Rings & Arithmetic 7: Arithmetic in euclidean rings

Monday, 24 October 2005

Lectures for Part A of Oxford FHS in Mathematics and Joint Schools

- Simple properties of euclidean rings
- The principal ideal property
- Important corollaries
- Uniqueness of factorisation
- The euclidean algorithm

Simple facts about euclidean rings R

Let R be a euclidean ring with "valuation" $v: R \setminus \{0\} \to \mathbb{N} \cup \{0\}$.

Fact 1: For $x, y \in R \setminus \{0\}$, v(x) = v(xy) if and only if $y \in U(R)$. Proof.

Fact 2: $v(1) \le v(x)$ for all $x \in R \setminus \{0\}$ with equality if and only if $x \in U(R)$.

Proof.

Fact 3: Let $a \in R \setminus \{0\}$. There exist $k \geqslant 0$, irreducible elements a_1, a_2, \ldots, a_k in R, and $u \in U(R)$ such that $a = u \, a_1 \, a_2 \cdots a_k$. Proof.

Ideals in euclidean rings

Recall: a principal ideal is an ideal generated by a single element. If the generator is a then the ideal is denoted Ra or (a). Principal ideals mirror divisibility: $a \mid b \iff (b) \subseteq (a)$.

Theorem: Every ideal in a euclidean ring is principal.

Proof.

Note: an integral domain in which every ideal is principal is known as a principal ideal domain (PID).

Important corollaries

Theorem: In a principal ideal domain R, and, in particular, in a euclidean ring R, highest common factors exist. Moreover, if d = hcf(a, b) then there exist $u, v \in R$ such that d = ua + vb.

Proof.

Theorem: In a principal ideal domain R, and, in particular, in a euclidean ring R, irreducible elements are prime.

Proof.

Uniqueness of factorisation, I

Definition: Let $a \in R$ where R is an integral domain. We'll say that factorisations

$$a = u p_1 \cdots p_k = v q_1 \cdots q_m,$$

where $u,v\in U(R)$ and $p_1,\ldots,p_k,\ q_1,\ldots,q_m$ are irreducible elements of R, are essentially the same if k=m and the elements q_i can be re-labelled so that $q_i\sim p_i$ for $1\leqslant i\leqslant k$. We'll say that an element a of a commutative ring R with 1 is uniquely factorisable into irreducibles if there exists such a factorisation and all factorisations into irreducibles are essentially the same.

Definition: A unique factorisation domain (UFD) is an integral domain in which every non-zero element is uniquely factorisable into irreducibles.

Uniqueness of factorisation, II

Theorem. A euclidean ring is a unique factorisation domain.

Proof.

Commentary

Note: As a special case we get the "Fundamental Theorem of Arithmetic"—uniqueness of factorisation in \mathbb{Z} or in \mathbb{N} .

Note: As another special case we get uniqueness of factorisation in the polynomial ring F[x] where F is a field.

Note: Factorising is difficult.

Note: In fact every PID is a UFD. Proof of existence of a factorisation is non-trivial (at the level of a Mars-bar Challenge). Proof of uniqueness, however, is exactly the same as in the case of euclidean rings.

The euclidean algorithm, I

Question: How can one **find** highest common factors? Factorisation is often impracticable.

Notation: If a = qb + r where r = 0 or v(r) < v(b) we write $a \div b$ for q and res $a \pmod{b}$ for r.

Observation: Given a, b, division of a by b (when $b \neq 0$) to **find** $a \div b$ and res $a \pmod{b}$ is done by a Division Algorithm.

Observation: If a = qb + r then hcf(a, b) = hcf(b, r).

The euclidean algorithm, II

Assume a Division Algorithm in R.

```
Input: elements a, b of euclidean ring R;

Output: \operatorname{hcf}(a,b).

Begin: while b \neq 0 do

r := \operatorname{res} a \pmod{b} [use Division Algorithm];

a := b;
b := r;
endwhile;
return a;
End.
```

Proof of correctness.

The extended euclidean algorithm

Input: elements a, b of euclidean ring R;

Output: hcf(a, b)

and elements $u, v \in R$ such that hcf(a, b) = ua + vb.

This is an interesting exercise for you.