Linear Algebra 6: The Primary Decomposition Theorem

Friday 11 November 2005

Lectures for Part A of Oxford FHS in Mathematics and Joint Schools

- The Primary Decomposition Theorem, Mark 1
- The Primary Decomposition Theorem, Mark 2
- The Primary Decomposition Theorem, Mark 3
- An application: diagonalisability

Note: Throughout this lecture F is a field, V is a finitedimensional vector space over F, and $T : V \rightarrow V$ is a linear transformation.

The Primary Decomposition Theorem, Mark 1

Theorem: Suppose that f(T) = 0, where $f \in F[x]$. Suppose also that f(x) = g(x)h(x), where $g, h \in F[x]$ and g, h are coprime. Then there are T-invariant subspaces U, W of V such that $V = U \oplus W$ and $g(T|_U) = 0$, $h(T|_W) = 0$.

Proof.

Challenge. Let P be the projection of V onto U along W. Express P as p(T) for some $p \in F[x]$. (Worth a Marsbar.)

The Primary Decomposition Theorem, Mark 2

Theorem. If $m_T(x) = g(x)h(x)$ where $g, h \in F[x]$ are monic and co-prime, then g is the minimal polynomial of $T|_U$ and h is the minimal polynomial of $T|_W$.

Proof.

Example. If $m_T(x) = x^2 - x$ then (as we already know) there exist $U, W \leq V$ such that $V = U \oplus W$, $T|_U = I_U$ and $T|_W = 0_W$.

The Primary Decomposition Theorem, Mark 3

The Primary Decomposition Theorem. Suppose that

$$m_T(x) = f_1(x)^{m_1} f_2(x)^{m_2} \dots f_k(x)^{m_k},$$

where f_1, f_2, \ldots, f_k are distinct monic irreducible polynomials over F. Then

$$V = V_1 \oplus V_2 \oplus \cdots \oplus V_k,$$

where V_1, V_2, \ldots, V_k are *T*-invariant subspaces and the minimal polynomial of $T|_{V_i}$ is $f_i^{m_i}$ for $1 \leq i \leq k$.

Proof.

An application: diagonalisability

Definition: The linear transformation T is said to be diagonalisable if there is a basis of V consisting of eigenvectors of T.

Note: Matrix $A \in M_{n \times n}(F)$ is said to be diagonalisable if there exists an invertible $n \times n$ matrix P over F such that $P^{-1}AP$ is diagonal. And T is diagonalisable if and only if there is a basis of V with respect to which its matrix is diagonal.

Theorem. Our transformation T is diagonalisable if and only if $m_T(x)$ may be factorised as a product of distinct linear factors in F[x].

Proof.