Linear Algebra 6: The Primary Decomposition Theorem

Friday 11 November 2005
Lectures for Part A of Oxford FHS in Mathematics and Joint Schools

- The Primary Decomposition Theorem, Mark 1
- The Primary Decomposition Theorem, Mark 2
- The Primary Decomposition Theorem, Mark 3
- An application: diagonalisability

Note: Throughout this lecture F is a field, V is a finitedimensional vector space over F, and $T: V \rightarrow V$ is a linear transformation.

The Primary Decomposition Theorem, Mark 1

Theorem: Suppose that $f(T)=0$, where $f \in F[x]$. Suppose also that $f(x)=g(x) h(x)$, where $g, h \in F[x]$ and g, h are coprime. Then there are T-invariant subspaces U, W of V such that $V=U \oplus W$ and $g\left(\left.T\right|_{U}\right)=0, h\left(\left.T\right|_{W}\right)=0$.

Proof.

Challenge. Let P be the projection of V onto U along W. Express P as $p(T)$ for some $p \in F[x]$. (Worth a Marsbar.)

The Primary Decomposition Theorem, Mark 2

Theorem. If $m_{T}(x)=g(x) h(x)$ where $g, h \in F[x]$ are monic and co-prime, then g is the minimal polynomial of $\left.T\right|_{U}$ and h is the minimal polynomial of $\left.T\right|_{W}$.

Proof.

Example. If $m_{T}(x)=x^{2}-x$ then (as we already know) there exist $U, W \leqslant V$ such that $V=U \oplus W,\left.T\right|_{U}=I_{U}$ and $\left.T\right|_{W}=0_{W}$.

The Primary Decomposition Theorem, Mark 3

The Primary Decomposition Theorem. Suppose that

$$
m_{T}(x)=f_{1}(x)^{m_{1}} f_{2}(x)^{m_{2}} \ldots f_{k}(x)^{m_{k}}
$$

where $f_{1}, f_{2}, \ldots, f_{k}$ are distinct monic irreducible polynomials over F. Then

$$
V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{k}
$$

where $V_{1}, V_{2}, \ldots, V_{k}$ are T-invariant subspaces and the minimal polynomial of $\left.T\right|_{V_{i}}$ is $f_{i}^{m_{i}}$ for $1 \leqslant i \leqslant k$.

Proof.

An application: diagonalisability

Definition: The linear transformation T is said to be diagonalisable if there is a basis of V consisting of eigenvectors of T.

Note: Matrix $A \in \mathrm{M}_{n \times n}(F)$ is said to be diagonalisable if there exists an invertible $n \times n$ matrix P over F such that $P^{-1} A P$ is diagonal. And T is diagonalisable if and only if there is a basis of V with respect to which its matrix is diagonal.

Theorem. Our transformation T is diagonalisable if and only if $m_{T}(x)$ may be factorised as a product of distinct linear factors in $F[x]$.

Proof.

