Axioms for Rings

A ring is a set R with distinguished element 0 and with two binary operations + and \times satisfying the following conditions. Conventionally

for the function $+: R \times R \to R$ we write $(a, b) \mapsto a + b$; for $\times: R \times R \to R$ we write $(a, b) \mapsto ab$.

(1)
$$a + (b+c) = (a+b) + c$$
 [+ is associative]

(2)
$$a+b=b+a$$
 [+ is commutative]

$$(3) \quad a+0=a$$

$$(4) \quad (\forall a \in R)(\exists b \in R)(a+b=0)$$

(5)
$$a(bc) = (ab)c$$
 [× is associative]

(9)
$$a(b+c) = ab + ac$$
 and $(b+c)a = ba + ca$ [× distributes over +]

If

(6)
$$ab = ba$$
 [× is commutative]

then the ring is said to be *commutative*.

If there exists $1 \in R$ such that

$$(7) \quad \forall a \in R : a1 = 1a = a$$

Then R is a ring with unity or a ring with 1.