Rings & Arithmetic 9: The Gaussian integers

Friday, 28 October 2005

Lectures for Part A of Oxford FHS in Mathematics and Joint Schools

- The ring of Gaussian integers
- Division with remainder
- Gaussian units
- Gaussian primes
- Sums of two squares
- Concluding remarks

The Gaussian integers

Definition. A Gaussian integer is a complex number of the form a+bi where $a,b\in\mathbb{Z}$. We define

$$\mathbb{Z}[\mathsf{i}] := \{ a + b\mathsf{i} \in \mathbb{C} \mid a, b \in \mathbb{Z} \}.$$

Observe that $\mathbb{Z}[i] \leq \mathbb{C}$ and therefore $\mathbb{Z}[i]$ is an integral domain.

The norm of a Gaussian integer

Define $N: \mathbb{Z}[i] \to \{0\} \cup \mathbb{N}$ by $N(x) := |x|^2$ for all $x \in \mathbb{Z}[i]$. Thus if x = a + bi then $N(x) = a^2 + b^2$.

Note: N(x) is often called the norm of x; and N the norm function. Note that it is defined on all of $\mathbb{Z}[i]$, even on 0.

Note: The norm is multiplicative: N(xy) = N(x)N(y) for all $x, y \in \mathbb{Z}[i]$.

Division in the ring of Gaussian integers

Theorem. If $x, y \in \mathbb{Z}[i]$ and $y \neq 0$ then

- $(1) N(xy) \geqslant N(x),$
- (2) there exist $q, r \in \mathbb{Z}[i]$ such that x = qy + r and N(r) < N(y). Thus the ring of Gaussian integers is euclidean.

The Gaussian units

Theorem.
$$U(\mathbb{Z}[i]) = \{1, -1, i, -i\}.$$

Gaussian primes, I

Lemma. Let x be a prime in $\mathbb{Z}[i]$. Then there is a prime p in \mathbb{N} such that x|p in $\mathbb{Z}[i]$. Moreover, either N(x)=p or x=up for some $u \in U(\mathbb{Z}[i])$.

Proof.

Lemma. Let p be an ordinary prime number in \mathbb{N} . Then p is reducible (prime) in $\mathbb{Z}[i]$ if and only if $\exists a, b \in \mathbb{Z} : p = a^2 + b^2$.

Gaussian primes, II

Lemma. Let p be an ordinary prime number in \mathbb{N} .

- If p = 2 then $p = (-i)(1+i)^2$.
- If $p \equiv 3 \pmod{4}$ then p remains prime in $\mathbb{Z}[i]$.
- If $p \equiv 1 \pmod{4}$ then p becomes reducible in $\mathbb{Z}[i]$ —in fact p factorises as a product of two distinct primes in $\mathbb{Z}[i]$.

Gaussian primes, III

Corollary of these lemmas:

Theorem. The primes in $\mathbb{Z}[i]$ are (associates of):

- 1+i;
- primes p of \mathbb{N} of the form 4m + 3; and
- numbers a+bi where $a,b\in\mathbb{N}$ and a^2+b^2 is prime.

Examples: 1+i, 3, 2+i, 2-i, 7, 11, 3+2i, 3-2i, 4+i, 4-i, 19, 23, ... are primes in $\mathbb{Z}[i]$.

Application to sums of two squares

Theorem. Every ordinary prime of the form 4m + 1 is a sum of two squares. [Fermat's Two Squares Theorem.]

Theorem. Let $n \in \mathbb{N}$. Factorise n as $p_1^{m_1} p_2^{m_2} \cdots p_k^{m_k}$ where p_1, \ldots, p_k are distinct prime numbers. There exist $a, b \in \mathbb{N} \cup \{0\}$ such that $n = a^2 + b^2$ if and only if $p_i \equiv 3 \pmod{4} \Rightarrow m_i$ is even.

Summary of the Rings & Arithmetic course

- Definitions: commutative rings with 1, integral domains, fields, etc.;
- Ideals, quotient rings (e.g. \mathbb{Z}_n ; quotient by maximal ideal is a field), homomorphisms, Isomorphism Theorems;
- Arithmetic—units, irreducibles, primes, etc.;
- Euclidean rings:
 - ideals are principal;
 - hcf exists;
 - irreducibles are prime:
 - unique factorisation theorem holds.
- \bullet Rings \mathbb{Z} , F[x], $\mathbb{Z}[i]$, ... are euclidean so the theory applies.

The end

Farewell: we start with Linear Algebra on Monday.