Monotonic sequences, Bolzano-Weierstrass, Cauchy sequences

1 In this question we establish in a differnt way the existence of square roots; so you may not use square roots in your solution.

Let a > 0. Given any $a_1 > 0$, define a sequence $(a_n)_{n \ge 1}$ by $a_{n+1} = \frac{1}{2} \left(a_n + \frac{a}{a_n} \right)$ for $n \ge 1$.

- (i) Prove that $a_n > 0$ for all n, and so the sequence is well-defined.
- (ii) Prove that $a_n^2 \ge a$ for all $n \ge 2$, and hence that $a_{n+1} \le a_n$ for all $n \ge 2$. [*Hint: Express* $a_{n+1}^2 - a$ as a perfect square.]
- (iii) Prove that (a_n) converges.
- (iv) Prove that $\lim_{n\to\infty} a_n > 0$ and $(\lim_{n\to\infty} a_n)^2 = a$.

Deduce that there is unique bijection $x \mapsto \sqrt{x}$ of the positive real numbers satisfying $(\sqrt{x})^2 = x$.

[Remark: This algorithmic method of finding square roots has been ascribed to Heron of Alexandria but is much older.]

2 Define sequences (a_n) , (b_n) by $a_1 = 1$, $b_1 = 2$ and $a_{n+1} = (a_n b_n)^{1/2}$, $b_{n+1} = \frac{1}{2}(a_n + b_n)$ for $n \ge 1$. Prove that

- (i) Find the first few terms.
- (ii) $a_n < a_{n+1} < b_{n+1} < b_n$ for all $n \ge 1$;
- (iii) (a_n) and (b_n) both converge;
- (iv) the two limits are equal.

[Remark: You can find all about this sequence by chasing the links after googling the the first few terms.]

3 Let (z_n) be a bounded sequence of complex numbers. Prove that there is a convergent subsequence (z_{n_r}) .

[*Hint: Apply the Bolzano-Weierstrass Theorem to the real and imaginary parts, but be careful!*]

4 Let $a_n = \int_1^n \frac{\cos x}{x^2} \, dx$. Using the fact that $-1 \leq \cos x \leq 1$, prove that $|a_m - a_n| \leq \frac{1}{n}$ for all $m \geq n$, and deduce that (a_n) converges.

By integration by parts, or otherwise, show that $\lim_{n \to \infty} \int_1^n \frac{\sin x}{x} \, \mathrm{d}x$ exists.

In this **optional** question we can now establish a 1–1 correspondence between the set of positive real numbers and the set of non-terminating decimals.

5 Let (t_n) be a sequence of natural numbers, each of which is one of $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$; let m be a non-negative integer. Suppose that for all n there exists an N > n such that $t_N \neq 0$. Let $d_n := m + \sum_{k=0}^n t_k / 10^k$. Prove that

- (a) (d_n) is a monotone non-decreasing sequence;
- (b) (d_n) is a bounded sequence;
- (c) (d_n) is convergent with limit t, say;
- (d) the *n*-th decimal truncation of t is d_n .

You can use this correspondence to give a different proof of the uncountability of \mathbb{R} .