Linear Algebra 10: Inner product spaces, II

Monday 21 November 2005

Lectures for Part A of Oxford FHS in Mathematics and Joint Schools

- Gram-Schmidt Process (from last time)
- A worked example: FHS 1999, Paper a1, Qn 3
- Complex inner product spaces
- Uniqueness of finite-dimensional inner product space

FHS 1999, Paper a1, Question 3

Let V be a finite-dimensional vector space over \mathbb{R}. Define what is meant by saying that V has an inner product \langle,$\rangle over \mathbb{R}$.

Let $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ be a basis for V. Prove that there exists an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of V such that for each $k=1,2, \ldots, n$ the set $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ is a basis for the subspace spanned by $\left\{b_{1}, b_{2}, \ldots, b_{k}\right\}$. Deduce that there are $t_{i j} \in \mathbb{R}$ with $t_{i i} \neq 0$ such that

$$
b_{1}=t_{11} e_{1}, \quad b_{2}=t_{12} e_{1}+t_{22} e_{2}, \quad \ldots, \quad b_{k}=t_{1 k} e_{1}+\cdots+t_{k k} e_{k}, \quad \cdots
$$

$$
\text { (for } 1 \leqslant k \leqslant n) . \text { Show that }\left\langle b_{i}, b_{j}\right\rangle=\sum_{k=1}^{n}\left\langle b_{i}, e_{k}\right\rangle\left\langle b_{j}, e_{k}\right\rangle \quad(\text { for } 1 \leqslant i, j \leqslant n)
$$

Now let G be the $n \times n$ matrix with (i, j) th entry equal to $\left\langle b_{i}, b_{j}\right\rangle$. Show that $\operatorname{Det} G=\prod_{i=1}^{n} t_{i i}^{2}$ and deduce that G is non-singular. Show also that $\operatorname{Det} G \leqslant \prod_{i=1}^{n}\left\langle b_{i}, b_{i}\right\rangle$.

Complex inner product spaces

Definition: Let V be a vector space over \mathbb{C}. An inner product on V is a function $B: V \times V \rightarrow \mathbb{C}$ such that for all $u, v, w \in V$ and all $\alpha, \beta \in \mathbb{C}$
$\mathrm{C}(1) \quad B(\alpha u+\beta v, w)=\alpha B(u, w)+\beta B(v, w)$
$C(2) \quad B(u, v)=\overline{B(v, u)}$
C(3) if $u \neq 0$ then $B(u, u)>0 \quad$ [B is positive definite]
Note: A complex inner product is sesquilinear: $B(u, \alpha v+\beta w)=$ $\bar{\alpha} B(u, v)+\bar{\beta} B(u, w)$.

Note. Often we find $\langle u, v\rangle$ used for inner products. Often they are called Hermitian forms.

Note. As in the real case we define $\|u\|:=\langle u, u\rangle^{\frac{1}{2}}$.

Examples of complex inner product spaces

Example 1: $V=\mathbb{C}^{n}$ and $\langle u, v\rangle=u^{\operatorname{tr}} \bar{v}$.

Example 2: $V=\{f:[0,1] \rightarrow \mathbb{C} \mid f$ is continuous $\}$ and

$$
\langle u, v\rangle=\int_{0}^{1} f(t) \overline{g(t)} \mathrm{d} t
$$

Orthogonality in complex inner product spaces

Let V be a complex inner product space.

Orthogonality is defined just as in real inner product spaces.

A finite dimensional complex inner product space has an orthonormal basis.

If $U \leqslant V$ then $V=U \oplus U^{\perp}$.

The Gram-Schmidt orthogonalisation process manufactures an orthonormal set from a linearly independent set in the same way as in the real case.

Uniqueness of inner product spaces

Observation. Let V be a real inner product space of dimension n. Then there is an isomorphism (bijective linear transformation) $\varphi: V \rightarrow \mathbb{R}^{n}$ such that if $\varphi u=\left(x_{1}, \ldots, x_{n}\right)$ and $\varphi v=\left(y_{1}, \ldots, y_{n}\right)$ then $\langle u, v\rangle=\sum x_{i} y_{i}$.

We say that V is isometric with \mathbb{R}^{n}.

Observation. Let V be a complex inner product space of dimension n. Then there is an isomorphism $\varphi: V \rightarrow \mathbb{C}^{n}$ such that if $\varphi u=\left(x_{1}, \ldots, x_{n}\right)$ and $\varphi v=\left(y_{1}, \ldots, y_{n}\right)$ then $\langle u, v\rangle=\sum x_{i} \overline{y_{i}}$.

We say that V is isometric with \mathbb{C}^{n}.

