - 100n - 3}$$
 (ii) $\frac{2^n n^2 + 3^n n}{3^n (n+1) + n^7}$ (iii) $\sqrt{n+1} - \sqrt{n}$

2 Let $z_n = a_n + ib_n$ and $w_n = c_n + id_n$ where $a_n, b_n, c_n, d_n \in \mathbb{R}$. Assuming that $w_n \neq 0$, find $\operatorname{Re}(z_n/w_n)$ and $\operatorname{Im}(z_n/w_n)$ in terms of a_n, b_n, c_n, d_n .

Using the Algebra of Limits for real sequences, prove that if $z_n \to \alpha$ and $w_n \to \beta \neq 0$, then $z_n/w_n \to \alpha/\beta$.

3 Let (a_n) be a sequence of real numbers. Define three new sequences (u_n) and (v_n) by setting $u_n := a_{2n+1}, v_n := a_{2n}, w_n := a_{3n}$. Prove carefully from the definitions that:

- (i) if $a_n \to \ell$ as $n \to \infty$ then $u_n \to \ell$, $v_n \to \ell$, $w_n \to \ell$ as $n \to \infty$;
- (ii) if $u_n \to \ell$ and $v_n \to \ell$ as $n \to \infty$ then $a_n \to \ell$ as $n \to \infty$;
- (iii) if $u_n \to p$, $v_n \to q$, and $u_n \to r$ as $n \to \infty$ then p = r, q = r and hence $a_n \to p$ as $n \to \infty$.

Give an example of a divergent sequence (c_n) such that, for each $k \ge 2$, the subsequence $(c_{kr})_{r=0}^{\infty}$ converges.

4 For $n \ge 1$ let k, m be the natural numbers such that $n = 2^{k-1}(2m-1)$ (as in an enumeration of \mathbb{N}^2), and define $a_n = \frac{k}{m+k}$.

- (i) Find a_{312} .
- (ii) Optional Make a sketch showing the first few (perhaps 2000?) values.
- (iii) Show that for each rational number $y \in (0, 1)$ there exist infinitely many values of n such that $a_n = y$
- (iv) Show that for every real number $x \in [0, 1]$ the sequence (a_n) has a subsequence which converges to x. [Show first that there is a converge (a_n) of rational numbers in (0, 1) which converges

[Show first that there is a sequence (y_r) of rational numbers in (0, 1) which converges to x.]

The following question is optional.

- ⁵(a) Let (a_n) be any sequence which does not converge to 0. Prove that there exist $\varepsilon > 0$ and a subsequence (a_{n_r}) such that $|a_{n_r}| \ge \varepsilon$ for all $r \ge 1$.
- (b) Let (b_n) be a sequence of real numbers and suppose that each subsequence (b_{n_r}) of (b_n) has a subsubsequence $(b_{n_{r_s}})$ which converges to 0. Prove that $b_n \to 0$ as $n \to \infty$. [*Hint: Argue by contradiction.*]