Part A Further Linear Algebra, MT 2005: Exercise Sheet 1

Revision of Mods linear algebra. Vector spaces over an arbitrary field; subspaces, direct sums, projection operators and their characterisation as idempotent operators. Dual spaces. (See, for example Kaye \& Wilson, Linear Algebra, Ch. 2, and Halmos, Finite-dimensional vector spaces $\S \S 1-13,15,17-22,41,42$, or the equivalent in other texts.)
Note: the following problems are offered to give focus to tutorials. The wise and intelligent student will be trying many more exercises, however, from books, past examination papers, and other such sources.

1. (Mods 1974) Let V be a 4 -dimensional vector space over a field F (you may assume that F is \mathbb{R} or \mathbb{C}), with basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, and let T be the linear transformation defined by

$$
\begin{aligned}
& T\left(e_{1}\right)=-e_{1}-2 e_{2}+2 e_{3}, \\
& T\left(e_{2}\right)=4 e_{1}+4 e_{2}-5 e_{3}-3 e_{4}, \\
& T\left(e_{3}\right)=2 e_{1}+2 e_{2}-3 e_{3}-2 e_{4}, \\
& T\left(e_{4}\right)=-e_{2}+e_{3} .
\end{aligned}
$$

Let U be the subspace spanned by $\left\{e_{1}+e_{2}-e_{3}, e_{1}-e_{4},-e_{1}+e_{2}-e_{3}+2 e_{4}\right\}$. Verify that $T(U) \subseteq U$. Find a basis for U and calculate the matrix of $\left.T\right|_{U}$ with respect to this basis. Show that if $F=\mathbb{R}$ then $\left.T\right|_{U}$ has no eigenvectors. Find the eigenvalues and eigenvectors if $F=\mathbb{C}$.
2. Let F_{n} be the $n^{\text {th }}$ term of the Fibonacci sequence. Thus $F_{0}=0, F_{1}=1$ and the sequence satisfies the recursion $F_{n}=F_{n-1}+F_{n-2}$. Also, let $\tau:=\frac{1}{2}(1+\sqrt{5})$ (so that $\tau: 1$ is the so-called "Golden Ratio"); define $\tau^{\prime}:=\frac{1}{2}(1-\sqrt{5})$ (so that $\tau^{\prime}=-1 / \tau$ and τ, τ^{\prime} are the roots of the equation $t^{2}-t-1=0$); and define $T:=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$.
(i) Let u_{n} be the column vector $\binom{F_{n-1}}{F_{n}}$. Show that $T u_{n-1}=u_{n}$.
(ii) Show that τ and τ^{\prime} are the eigenvalues of T and find corresponding eigenvectors v_{τ} and $v_{\tau^{\prime}}$.
(iii) Find real numbers A, B such that $u_{1}=A v_{\tau}+B v_{\tau^{\prime}}$.
(iv) Deduce a formula for F_{n}.
3. Let U_{1}, U_{2}, \ldots be proper subspaces of a vector space V over a field F (the subspace U is said to be proper if $U \neq V$).
(i) Show that $V \neq U_{1} \cup U_{2}$. [Hint: what happens if $U_{1} \subseteq U_{2}$ or $U_{2} \subseteq U_{1}$? Otherwise, take $u_{1} \in U_{1} \backslash U_{2}, u_{2} \in U_{2} \backslash U_{1}$, and show that $u_{1}+u_{2} \notin U_{1} \cup U_{2}$.]
(ii) Show that if $V=U_{1} \cup U_{2} \cup U_{3}$ then F must be the field \mathbb{F}_{2} with just 2 elements. [Hint: show first that we cannot have $U_{1} \subseteq U_{2} \cup U_{3}$, nor $U_{2} \subseteq U_{1} \cup U_{3}$; choose $u_{1} \in U_{1} \backslash\left(U_{2} \cup U_{3}\right)$ and $u_{2} \in U_{2} \backslash\left(U_{1} \cup U_{3}\right)$; observe that if $\lambda \in F \backslash\{0\}$ then $u_{1}+\lambda u_{2}$ must lie in U_{3} and exploit this fact.]
(iii) Show that if F is infinite (indeed, if $|F|>n-1$) then $V \neq U_{1} \cup U_{2} \cup \cdots \cup U_{n}$.
4. Let V be a vector space over \mathbb{R} and let U be a non-trivial proper subspace. Prove that there are infinitely many different subspaces W of V such that $V=U \oplus W$. [Hint: think first what happens when V is 2-dimensional; then generalise.]

How far can this be generalised to vector spaces over other fields F ?
5. Let V be a vector space (over some field F), and let E_{1} and E_{2} be projections on V.
(i) Show that $E_{1}+E_{2}$ is a projection if and only if $E_{1} E_{2}+E_{2} E_{1}=0$. Prove that this happens if and only if $E_{1} E_{2}=E_{2} E_{1}$. [Hint: consider $E_{1} E_{2} E_{1}$ in two different ways.] Deduce that if char $F \neq 2$ then $E_{1}+E_{2}$ is a projection if and only if $E_{1} E_{2}=E_{2} E_{1}=0$.
(ii) Now suppose that $E_{1}+E_{2}$ is a projection. Assuming that char $F \neq 2$, find its kernel and image in terms of those of E_{1} and E_{2}. What can be said if char $F=2$?
6. Let V be a finite dimensional vector space over a field F. Recall that if $X \subseteq V$ then $X^{\circ}:=\left\{f \in V^{\prime} \mid f(x)=0\right.$ for all $\left.x \in X\right\}$. Prove that if U_{1}, U_{2} are subspaces of V then

$$
\left(U_{1} \cap U_{2}\right)^{\circ}=U_{1}^{\circ}+U_{2}^{\circ} \quad \text { and } \quad\left(U_{1}+U_{2}\right)^{\circ}=U_{1}^{\circ} \cap U_{2}^{\circ}
$$

7. Let F be a field with at least 4 elements and let V be the vector space of polynomials $c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}$ of degree $\leqslant 3$ with coefficients from F.
(i) Show that for $a \in F$ the map $e_{a}: V \rightarrow F$ given by evaluation of polynomial f at a (that is, $e_{a}(f)=f(a)$) is a linear functional.
(ii) Show that if $a_{1}, a_{2}, a_{3}, a_{4}$ are distinct elements of F then $\left\{e_{a_{1}}, e_{a_{2}}, e_{a_{3}}, e_{a_{4}}\right\}$ is a basis of V^{\prime}.
(iii) Find the basis $\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}$ of V whose dual basis is the basis in (ii).
