Linear Algebra 11: Inner product spaces, III: Two important inequalities

Thursday 24 November 2005

Lectures for Part A of Oxford FHS in Mathematics and Joint Schools

- Bessel's Inequality
- Some examples
- The Cauchy–Schwarz Inequality
- Some examples

Note: throughout this lecture V is a real or complex inner product space.

Bessel's Inequality

Theorem. Let v_1, \ldots, v_m be an orthonormal set in V. If $u \in V$ then

$$\sum_{1}^{m} |\langle u, v_i \rangle|^2 \leqslant ||u||^2.$$

Equality holds if and only if $u \in \operatorname{Span}\{v_1, \ldots, v_m\}$.

Proof.

Some examples

```
Example: V = \mathbb{R}^n with the usual inner product; v_k = e_k for k = 1, 2, ..., m; u = (x_1, x_2, ..., x_n)^{\text{tr}}.
```

Some examples

Example:
$$V = \mathbb{R}^n$$
 with the usual inner product; $v_k = e_k$ for $k = 1, 2, ..., m$; $u = (x_1, x_2, ..., x_n)^{\text{tr}}$.

Example:
$$V$$
 is the space of continuous $f:[0,1]\to\mathbb{C}$; $\langle f,g\rangle=\int_0^1f(t)\overline{g(t)}\,\mathrm{d}t\;;\;v_k(t)=\mathrm{e}^{2\pi\mathrm{i}kt}\;\mathrm{for}\;k\in\mathbb{Z}\;;$ for $f\in V$ define $c_m:=\int_0^1f(t)\mathrm{e}^{2\pi\mathrm{i}mt}\,\mathrm{d}t\;;$...

The Cauchy-Schwarz Inequality

Theorem. Let $u, v \in V$. Then

$$|\langle u, v \rangle| \leqslant ||u||.||v||.$$

Proof.

Classic alternative proof for \mathbb{R} eal inner product spaces.

Challenge: adapt this proof to work over \mathbb{C} . [Marsbar for first good solution.]

Examples [FHS 1998, Paper a1, Question 3]

Example: If $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{C}$ then $|\sum a_i b_i|^2 \leqslant \sum |a_i|^2 \sum |b_i|^2$.

Examples [FHS 1998, Paper a1, Question 3]

Example: If $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{C}$ then $|\sum a_i b_i|^2 \leqslant \sum |a_i|^2 \sum |b_i|^2$.

Example: If $a_1, \ldots, a_n \in \mathbb{R}$ and $a_i > 0$ for $1 \leqslant i \leqslant n$ then $(\sum a_i)(\sum 1/a_i) \geqslant n^2$.

Examples [FHS 1998, Paper a1, Question 3]

Example: If $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{C}$ then $|\sum a_i b_i|^2 \leqslant \sum |a_i|^2 \sum |b_i|^2$.

Example: If $a_1, \ldots, a_n \in \mathbb{R}$ and $a_i > 0$ for $1 \leq i \leq n$ then $(\sum a_i)(\sum 1/a_i) \geqslant n^2$.

Example: Suppose that a < b and $f, g : [a, b] \to \mathbb{R}$ are continuous. Then $\left(\int_a^b f(x)g(x)\,\mathrm{d}x\right)^2 \leqslant \int_a^b f(x)^2\,\mathrm{d}x \int_a^b g(x)^2\,\mathrm{d}x$.