
Analysis I Sheet 5 MT05

Monotonic sequences, Bolzano-Weierstrass, Cauchy sequences

1 In this question we establish in a differnt way the existence of square roots; so you may
not use square roots in your solution.

Let a > 0. Given any a1 > 0, define a sequence (an)n>1 by an+1 = 1
2

(
an +

a

an

)
for

n > 1.

(i) Prove that an > 0 for all n, and so the sequence is well-defined.
(ii) Prove that a2

n > a for all n > 2, and hence that an+1 6 an for all n > 2.
[Hint: Express a2

n+1 − a as a perfect square.]
(iii) Prove that (an) converges.
(iv) Prove that limn→∞ an > 0 and (limn→∞ an)2 = a.

Deduce that there is unique bijection x 7→
√

x of the positive real numbers satisfying
(
√

x)2 = x.
[Remark: This algorithmic method of finding square roots has been ascribed to Heron

of Alexandria but is much older.]

2 Define sequences (an), (bn) by a1 = 1, b1 = 2 and an+1 = (anbn)1/2, bn+1 = 1
2(an + bn)

for n > 1. Prove that

(i) Find the first few terms.
(ii) an < an+1 < bn+1 < bn for all n > 1;
(iii) (an) and (bn) both converge;
(iv) the two limits are equal.

[Remark: You can find all about this sequence by chasing the links after googling the
the first few terms.]

3 Let (zn) be a bounded sequence of complex numbers. Prove that there is a convergent
subsequence (znr).

[Hint: Apply the Bolzano-Weierstrass Theorem to the real and imaginary parts, but be
careful !]

4 Let an =
∫ n

1

cos x

x2
dx. Using the fact that −1 6 cos x 6 1, prove that |am − an| 6

1
n

for

all m > n, and deduce that (an) converges.

By integration by parts, or otherwise, show that lim
n→∞

∫ n

1

sinx

x
dx exists.

In this optional question we can now establish a 1–1 correspondence between the set of positive
real numbers and the set of non-terminating decimals.

5 Let (tn) be a sequence of natural numbers, each of which is one of {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; let
m be a non-negative integer. Suppose that for all n there exists an N > n such that tN 6= 0. Let
dn := m +

∑n
k=0 tk/10k. Prove that

(a) (dn) is a monotone non-decreasing sequence;
(b) (dn) is a bounded sequence;
(c) (dn) is convergent with limit t, say;
(d) the n-th decimal truncation of t is dn.

You can use this correspondence to give a different proof of the uncountability of R.


