Axioms for Fields

A field is a set F with distinguished elements 0,1 and with two binary operations + and \times satisfying the following conditions - the Axioms of Arithmetic. Conventionally for the function $+: F \times F \rightarrow F$ we write $(a, b) \mapsto a+b$; for $\times: F \times F \rightarrow F$ we write $(a, b) \mapsto a b$.
(1) $a+(b+c)=(a+b)+c$
[+ is associative]
(2) $a+b=b+a$
[+ is commutative]
(3) $a+0=a$
(4) $\quad(\forall a \in F)(\exists b \in F)(a+b=0)$
(5) $a(b c)=(a b) c$
[x is associative]
(6) $a b=b a$
[x is commutative]
(7) $a 1=a$
(8) $\quad(\forall a \in F \backslash\{0\})(\exists b \in F)(a b=1)$
(9) $a(b+c)=a b+a c$
$[\times$ distributes over +$]$
(10) $0 \neq 1$.

