Linear Algebra 3: Dual spaces

Friday 3 November 2005 Lectures for Part A of Oxford FHS in Mathematics and Joint Schools

- Linear functionals and the dual space
- Dual bases
- Annihilators
- An example
- The second dual.

Important note: Throughout this lecture F is a field and V is a vector space over F.

Linear functionals

Definition: a linear functional on V is a function $f: V \to F$ such that

$$f(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 f(v_1) + \alpha_2 f(v_2)$$

for all $\alpha_1, \alpha_2 \in F$ and all $v_1, v_2 \in V$.

Note: thus a linear functional is a linear transformation $V \rightarrow F$, where F is construed as a 1-dimensional vector space over itself.

Example: if $V = F^n$ (column vectors) and y is a $1 \times n$ row vector then the map $v \mapsto yv$ is a linear functional on V.

Dual spaces

Definition: The dual space V' of V is defined as follows:

Note: Check that the vector space axioms are satisfied.

Note: Sometimes V' is written V^* or Hom(V, F) or Hom $_F(V, F)$.

Dual basis, I

Theorem: Suppose that V is finite-dimensional. For every basis v_1, v_2, \ldots, v_n of V there is a basis f_1, f_2, \ldots, f_n of V' such that

$$f_i(v_j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{if } i \neq j. \end{cases}$$

In particular, $\dim V' = \dim V$.

Proof.

Dual basis, **II**

Note: The basis f_1, f_2, \ldots, f_n is known as the dual basis of v_1, v_2, \ldots, v_n . Clearly, it is unique.

Example: If $V = F^n$ ($n \times 1$ column vectors) then we may identify V' with the space of $1 \times n$ row vectors. The canonical basis e_1, e_2, \ldots, e_n then has dual basis e'_1, e'_2, \ldots, e'_n .

Annihilators

Definition: For a subset U of V the annihilator is defined by

$$U^{\circ} := \{ f \in V' \mid f(u) = 0 \text{ for all } u \in U \}.$$

Note: For any subset U the annihilator U° is a subspace. It is $\{f \in V' \mid U \subseteq \operatorname{Ker} f\}.$

Theorem. Suppose that V is finite-dimensional and U is a subspace. Then

 $\dim U + \dim U^\circ = \dim V.$

Proof.

A worked example

Part of an old Schools question: Let V be a finite-dimensional vector space over a field F. Show that if U_1 , U_2 are subspaces then $(U_1 + U_2)^\circ = U_1^\circ \cap U_2^\circ$ and $(U_1 \cap U_2)^\circ = U_1^\circ + U_2^\circ$.

Response.

The second dual

Theorem. Define $\Phi : V \to V''$ by $(\Phi v)(f) := f(v)$ for all $v \in V$ and all $f \in V'$. Then Φ is linear and one-one [injective]. If V is finite-dimensional then Φ is an isomorphism.

Proof.