Analysis I Sheet 7

Absolute convergence, power series

1 Give either a proof, or a counterexample to, each of the following assertions:

- (i) If $n^2 a_n \to 0$ as $n \to \infty$ then $\sum a_n$ converges.
- (ii) If $na_n \to 0$ as $n \to \infty$ then $\sum a_n$ converges.
- (iii) If $\sum a_n$ converges then $\sum a_n^2$ converges.
- (iv) If $\sum a_n$ converges absolutely then $\sum a_n^2$ converges.
- (v) If $\sum a_n$ converges absolutely then $|a_n| < 1/n$ for all sufficiently large n.

2 Find the radius of convergence *R* of each of the following power series.

(i)
$$\sum n^{2005} x^n$$
, (ii) $\sum x^{\binom{n}{2}}$, (ii) $\sum \frac{x^n}{2^n n^4}$, (iii) $\sum 2^n x^{n!}$, (iv) $\sum \frac{(nx)^n}{n!}$

Optional extension: If you can, determine whether or not the series converges for x = Rand for x = -R.

3 (a) Write down the sum of the power series $\sum_{n=0}^{\infty} x^n$ valid for |x| < 1. By multiplying the series by itself 'term-by-term' find the sum of $\sum_{n=1}^{\infty} (n+1)x^n$

(b) Prove that $\sum_{k=0}^{k=n} {k \choose r} = {n+1 \choose r+1}$.

[The convention is that $\binom{k}{r} = 0$ when k < r. An easy way to prove this identity is to count the number of ways we choose r+1 from n+1 by first choosing the largest one, k+1say, then choosing r smaller ones.]

- (c) Prove that for all |x| < 1, $(1-x)^{-k} = \sum_{n=0}^{\infty} {n+k \choose n} x^n$. (d) Evaluate (for each n, k) the finite sum $\sum_{r=0}^{n} (-1)^r {k \choose r} {n-r+k \choose n-r}$

4 We have seen that $\cos x$ and $\sin x$ have power series expansions valid for all x. The function sec $x + \tan x$ has a power series expansion $\sum_{n=0}^{\infty} a_n \frac{x^n}{n!}$, valid for $|x| < \pi/2$. Find the coefficients $x = \frac{1}{2}$ the coefficients a_n for $n \leq 7$.

You may wish to take power series expansions in the identity $(\sec x + \tan x)\cos x = 1 + \sin x$ and use the theorem on multiplication of series.

5 Let ω be the complex number $e^{2\pi i/3}$. Verify that $\omega^3 = 1$ and $1 + \omega + \omega^2 = 0$. Find a power series expansion for $e^z + e^{\omega z} + e^{\omega^2 z}$.

Evaluate

$$\sum_{n=0}^{\infty} \frac{8^n}{(3n)!}, \qquad \sum_{n=0}^{\infty} \frac{27^n}{(3n+1)!}$$

Are your answers real numbers?