Rings & Arithmetic 3: Ideals and quotient rings

Friday, 14 October 2005

Lectures for Part A of Oxford FHS in Mathematics and Joint Schools

- Ideals, examples
- Quotient rings
- Homomorphisms
- Kernel and image
- The First Isomorphism Theorem
- A worked exercise

Ideals

Definition: A subset A of a ring R (commutative, with 1) is said to be an ideal if

- (1) $0 \in A$ and $a, b \in A \Rightarrow a + b, -a \in A$ (so A is an additive subgroup);
- (2) $(a \in A, x \in R) \Rightarrow xa \in A$.

Note: If A is an ideal and $1 \in A$ then A = R. Thus a proper ideal is never a subring.

Examples of ideals

Examples: $\{0\}$, R are always ideals.

Examples: $n\mathbb{Z}$ is an ideal in \mathbb{Z} .

Examples: Generally, if R is any ring (commutative, with 1) and $a \in R$ then aR is an ideal.

Note: Such ideals aR (or Ra) are known as principal ideals. Notations (a) and $\langle a \rangle_R$ are also used by some mathematicians.

Quotient rings

Definition: Let A be an ideal in the ring R. The quotient ring R/A is defined as follows:

Set :=
$$\{x + A \mid x \in R\}$$
 [additive cosets]
 $0 := A$
 $1 := 1 + A$
 $(x + A) + (y + A) := (x + y) + A$
 $(x + A)(y + A) := (xy) + A$.

Check that this is a ring. The issues are:

- are + and × well-defined?
- do the ring axioms hold?

Important example: $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$

Homomorphisms

Definition: Let R, S be rings (commutative, with 1). A function $\varphi:R\to S$ is said to be a homomorphism if

(0)
$$\varphi(0) = 0$$
, $\varphi(1) = 1$

(1)
$$\varphi(a+b) = \varphi(a) + \varphi(b)$$
 for all $a, b \in R$

(2)
$$\varphi(ab) = \varphi(a) \varphi(b)$$
 for all $a, b \in R$

Example: The identity map $R \to R$ is a homomorphism.

Example: If R is a ring, A an ideal then the map $x \mapsto x + A$ is a homomorphism $R \to R/A$. It is known as the natural projection or natural epimorphism.

Example: In particular, the map $\mathbb{Z} \to \mathbb{Z}_n$ where $x \mapsto \bar{x}$ (and \bar{x} is the residue class of x modulo n) is a surjective homomorphism.

Notes on homomorphisms

Note: If $\varphi: R \to S$ and $\psi: S \to T$ are ring homomorphisms then also $\psi \circ \varphi: R \to T$ is a homomorphism.

Note: If $\varphi: R \to S$ is a ring homomorphism then $\varphi U(R) \leqslant U(S)$.

Definition: An isomorphism is an invertible homomorphism. We write $R \cong S$ to mean that there exists an isomorphism $R \to S$ (and then we say that R, S are isomorphic).

Note: A ring homomorphism $\varphi: R \to S$ is an isomorphism if and only if it is one-one and onto (injective and surjective).

Image and kernel

Definition: Let $\varphi:R\to S$ be a ring homomorphism. We define the image and kernel of φ by

$$\operatorname{Im} \varphi := \{ y \in S \mid \exists x \in R : \varphi(x) = y \}$$

$$\operatorname{Ker} \varphi := \{ x \in R \mid \varphi(x) = 0 \}.$$

Important Observation: If $\varphi: R \to S$ is a ring homomorphism then $\operatorname{Im} \varphi$ is a subring of S and $\operatorname{Ker} \varphi$ is an ideal in R.

Proof.

The First Isomorphism Theorem

First Isomorphism Theorem for rings: If $\varphi: R \to S$ is a ring homomorphism then $\mathrm{Im} \varphi \cong R/\mathrm{Ker} \varphi$.

Proof.

A worked example

Part of Schools 1987, I, 5. Let D be the ring of all differentiable functions $f: \mathbb{R} \to \mathbb{R}$ with the operations of pointwise addition and multiplication. Show that

$$I = \{ f \in D : f(0) = f'(0) = 0 \}$$

is an ideal in D.

Let $\mathbb{R}[x]$ denote the ring of polynomials in the indeterminate x with real coefficients, and (x^2) the ideal generated by the polynomial x^2 . Show that there is a homomorphism from $\mathbb{R}[x]$ onto D/I and deduce that $D/I \cong \mathbb{R}[x]/(x^2)$.