Linear Algebra 9: Real inner product spaces

Friday 18 November 2005

Lectures for Part A of Oxford FHS in Mathematics and Joint Schools

- Real inner product spaces
- Orthogonality
- Orthonormal sets
- Orthonormal bases
- Orthogonal complements
- The Gram–Schmidt process

Real inner product spaces

Let V be a vector space over \mathbb{R} .

Definition: An inner product on V is a function $B:V\times V\to F$ such that for all $u,v,w\in V$ and all $\alpha,\beta\in\mathbb{R}$,

- (1) $B(\alpha u + \beta v, w) = \alpha B(u, w) + \beta B(v, w)$
- (2) B(u,v) = B(v,u) [B is symmetric]
- (3) B(u,u) > 0 [B is positive definite]

Note. Often we find $\langle u, v \rangle$ used for inner products.

Note. In an inner product space we define $||u||:=\langle u,u\rangle^{\frac{1}{2}}$.

Notes on real inner product spaces

Note. From (1) and (2) follows

(1')
$$B(u, \alpha v + \beta w) = \alpha B(u, v) + \beta B(u, w)$$

Note. A function satisfying (1) and (1') is said to be bilinear.

Example 1: $V = \mathbb{R}^n$ and $B(u, v) = u \cdot v$.

Example 2: V = C[0,1] (continuous real-valued functions) and $B(f,g) = \int_0^1 f(t)g(t) dt$.

Orthogonality

Let V be a real inner product space.

- for $u \in V$ define $u^{\perp} := \{v \in V \mid \langle v, u \rangle = 0\};$
- for $X \subseteq V$ define $X^{\perp} := \{v \in V \mid \langle v, u \rangle = 0 \text{ for all } u \in X\}.$

Note that u^{\perp} , X^{\perp} are subspaces of V.

Lemma. $V = \langle u \rangle \oplus u^{\perp}$ for any $u \in V$.

Orthogonal and orthonormal sets

Definition. Let V be a real inner product space. Vectors u_1, u_2, \ldots, u_k are said to form an orthogonal set if $\langle u_i, u_j \rangle = 0$ whenever $i \neq j$. They are said to form an orthonormal set if they are orthogonal and $||u_i|| = 1$ for all i.

Lemma: An orthogonal set of non-zero vectors is linearly independent.

Orthonormal bases

Theorem. Let V be a finite-dimensional real inner product space, let $n := \dim V$, and let $u \in V \setminus \{0\}$. There is an orthonormal basis v_1, v_2, \ldots, v_n such that $v_1 = ||u||^{-1}u$.

Notes on orthonormal bases

Let V be a finite-dimensional real inner product space and let v_1, \ldots, v_n be an orthonormal basis of V. Let $u, w \in V$ and suppose that $u = x_1v_1 + \cdots + x_nv_n$, $w = y_1v_1 + \cdots + y_nv_n$, where $x_i, y_j \in \mathbb{R}$ for all i, j.

Note (1):
$$x_i = \langle u, v_i \rangle$$
.

Note (2):
$$||u|| = (\sum |x_i|^2)^{\frac{1}{2}}$$
.

Note (3):
$$\langle u, w \rangle = \sum x_i y_i$$
.

Orthogonal complements

Theorem. Let V be a real inner product space. If U is a finite-dimensional subspace then $V=U\oplus U^{\perp}$.

The Gram-Schmidt process, I

Theorem. Let V be a real inner product space and let u_1, \ldots, u_n be linearly independent vectors in V. Then there exists an orthonormal set v_1, \ldots, v_n in V such that

$$\operatorname{Span}(v_1,\ldots,v_k)=\operatorname{Span}(u_1,\ldots,u_k)$$
 for $0\leqslant k\leqslant n$.

The Gram-Schmidt process, II

Note 1: The construction in the proof is known as the Gram–Schmidt orthogonalisation process.

Note 2: If T is the transition matrix from u_1, \ldots, u_n to v_1, \ldots, v_n then T is positive upper triangular—that is, upper triangular with positive diagonal entries.