Rings and Arithmetic 1 (Paper A1): Michaelmas Term 2005

Commutative rings with 1, subrings. Integral domains, fields. polynomial rings. Units. Ideals and quotient rings

1. Which of the following are rings, which not?
(i) \mathbb{N} with the usual addition and multiplication;
(ii) \mathbb{Z} with the usual addition and multiplication;
(iii) \mathbb{Q} with the usual addition and multiplication;
(iv) \mathbb{Z} with addition given by $a \oplus b:=a+b+1$, multiplication $a \otimes b:=a b+a+b$;
(v) \mathbb{R}^{2} with the usual addition and with multiplication given by $\left(x_{1}, y_{1}\right) \times\left(x_{2}, y_{2}\right):=$ $\left(x_{1} x_{2}, x_{1} y_{2}+y_{1} x_{2}\right)$.
2. Let X be a set. Define 'addition' and 'multiplication' on its power set $\mathcal{P} X$ by $u+v:=$ $(u \cup v) \backslash(u \cap v)$ and $u v:=u \cap v$. Prove that this turns $\mathcal{P} X$ into a commutative ring with 1 in which $x^{2}=x$ for all elements x.
3. Let Π be a set of prime numbers. An integer n is said to be a Π-number if all its prime factors lie in Π. Define $\mathbb{Z}_{\Pi}:=\{m / n \in \mathbb{Q} \mid m, n$ are co-prime and n is a Π-number $\}$.
(i) Show that \mathbb{Z}_{Π} is a subring of \mathbb{Q}.
(ii) Now let $R \leqslant \mathbb{Q}$. Let $m / n \in R$, with m, n co-prime. Let p be a prime divisor of n. Show that $p^{-1} \in R$. [You may find it helpful to recall from Mods that since m and p are co-prime there exist $a, b \in \mathbb{Z}$ such that $a m+b p=1$.] Deduce that $\mathbb{Z}_{\{p\}} \leqslant R$. Prove that there exists a unique set Π of prime numbers such that $R=\mathbb{Z}_{\Pi}$.
4. (a) Prove that if R is an integral domain then the ring $R[x]$ of polynomials with coefficients from R is an integral domain. Deduce that there is an infinite integral domain of characteristic 2.
(b) Find the units in $R[x]$.
5. Show that a finite integral domain is a field.
6. Let R, S be commutative rings with unity. Recall that $U(R)$ is the group of units of R, and that $R \times S$ is the ring consisting of all pairs (x, y) (for $x \in R$ and $y \in S$) with componentwise addition and multiplication. Identify $U(R \times S)$ in terms of $U(R)$ and $U(S)$.
7. An element x of a ring R is said to be nilpotent if $x^{k}=0$ for some positive integer k; it is said to be idempotent if $x^{2}=x$. The quotient ring $\mathbb{Z} / n \mathbb{Z}$ will be denoted \mathbb{Z}_{n}. Let's abuse language a little and use m to denote both an integer m and the member of \mathbb{Z}_{n} that it represents.
(i) Show that m is a unit in \mathbb{Z}_{n} if and only if m, n are coprime.
(ii) Show that m is a zero-divisor in \mathbb{Z}_{n} if and only if m, n are not coprime.
(iii) Identify the nilpotent elements of \mathbb{Z}_{12}. [What about \mathbb{Z}_{n} in general?]
(iv) Identify the idempotent elements of \mathbb{Z}_{12}. [What about \mathbb{Z}_{n} in general?]
