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Abstract. We outline PARI programs which assist with various algorithms related to descent via isogeny

on elliptic curves. We describe, in this context, variations of standard inequalities which aid the computation

of members of the Tate-Shafarevich group. We apply these techniques to several examples: in one case we use
descent via 9-isogeny to determine the rank of an elliptic curve; in another case we find nontrivial members

of the 9-part of the Tate-Shafarevich group, and in a further case, nontrivial members of the 13-part of the

Tate-Shafarevich group.

1. Introduction

Recall that an elliptic curve defined over a field K is a smooth projective curve of genus 1 with at least

one rational point. In projective coordinates, we will take this point to be [0, 1, 0], and we will describe E by

the following homogeneous equation:

E : Y 2Z + a1XY Z + a3Y Z2 = X3 + a2X
2Z + a4XZ2 + a6Z

3,

where ai ∈ K. However, as a matter of convention, we will almost always refer to E by the affine chart such

that E is described by an equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

where ai ∈ K and O is an added point at infinity corresponding to the rational projective point [0, 1, 0].

For general background on elliptic curves see, for example, [20],[29]. For the sake of convenience, we adopt

Silverman’s notation [29] of often referring to E(K) as simply E . In this way, it is necessary to interpret the

expression “for some P ∈ E” as “for some P ∈ E(K).” Finally, while we will address this theorem in more

detail in later sections, we recall the Mordell-Weil theorem, which states that for any elliptic curve E defined

over a number field K, E(K) ∼= Etors(K)× Zr, where r ∈ Z+. We call r the rank of E(K).

Finding this number r will be the fundamental question that this article will address. The canonical

method for attempting to solve this problem is by doing a complete 2-descent: attempting to compute

E(Q)/[2]E(Q) by checking whether certain twists of E (homogeneous spaces) have any rational points. See

Chapter X of [29] for a complete account of this method. In this article, we will use a general technique

outlined in [27] to construct an explicit method for doing a descent via isogeny on a certain class of elliptic

curves where the isogeny is not the multiplication-by-2 map. More specifically, our method of descent via

isogeny will apply when φ : E → Ê is a Q-rational isogeny between elliptic curves defined over Q, where the

kernel of the isogeny is cyclically generated by a Q-rational point on E of prime power order. In accordance

with Schaefer’s method, we will do this without having to describe any homogeneous spaces; as he points
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out, avoiding these spaces can be convenient as they can become quite difficult to describe as the degree of

our isogeny increases. Note that because of a result by Mazur (see Theorem 2 or [22], Theorem 4.1) and the

fact that we are only considering curves with a rational torsion point of prime power order, we know that our

isogeny must have degree d where d ∈ {2, 3, 4, 5, 7, 8, 9}. Further, descents via 2- and 3-isogeny have been

exhaustively described in other works, so we will largely avoid these cases. Examples of performing a descent

via 2-isogeny on a hyperelliptic curve that avoids homogeneous spaces can be found in Chapter 11 of [5],

while the traditional method of descent via 2-isogeny can be found in [29], X.4.10. Descent via 3-isogeny is

described in [11],[33], and 3-descents are also discussed in [2],[13],[28]. Methods of performing a 4-descent can

be found in [18],[23]. In addition, [1] works with 5-descents, Thomas Fisher describes a method of descent

via 5- and 7-isogeny in [14],[15], and [30] discusses a method for performing an 8-descent. See also [9],[10].

Our method of descent via 9-isogeny does not seem to be addressed in other sources.

While our particular method is only feasible for curves with nontrivial rational torsion subgroups or for

curves with a torsion subgroup defined over a low degree number field, this is still a worthwhile endeavor for

several reasons. Firstly, the traditional method for computing the rank of E(Q) depends on computing its

2-Selmer group, which will only yield the rank of E(Q) when the 2-part of the Tate-Shafarevich group (often

called Sha and denoted X(E/Q)) is trivial. While anecdotal evidence indicates that it is somewhat unlikely

that a randomly selected curve should have nontrivial elements in the 2-part of the Tate-Shafarevich group,

it is still useful to have the option of doing alternate descents on a curve should a 2-descent happen to fail.

Further, doing different descents allows one to discover more about the Tate-Shafarevich group, which has

wider applications to the theory of elliptic curves (see [6],[35]).

2. Notation

Now let E be an elliptic curve defined over Q described by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,(1)

where each ai ∈ Q. We denote the group of rational points on E by E(Q). Further, we let ∆(E) be the

discriminant of E , and we let ∆min(E) be the discriminant of the minimal model for E . For any elliptic

curve E and finite prime p ∈ Z+, let E ′p denote the reduction of E at p so that

E ′p : y2 + a′1xy + a′3y = x3 + a′2x
2 + a′4x + a′6,

where a′i is the reduction of ai in Fp. We see that this map takes a point (x0, y0) ∈ E(Q) to (x′0, y
′
0) ∈ E ′p(Fp),

where x′0 and y′0 are the reductions of x0 and y0 at p. Let Q(E) denote the function field of E , which can be

described by Q(x, y), where x and y satisfy the Weierstrass equation for E .

Further, let φ : E → Ê be an isogeny of degree d defined over Q, where we usually take d to be a power of

a prime. We let E [φ] denote the Q-rational points in the kernel of φ, and we let E(Q)[φ] denote the rational

points in the kernel of φ. Let Q(Ê) be the function field of Ê , which we will often denote as Q(X, Y ) where X

and Y satisfy the Weierstrass equation for Ê . We denote the dual isogeny mapping from Ê to E as φ̂. As a

matter of taste, we choose to call Ê the dual curve to E , and we will denote the coefficients of the Weierstrass
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equation for Ê with capital letters so that

Ê : y2 + A1xy + A3y = x3 + A2x
2 + A4x + A6,

where each Ai ∈ Q. If we need to differentiate further between E and Ê , we will use capital X’s and Y ’s

when working with the dual curve.

3. Finding One-Parameter Families of Elliptic Curves with Prescribed Torsion Subgroups

It is a classical result that the set of elliptic curves defined over Q which contain a rational point of order

d ∈ {4, 5, 6, 7, 8, 9, 10, 12} lie in a one-parameter family. This is a result of the following two theorems.

Theorem 1. Any elliptic curve E/Q with at least one rational point other than O that is not of order 2 or 3

is birationally equivalent to an elliptic curve in the form, E : y2 +(1−w)xy + vy = x3 + vx2 where v, w ∈ Q.

We call this Tate normal form (see [20], 4.1).

Proof: This is a standard result, which can be found in [29], VIII, Exercise 8.13.a. �

Theorem 2 (Mazur). Let X1(d) be the modular curve whose rational points parametrize the family of

elliptic curves possessing a rational point of order d > 2. Then X1(d) is of genus 0 if and only if d ∈
{2, 3, 4, 5, 6, 7, 8, 9, 10, 12}. Further, if E is an elliptic curve defined over Q and P ∈ Etors(Q), then the order

of P must be in {2, 3, 4, 5, 6, 7, 8, 9, 10, 12}.

Proof: For the fact about the genus of X1(d), see [7], 2.2.4-5. For the classification of rational torsion on

elliptic curves, see [22], Theorem 4.1. �

Remark 1. We see that if we assume that E : y2 + (1 − w)xy + vy = x3 + vx2 is an elliptic curve with a

rational point of order d > 4 at (0, 0), then we can use the group law on the curve to find the relation between

v and w induced by d(0, 0) = O. If d is even it is simpler to use (d/2)(0, 0) = (−d/2)(0, 0), and if d is odd we

can use (d′+1)(0, 0) = (−d′)(0, 0), where d = 2d′+1. This relation between v and w is essentially a model for

the modular curve X1(d). Further, we see from Mazur’s theorem that when d ∈ {4, 5, 6, 7, 8, 9, 10, 12} that

we may actually parametrize the equation for X1(d) (since we can find rational parametrizations of genus 0

curves). This implies that the family of curves with a rational point of order d ∈ {4, 5, 6, 7, 8, 9, 10, 12} lies

in a one parameter family of the form

{Ed
t : y2 + jd(t)xy + kd(t)y = x3 + kd(t)x2 : t ∈ Q,∆(Ed

t ) 6= 0}.(2)

where jd(t) and kd(t) are as follows:
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Table 1. The following gives jd(t), kd(t) such that Ed
t : y2 + jd(t)xy + kd(t)y = x3 + kd(t)x2.

d jd(t) kd(t)

4 1 t

5 t + 1 t

6 1− t −t(t + 1)

7 1− t− t2 t2(t + 1)

8
−2t2 + 1

t + 1
−t(2t + 1)

9 t3 + t2 + 1 t2(t3 + 2t2 + 2t + 1)

10 1− t3 + 3t2 + 2t

t2 + 6t + 4
t5 + 3t4 + 2t3

t4 + 12t3 + 44t2 + 48t + 16

12
6t4 − 8t3 + 2t2 + 2t− 1

t3 − 3t2 + 3t− 1
−12t6 + 30t5 − 34t4 + 21t3 − 7t2 + t

t4 − 4t3 + 6t2 − 4t + 1

4. Isogenies

In this section, we sketch the method from [34] for constructing isogenies between elliptic curves with

nontrivial rational torsion.

Let φ : E → Ê be a Q-rational isogeny of elliptic curves, defined over Q, where E is described by a

Weierstrass equation as in (1):

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Definition 1. We associate the following values, called the Tate values, to an elliptic curve given by a

Weierstrass equation as above:

b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6.

As usual, let E [φ] denote the kernel of φ. Let P = (x, y) be a generic point in the function field of E ,

Q(E) ∼= Q(x, y). Note that x ∈ Q(E) is the function that takes a point to its x-coordinate, so if P = (1, 2),

x(P ) = x((1, 2)) = 1. Similarly, we have y(P ) = y((1, 2)) = 2. Then consider the following two functions:

X(P ) = x(P ) +
∑

Q∈E[φ]−{O}

(
x(P + Q)− x(Q)

)

Y (P ) = y(P ) +
∑

Q∈E[φ]−{O}

(
y(P + Q)− y(Q)

)
.
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Lemma 1. ([34], Equation 2) Let φ : E → Ê be as above. Then Q(Ê) ∼= Q(X, Y ). That is, if P = (x, y),

then φ(P ) = φ((x, y)) = (X, Y ).

Proof: See [34], Equation 2, though this is fairly transparent since E [φ] is clearly the kernel of the maps X

and Y . �

Definition 2. Let φ : E → Ê be as above. Let E [φ]2 denote the points of order 2 in E [φ]. Further, let R be

a subset of E [φ]− {O} − E [φ]2 such that

E [φ]− {O} − E [φ]2 = R ∪ (−R) and R ∩ (−R) = ∅.

Then we define S = R ∪ E [φ]2.

Definition 3. For any Q ∈ E , we define the following quantities associated with Q:

Q = (xQ, yQ)

gx
Q = 3x2

Q + 2a2xQ + a4 − a1yQ

gy
Q = −2yQ − a1xQ − a3

sQ =

{
gx

Q if Q ∈ E [φ]2
2gx

Q − a1g
y
Q = 6x2

Q + b2xQ + b4 if Q 6∈ E [φ]2

uQ = (gy
Q)2 = 4x3

Q + b2x
2
Q + 2b4xQ + b6.

Theorem 3. (see [34]) Let φ : E → Ê and S be as above. Let

s =
∑
Q∈S

sQ and w =
∑
Q∈S

(uQ + xQsQ).

Then Ê satisfies the following Weierstrass equation:

Ê : Y 2 + a1XY + a3Y = X3 + a2X
2 + (a4 − 5s)X + (a6 − b2s− 7w).

Proof: See [34], where this relation between X and Y is obtained via a computation using the formal groups

of E and Ê . �

Remark 2. We can use Vélu’s method to find an isogeny φ : Ed
t → Êd

t for the elliptic curves from Table 1,

as well as the Weierstrass equation for Êd
t . Further, we can compute the explicit formula for the dual isogeny,

φ̂ by repeating Vélu’s method. Namely, we start with Êd
t to find an isogeny to ̂̂Ed

t , which can be birationally

transformed to Ed
t . Note that to do this, we need to determine the kernel of the dual isogeny, Êd

t [φ̂], by

factoring the dth division polynomial of Êd
t . We summarize these results as follows.

Recall that we denote our original family of curves as in (2):

{Ed
t : y2 + jd(t)xy + kd(t)y = x3 + kd(t)x2 : t ∈ Q,∆(Ed

t ) 6= 0}.

Similarly, we have our associated family of dual curves, where Êd
t is dual to Ed

t for d ∈ {4, 5, 7, 8, 9} and any

t ∈ Q such that Ed
t is an elliptic curve, which we list in the following tables for d = 4, 5, 7, 8, 9.
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Table 2. The following gives ld(t),md(t) such that Êd
t : y2 + jd(t)xy+kd(t)y = x3 +kd(t)x2 + ld(t)x+md(t).

d ld(t)

4 −5(t2 + t)

5 5t(t2 − 2t− 1)

7 5t(t6 − 7t4 − 14t3 − 14t2 − 7t− 1)

8
−5t(17t6 + 51t5 + 59t4 + 33t3 + 5t2 − 3t− 1)

t3 + 3t2 + 3t + 1

9 5t(t10 + t9 − 8t8 − 33t7 − 72t6 − 108t5 − 114t4 − 81t3 − 37t2 − 10t− 1)

d md(t)

4 t(3t2 − 12t− 1)

5 t(t4 − 10t3 − 5t2 − 15t− 1)

7 t(t10 − 8t9 − 46t8 − 107t7 − 202t6 − 343t5 − 393t4 − 258t3 − 94t2 − 19t− 1)

8
−275t11 − 1290t10 − 2597t9 − 2948t8 − 2251t7 − 1475t6 − 913t5 − 422t4 − 107t3 − 8t2 + t

t5 + 5t4 + 10t3 + 10t2 + 5t + 1

9 t17 − 7t16 − 63t15 − 230t14 − 641t13 − 1639t12 − 3691t11 − 6707t10 − 9425t9 − 10174t8

−8456t7 − 5379t6 − 2559t5 − 865t4 − 190t3 − 24t2 − t

Remark 3. We have made available at [17] the PARI [24] function TorsionCurve, which takes a torsion order

d ∈ {4, 5, 6, 7, 8, 9} and a parameter t ∈ Q and returns a 5 component vector [a1, a2, a3, a4, a6] corresponding

to an elliptic curve in Tate normal form with a point of order d whose Weierstrass coefficients are determined

by the parameter t. For example, TorsionCurve(5, 4) returns the vector [5, 4, 4, 0, 0], which describes the

elliptic curve

E : y2 + 5xy + 4y = x3 + 4x2.

In addition, we have written a function, DualCurve, which takes a torsion order d ∈ {4, 5, 6, 7, 8, 9} and a

parameter t ∈ Q and uses Vélu’s method to return a 5 component vector [A1, A2, A3, A4, A6] corresponding

to the dual curve to TorsionCurve(d, t). In addition, IsogenyPhi(d, t, [x, y]) uses Vélu’s method to map a

(general or explicit) point on Ed
t /Ed

t [φ] by φ to Êd
t . Similarly, IsogenyDual(d, t, [x, y]) takes a (general or

explicit) point on Êd
t /Êd

t [φ̂] and maps it by φ̂ to Ed
t .

Example 1. Consider E : y2 + 8xy + 7y = x3 + 7x2, which is given by TorsionCurve(5, 7). Then the dual

curve is given by DualCurve(5, 7), and is described by the following Weierstrass equation:

Ê : y2 + 8xy + 7y = x3 + 7x2 + 1190x− 9660.
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We can quickly find the point (14, 28) ∈ E(Q), which has infinite order in E(Q). Therefore, (14, 28) 6∈ E [φ].

So we can use IsogenyPhi(5, 7, [14, 28]) to see that φ((14, 28)) = (349/36, 6493/216). We can now apply

IsogenyDual(5, 7, [349/36, 6493/216]), which yields

[−29111531/2842596, 335859771193/4792616856],

which precisely says that

φ̂((349/36, 6493/216)) = (−29111531/2842596, 335859771193/4792616856).

It can be easily verified that this point equals [5](14, 28), which is compatible with the fact that φ̂ ◦ φ = [5]

on E .

5. The φ̂-Selmer and Tate-Shafarevich Groups

In this section, we will recall some general background on the φ-Selmer and Tate-Shafarevich groups,

which arise by taking cohomology on the exact sequence

(3) 0 → Ê(Q)[φ̂] → Ê(Q)
bφ−→ E(Q) → 0.

Note that all of the results in this section generalize to the case when E is an elliptic curve defined over a

number field K and φ̂ : Ê → E is an isogeny defined over K.

Remark 4. For the sake of brevity, we adopt the notation G = Gal(Q/Q) and Gp = Gal(Qp/Qp) where

p ∈ {q : q ∈ Z+ is prime or q = ∞}. As usual, when p = ∞, Q∞ := R.

Proposition 1. ([29], X.4) Let φ̂ : Ê → E be a Q-rational isogeny of elliptic curves defined over Q. Then the

following diagram is commutative where δ is the connecting homomorphism that arises from taking Galois

cohomology on the sequence from (3):

0 //E(Q)/φ̂(Ê(Q))

��

δ //H1(G, Ê(Q)[φ̂])

��

//H1(G, Ê(Q))[φ̂] //

��

0

0 //
∏
p
E(Qp)/φ̂(Ê(Qp)) δ //

∏
p

H1(Gp, Ê(Qp)[φ̂]) //
∏
p

H1(Gp, Ê(Qp))[φ̂] //0

Definition 4. Let φ̂ : Ê → E be a Q-rational isogeny of elliptic curves defined over Q. We define the

φ̂-Selmer group of Ê/Q, denoted Sel(
bφ)(Ê/Q), to be

Sel(
bφ)(Ê/Q) = ker

(
H1(G, Ê(Q)[φ̂]) →

∏
p

H1(Gp, Ê(Qp))

)
.

Definition 5. Similarly, we define the Tate-Shafarevich group of Ê/Q, denoted X(Ê/Q), to be

X(Ê/Q) = ker

(
H1(G, Ê(Q)) →

∏
p

H1(Gp, Ê(Qp))

)
.

Lemma 2. ([29], X.4.2.a) Let E be an elliptic curve defined over Q, and let φ̂ : Ê → E be a Q-rational

isogeny. Then the following is an exact sequence:

0 → E(Q)/φ̂(Ê(Q)) → Sel(
bφ)(Ê/Q) → X(Ê/Q)[φ̂] → 0.
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Proof: This is clear from the definitions of the φ̂-Selmer group and the Tate-Shafarevich group (this sequence

is simply extracted from the commutative diagram in Proposition 1). �

Lemma 3. ([29], X.4.4) Let E be an elliptic curve defined over Q and let φ̂ : Ê → E be a Q-rational isogeny.

Let d = deg(φ̂) = deg(φ). Then Sel(
bφ)(Ê/Q) ⊆ H1(Gal(Q/Q), Ê(Q)[φ̂];T ) for the following finite set:

(4) T = {p : p|∆min(E) or p|d or p = ∞}.

Theorem 4. ([28], Proposition 3.2) Let E, φ, T , and d be as in Lemma 3. Let cE,p be the Tamagawa number

for E at p, and let cbE,p be the Tamagawa number for Ê at p (see Definition 7). Then

Sel(
bφ)(Ê/Q) ⊆ H1(Gal(Q/Q), Ê(Q)[φ̂];S)

where

(5) S = T − {p : gcd(d, cE,p) = gcd(d, cbE,p) = 1}.

Theorem 5. ([29], X.4.2.b) Let E be an elliptic curve defined over Q and let φ̂ : Ê → E be a Q-rational

isogeny. Then Sel(
bφ)(Ê/Q) is finite.

Remark 5. Whenever we refer to the set S, we will assume it is the above set from (5). We need not worry

about confusing the set S associated to E and the set S′ associated to Ê when φ̂ : E → Ê is a Q-rational

isogeny of Q-rational elliptic curves: it will always be the case that S = S′; see [8], II.12.

6. A General Method for Computing Sel(bφ)(E/Q)

Definition 6. Let E be an elliptic curve defined over Q, and let φ̂ : Ê → E be a Q-rational isogeny. Let S

be the finite set of places associated to E described in (5). Then we define Q(S, d) ⊆ Q∗/(Q∗)d to be the

following group:

Q(S, d) = {k ∈ Q∗/(Q∗)d : ordp(k) ≡ 0 mod d for all p 6∈ S}.(6)

Proposition 2. ([29], X.1.1 and Exercise 10.1) Let E be an elliptic curve defined over Q and let φ : E → Ê
be a degree-d Q-rational isogeny such that E [φ] ⊆ E(Q) is cyclically generated by a point T ∈ E(Q). Then

there exists an injective homomorphism:

F : E(Q)/φ̂(Ê(Q)) → Q(S, d).

Further, for any P ∈ E(Q) such that P 6= T,O, F (P ) ≡ fT (P ) mod (Q∗)d where fT ∈ Q(E) is such that

div(fT ) = d · T − d · O and fT ◦ φ̂ = gd
T for some gT ∈ Q(Ê).

Remark 6. This implies that the φ̂-Selmer group of an elliptic curve defined over Q is isomorphic to a

subgroup of Q(S, d) ⊆ Q∗/(Q∗)d. This fact and the commutative diagram from Proposition 1 give us

an effective method of computing Sel(
bφ)(Ê/Q). Namely, following the construction from [27], we see that
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Proposition 2 and the diagram from Proposition 1 lead to the following commutative diagram:

E(Q)/φ̂(Ê(Q))

��

F //Q(S, d)

∏
βp

��∏
p
E(Qp)/φ̂(Ê(Qp))

∏
Fp //

∏
p

Q∗
p/(Q∗

p)
d

Note that βp : Q(S, d) → Q∗
p/(Q∗

p)
d is the map induced by the natural embeddding Q∗ → Q∗

p, and Fp is

the same map as F with its domain extended to E(Qp)/φ̂(Ê(Qp)). We will address this in more depth in

Section 8.

Lemma 4. (see [27]) Let E be an elliptic curve defined over Q and let φ̂ : Ê → E be a Q-rational isogeny of

degree d such that E [φ] ⊆ E(Q). Then

Sel(
bφ)(Ê/Q) ∼=

⋂
p∈S

β−1
p

(
Fp

(
E(Qp)/φ̂

(
Ê(Qp)

)))
⊆ Q(S, d) ⊆ Q∗/(Q∗)d.

Proof: This follows directly from the diagram in Proposition 1 and by our construction in Proposition 2. �

Remark 7. Though it is technically imprecise to do so, we will often refer to⋂
p∈S

β−1
p

(
Fp

(
E(Qp)/φ̂

(
Ê(Qp)

)))
⊆ Q(S, d) ⊆ Q∗/(Q∗)d

as the φ̂-Selmer group of Ê instead of a group isomorphic to Sel(
bφ)(Ê/Q).

7. The Map F : Ed
t (Q)/φ̂(Êd

t (Q)) → Q(S, d)

Remark 8. Let φ : Ed
t → Êd

t be a rational degree-d isogeny of elliptic curves over Q where d ∈ {4, 5, 7, 8, 9}
as in Tables 1 and 2. Then we can use the construction of F in Proposition 2 and the IsPrincipal function in

Magma [21] applied to d · T − d · O (which computes fT such that div(fT ) = d · T − d · O), to find the maps

F : Ed
t (Q)/φ̂(Êd

t (Q)) → Q(S, d) : (x, y) 7→ F ((x, y)).(7)

We summarize these results in the following table.

Table 3. The following gives the map F (x, y) in (7).

deg(φ) F

4 x2 − y

5 (x + 1)y − x2

7 (t− 1)x3 + (y − t2)x2 + (y − 2ty)x + yt2

8 x4 + (4t + 3)x3 +
2t3 + 5t2 + (−4y + 4)t + (−3y + 1)

t + 1
x2 + (−6yt− 4y)x + (−2yt2 − 3yt− y)

9 (−t2 − 2)x4 + (−2t4 − t3 − 2t2 + (y − 1))x3 + (−t6 − 2t5 − 3t4 − 2t3 + (3y − 1)t2 + 3y)x2

+(3yt4 + 2yt3 + 3yt2 + y)x + (yt6 + 2yt5 + 3yt4 + 2yt3 + yt2)
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Remark 9. We have made available at [17] the PARI function Fo([x, y],d, t]), which takes as input a

torsion order d ∈ {4, 5, 6, 7, 8, 9}, a parameter t ∈ Q, and rational point on the curve P ∈ Ed
t , and returns

F (P ) ∈ Q(S, d). For example, Fo([−7, 49], 5, 7) returns 343, which gives us that F : E5
7 → Q(S, 5) is such

that F ((−7, 49)) = 73.

8. Local Considerations

Let E be an elliptic curve defined over Q and let φ̂ : Ê → E be a degree-d isogeny where d is a power of

a prime and E [φ] ⊆ E(Q). In this section, we will state a version of Hensel’s Lemma and demonstrate how

it can be used to compute many of the quantities we need to determine Sel(
bφ)(Ê/Q). First, we will use the

lemma to find representatives for Q∗
p/(Q∗

p)
d that correspond with the elements of Q(S, d) under our local

map

βp : Q(S, d) → Q∗
p/(Q∗

p)
d where p < ∞.

Next, we will we will discuss how to extend the map

F : Ed
t (Q)/φ̂(Êd

t (Q)) → Q(S, d)

to

Fp : Ed
t (Qp)/φ̂(Êd

t (Qp)) → Q∗
p/(Q∗

p)
d where p < ∞,

and how to use this map to algorithmically find generators for Ed
t (Qp)/φ̂(Êd

t (Qp)).

Finally, we will consider the case p = ∞ and show how to do the analogous computations when we take

the localization of Q at ∞, the real numbers.

We first statement a version of Hensel’s Lemma.

Lemma 5. (Hensel’s Lemma) Let K be a number field and let v ∈ M0
K be a non-Archimedean valuation.

Then let Kv be the completion of K with respect to the absolute value | · |v, and let Ov = {x ∈ Kv : |x|v 6 1}
be its associated ring of integers. If f(x) ∈ Ov[x] and α0 ∈ Ov are such that |f(α0)|v < |f ′(α0)|2, then there

exists a unique α ∈ Ov such that f(α) = 0 and

|α− α0|v 6

∣∣∣∣ f(α0)
f ′(α0)

∣∣∣∣
v

.

Proof: See [25], 2.1.5. �

Remark 10. Using this version of Hensel’s Lemma, we can describe the local quotient group Q∗
p/(Q∗

p)
d and

the associated map βp : Q(S, d) → Q∗
p/(Qp)d for p 6= ∞, as follows. Let S = {p1, p2, . . . , pk} be a set of

rational primes that generate a subgroup of Q∗
p/(Q∗

p)
d where d is a power of a prime. Recall from (6) that in

our case, we denote this group Q(S, d) where S is from (5). If d is even, then −1 is not a dth power in Q, so

Q(S, d) = 〈−1, p1, . . . , pk : (−1)2 = 1 and pd
i = 1〉.

If d is odd, then −1 is a dth power, so

Q(S, d) = 〈p1, . . . , pk : pd
i = 1〉.

In order to compute βp(Q(S, d)), we just need to check which of our elements from Q(S, d) become equivalent

in Q∗
p/(Q∗

p)
d using Hensel’s Lemma. For example, if |d|p = 1 and p1 and p2 are distinct primes in Q(S, d)
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such that p1 · pd−1
2 is a dth power in Fp, then Hensel’s Lemma implies that xd − p1 · pd−1

2 has a solution in

Qp: that is, it is a dth-power in Qp. Hence p1 · pd−1
2 = 1 in Q∗

p/(Q∗
p)

d, so p1 = p2 in Q∗
p/(Q∗

p)
d.

We can illustrate this more concretely with a numerical example.

Example 2. Let E : y2 + 13xy + 84y = x3 + 84x2 be the elliptic curve obtained from Table 1 when d = 9

and t = 2. Note that 9(0, 0) = O and ∆(E) = −1 ·29 ·38 ·73 ·371. Hence Q(S, 7) = 〈2, 3, 7, 37〉. Now Hensel’s

Lemma can be invoked to find that x9 − 2 · 3 has a solution in Q7. Thus, 2 · 3 is a 9th power in Q7 so that

2 · 3 = 1 in Q∗
7/(Q∗

7)
9. This is equivalent to saying that 2 = 38 in Q∗

7/(Q∗
7)

9, so that β7(2) = 2 = 38.

For additional examples, see Chapter 11 of [5], which addresses the group Q∗
p/(Q∗

p)
2.

Remark 11. We have made available at [17] the PARI function ModuloPowLocalp(z,d, t,p), which takes

as input a torsion order d ∈ {4, 5, 6, 7, 8, 9}, a parameter t ∈ Q, a prime p ∈ S, and a rational number z ∈ Q,

and returns βp(z). For example, ModuloPowLocalp(17, 5, 7, 5) returns 23, so that βp(17) = 23.

We are now in a position to use the local map Fp : Ed
t (Qp)/φ̂(Êd

t (Qp)) → Q∗
p/(Q∗

p)
d to find generators for

Ed
t (Qp)/φ̂(Êd

t (Qp)) when p < ∞.

Example 3. Let E : y2− y = x3− x2 be an elliptic curve. Note that 5(0, 0) = O and that Q(S, 5) = 〈5, 11〉.
We will use Hensel’s Lemma to determine whether there exists a point (5, α1) on E(Q5) where α1 ∈ Q5 by

letting x = 5 and letting y remain an indeterminant in our Weierstrass equation:

y2 − y = 53 − 52 = 100.

So we let f(y) = y2 − y − 100, which implies that f ′(y) = 2y. Now let α0 = 52 + 4 · 53, which yields

f(α0) = f(525) = 22 · 55 · 111 and f ′(α0) = f ′(525) = 21 · 31 · 52 · 71.

Hence, |f(α0)|5 = 5−5 and |f ′(α0)|25 = 5−4 so that |f(α0)|5 < |f ′(α0)|25, which allows us to invoke Hensel’s

Lemma. Namely, we know that there exists a point (5, α1) ∈ E(Q5) for some α1 ∈ Q5. Further, we could

continue this method of approximation to whatever precision we desire, say O(510):

α1 = 52 + 4 · 53 + 3 · 55 + 2 · 56 + 4 · 57 + 4 · 58 + 4 · 59 + O(510).

Similarly, we find that (15, α2) is a point on E(Q5) where

α2 = 4 · 52 + 4 · 53 + 4 · 55 + 2 · 56 + 57 + O(510).

Now recall from Table 3 that F : E(Q)/φ̂(Ê(Q)) is given by F ((x, y)) = (x + 1)y − x2. By extending this to

E(Q5), we see that

F5((5, α1)) = (5 + 1)α1 − 52 = 4 · 55 + 2 · 57 + 4 · 58 + 4 · 59 + O(510) = 4 + 2 · 52 + 4 · 53 + 4 · 54 + O(55).

Note that the latter equality follows since 55 = 1 in Q∗
5/(Q∗

5)
5. Now we can truncate this value after the first

term and still use Hensel’s Lemma to find its image in Q∗
5/(Q∗

5)
5 (we only need to know the behaviour of

F5((5, α1)) modulo 52). Further, we see that −15 ≡ 4·113 mod 52, which implies that 4·113 = 1 in Q∗
5/(Q∗

5)
5,

which is equivalent to saying that F5((5, α1)) · 113 = 1 in our quotient group. That is, F5((5, α1)) = 112.

Similarly, F5((15, α2)) = 11. So we see that (5, α1) and (15, α2) have distinct images under F5, but are not

mutually independent generators for E(Q5)/φ̂(Ê(Q5)).
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Remark 12. This method gives us an algorithmic process for finding independent Qp-points on an elliptic

curve, E : y2 + (1 − w)xy + vy = x3 + vx2, with a map F : E(Q)/φ̂(Ê(Q)) → Q(S, d). Further, as long

as we know how many independent points we need to find, this search algorithm becomes deterministic—

conveniently, Lemma 10 in a later section does precisely this. The following merely outlines a crude variation

of p-adic algorithms described elsewhere in the literature (see [27],[28], for example); we have not included

here any of the standard tricks for improving efficiency, such as restricting the search to homogeneous spaces.

Step 1: Use the techniques from Remark 10 to find the image of Q(S, d) under the map βp.

Step 2: Running through choices of x0, s ∈ Z, substitute
x0

ps
into our Weierstrass equation for E :

y2 + (1− w)
x0

ps
y + vy =

(
x0

ps

)3

+ v

(
x0

ps

)2

.

Step 3: Search to see whether there exists y0 ∈ Qp satisfying the above polynomial. This search to

increasing p-adic depth will eventually show either that the above polynomial has no Qp solutions, or it will

yield some y0 ∈ Q satisfying the above polynomial to sufficient p-adic accuracy that it is guaranteed to lift

to a Qp-solution by Hensel’s Lemma. If we find a y0 that lifts to a solution in Qp, continue to lift y0 to an

appropriate level of p-adic precision, then go on to Step 4.

Step 4: Use the appropriate Fp map from Table 3 to find Fp

(
x0

ps
, y0

)
.

Step 5: Use Hensel’s Lemma to determine to which element of βp(Q(S, d)) is equivalent to the image of(
x0

ps
, y0

)
under Fp. If we did not use enough p-adic precision to determine this, go back to Step 3, lift y0

to a higher level of precision and try again. Each time we find a point whose image under Fp is independent

from the list of previous independent points found, we add that point to the list.

Step 6: When the independent points found generate a group that attain our bounds in Lemma 10, terminate

the algorithm and return our list of independent local points on the curve.

Remark 13. We have made available at [17] the PARI function FpSearchp(d, t,p), which takes as input a

torsion order d ∈ {4, 5, 6, 7, 8, 9}, a parameter t ∈ Q, a prime p ∈ S, and performs the above algorithm for

Ed
t at p. For example, FpSearchp(5, 7, 7) returns 74, which implies that F7

(
E5
7 (Q)/φ̂(Ê5

7 (Q))
)

= 〈74〉.

Remark 14. As one might expect, finding generators for E(R)/φ̂(Ê(R)) is a slightly different task than

finding generators for E(Qp)/φ̂(Ê(Qp)). However, it is also largely a simpler process because R∗/(R∗)d is

such a small group.

Lemma 6. Let φ : E → Ê be a degree-d Q-rational isogeny of Q-rational elliptic curves where d is a power

of a prime. Further, suppose that E [φ] ⊆ E(Q). If d = 2k, k > 1, then

#E(R)/φ̂(Ê(R)) = 1 or 2.

Otherwise,

#E(R)/φ̂(Ê(R)) = 1.

Proof: By combining the hypotheses of this lemma with Proposition 2, we see that there exists an injective

homomorphism

F : E(Q)/φ̂(Ê(Q)) → Q(S, d).
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Now, if we extend this map to the completion of Q at ∞ (that is Q∞ = R), we get the following map:

F∞ : E(R)/φ̂(Ê(R)) → R∗/(R∗)d.

Further, we know that this map is an injection into a subgroup of R∗/(R∗)d. When d = 2k, k > 1, then d is

even and R∗/(R∗)d = {1}; otherwise the prime power d is odd and R∗/(R∗)d = {1}. �

Corollary 1. Let φ : E → Ê be a degree-d Q-rational isogeny of Q-rational elliptic curves such that E [φ] ⊆
E(Q) where d is a power of a prime. Then we know that there exists an injective map

F : E(Q)/φ̂(Ê(Q)) → Q(S, d)

where S is as in (5). If d is odd, then we can take S to be S − {∞} when computing Sel(
bφ)(Ê/Q).

Proof: From our previous lemma, we showed that if d is odd, then R∗/(R∗)d = {1} and F∞(E(R)/φ̂(Ê(R))) =

{1}. This implies that β−1
∞ = F∞(E(R)/φ̂(Ê(R))) = Q(S, d). Therefore,

Sel(
bφ)(Ê/Q) =

⋂
v∈S

β−1
v

(
Fv

(
E(Qv)/φ̂

(
Ê(Qv)

)))
=

⋂
v∈S−{∞}

β−1
v

(
Fv

(
E(Qv)/φ̂

(
Ê(Qv)

)))
.

Hence, we may take S to be S − {∞}. �

Remark 15. If d is even, then we need a method of determining whether #E(R)/φ̂(Ê(R)) = 1 or 2. That

is, whether F∞(E(R)/φ̂(Ê(R))) = {1} or F∞(E(R)/φ̂(Ê(R))) = {±1}. Note that F extends to F∞ as follows:

F∞(P ) =

{
1 if F (P ) > 0
−1 if F (P ) < 0.

Hence, this problem reduces to the problem of determining whether there exists a point P ∈ E(R) such that

F∞(P ) = −1. Since we can always extract square roots of non-negative numbers in R, this is not a difficult

task. Let E : y2 + a1xy + a3y = x3 + a2x
2 + a4x

2 + a6 be an elliptic curve with k(0, 0) = O for k = 2j . If we

treat our Weierstrass equation as a polynomial in y, we can use the quadratic formula to get

y =
−(a1x + a3)±

√
(a1x + a3)2 + 4(x3 + a2x2 + a4x2 + a6)

2
.

Then we have

F ((x, y)) = F

((
x,
−(a1x + a3)±

√
(a1x + a3)2 + 4(x3 + a2x2 + a4x + a6)

2

))
.

So we can split F into two functions in x:

g1(x) = F

((
x,
−(a1x + a3) +

√
(a1x + a3)2 + 4(x3 + a2x2 + a4x + a6)

2

))
and

g2(x) = F

((
x,
−(a1x + a3)−

√
(a1x + a3)2 + 4(x3 + a2x2 + a4x + a6)

2

))
.

Now we just have to perform the simple task of checking the range of the functions g1(x) and g2(x) in R. If

either function has negative points in its range, then there exists a point P ∈ E(R) such that F∞(P ) = −1

so that F∞(E(R)/φ̂(Ê(R))) = {±1}. Otherwise, we see that F∞(E(R)/φ̂(Ê(R))) = {1}.
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Example 4. Let E : y2 + xy − 4y = x3 − 4x2 be the elliptic curve from Table 1 where d = 4 and t = −4.

We notice that E is isogenous to Ê : y2 + xy − 4y = x3 − 4x2 − 60 − 380 via an isogeny of degree 4. Now

Table 3 gives us that

F : E(Q)/φ̂(Ê(Q)) → Q(S, d)

by F ((x, y)) = x2 − y. We see that we can solve for y in terms of x in our Weierstrass equation:

y =
−(x− 4)±

√
(x− 4)2 + 4(x3 − 4x2)

2
.

Hence, using the method above, we have

g1(x) = F

((
x,
−(x− 4) +

√
(x− 4)2 + 4(x3 − 4x2)

2

))
= x2 −

−(x− 4) +
√

(x− 4)2 + 4(x3 − 4x2)
2

.

We see that

g1(0) = 02 −
−(0− 4) +

√
(0− 4)2 + 4(03 − 4(0)2)

2

= −4 +
√

16
2

= −4.

That is, F∞(E(R)/φ̂(Ê(R))) = {±1}.

9. Computing Sel(d)(E/Q) From Sel(φ)(E/Q)

We recall the standard observation that we can compute the rank of E(Q) by finding E(Q)/[d]E(Q) for

some integer d > 1. Now recall from Lemma 2 that if E is an elliptic curve defined over Q and φ : E → Ê is

a degree-d Q-rational isogeny of elliptic curves, then the following is an exact sequence:

0 → E(Q)/φ̂(Ê(Q)) → Sel(
bφ)(Ê/Q) → X(Ê/Q)[φ̂] → 0.

Hence, if φ is the multiplication-by-d map, we can attempt to compute E(Q)/[d]E(Q) by noticing that this

group injects into Sel(d)(E/Q):

0 → E(Q)/[d]E(Q) → Sel(d)(E/Q) → X(E/Q)[d] → 0.

However, since φ̂◦φ = [d] on E , we can actually attempt to find Sel(d)(E/Q) from Sel(φ)(E/Q) and Sel(
bφ)(Ê/Q).

Lemma 7. Let E and φ be as above. Then the two following sequences are exact:

0 → Ê(Q)[φ̂]/φ(E(Q)[d]) → Sel(φ)(E/Q) → Sel(d)(E/Q)

→ Sel(
bφ)(Ê/Q) → X(Ê/Q)[φ̂]/φ(X(E/Q)[d]) → 0.

(8)

and

0 → Ê(Q)[φ̂]/φ(E(Q)[d]) → Ê(Q)/φ(E(Q))
bφ−→ E(Q)/[d]E(Q) → E(Q)/φ̂(Ê(Q)) → 0.(9)

Proof: See [28]. �

Lemma 8. Let E to be an elliptic curve defined over Qp for p < ∞. Then we define E ′ns(Fp) to be the group

of nonsingular points in E ′p(Fp) under the reduction map

Rp : E(Qp) → E ′p(Fp)

P 7→ P ′.
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We define

E0(Qp) = {P ∈ E(Qp) : P ′ ∈ E ′ns(Fp)} and E1(Qp) = {P ∈ E(Qp) : P ′ = O′}.

Then the following is an exact sequence:

0 → E1(Qp) → E0(Qp)
Rp−−→ E ′ns(Fp) → 0.

Proof: See [29] VII.3.2.1. �

Definition 7. Let E and p be as above. Then we define the Tamagawa number of E at p to be the quantity

cp = #E(Qp)/E0(Qp).

Definition 8. Let E be an elliptic curve defined over Q that is described by a Weierstrass equation of the

form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

Then we let

ΩE =
∫

E(R)

∣∣∣∣ dx

2y + a1x + a3

∣∣∣∣ .
Definition 9. Let E be an elliptic curve defined over Q and let φ : E → Ê be a Q-rational isogeny of elliptic

curves where E and Ê are described by Weierstrass equations as follows:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 and Ê : Y 2 + A1XY + A3Y = X3 + A2X

2 + A4X + A6.

We have Laurent series expansions x, y, X, and Y in terms of local parameters, z and Z, respectively where

z = −x/y and Z = −X/Y (see [29], IV.1.1.2):

x(z) =
1
z2
− a1

z
− a2 − a3z − (a4 + a1a3)z2 + O(z3) and y(z) = −1

z
x(z)

X(Z) =
1

Z2
− A1

Z
−A2 −A3Z − (A4 + A1A3)Z2 + O(Z3) and Y (Z) = − 1

Z
X(Z).

The notation O(z3) indicates higher order z-terms with coefficients in Z[a1, a2, a3, a4, a6], and likewise for

O(Z3).

Now let φ((x, y)) = (X, Y ) be our formula for φ. Then we can combine all of this to write

Z = −X

Y
= f(z) ∈ Q[[z]].

We define γφ to be norm of the leading coefficient of f(z). Similarly, we can write

z = −x

y
= F (Z) ∈ Q[[Z]]

to find γbφ.

Lemma 9. Let Ed
t , Êd

t , φ : Ed
t → Êd

t , and φ̂ : Êd
t → Ed

t be as in Tables 1 and 2. Then γφ = 1 and γbφ = d.

Proof: This follows immediately from [34], Equation 13. �
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Lemma 10. Let E be an elliptic curve defined over Q and let φ : E → Ê be a degree-d Q-rational isogeny

where d is a power of a prime and E [φ] ⊆ Q. Let p be a finite prime. Then

#E(Qp)/φ̂(Ê(Qp)) = |γbφ|−1
p #Ê(Qp)[φ̂]

cE,p

cbE,p

.

Further, when p = ∞, we can use Lemma 6 and Remark 15 to determine #E(R)/φ̂(Ê(R)).

Proof: See [26], 3.8. �

Theorem 6 (Cassels). Let φ : E → Ê be a Q-isogeny of Q-elliptic curves. Then

#Sel(φ)(E/Q)

#Sel(
bφ)(Ê/Q)

=
#E(Q)[φ] ΩbE ∏

p cbE,p

#Ê(Q)[φ̂] ΩE
∏

p cE,p

.

Proof: See [4]. In addition, [28] applies this theorem to a descent via isogeny. �

Remark 16. The quantities ΩE and cE,p can be easily computed using functions built into Magma [21] or

PARI [24]. A general algorithm for computing Tamagawa numbers for elliptic curves can be found in [31].

Finally, determining #Ê(Qp)[φ̂] is a direct application of Hensel’s Lemma.

Now we see that Cassels’ ratio theorem gives us a method for trying to compute E(Q)/[d]E(Q) (and thus

E(Q)) simply by finding Sel(
bφ)(Ê/Q). Namely, if we have computed Sel(

bφ)(Ê/Q), then we can use Theorem 6

to find #Sel(φ)(E/Q). Now Lemma 7 gives us that

0 → Ê(Q)[φ̂]/φ(E(Q)[d]) → Sel(φ)(E/Q) → Sel(d)(E/Q)

→ Sel(
bφ)(Ê/Q) → X(Ê/Q)[φ̂]/φ(X(E/Q)[d]) → 0.

Hence,

#Sel(d)(E/Q) 6
#Sel(φ)(E/Q) ·#Sel(

bφ)(Ê/Q)

#Ê(Q)[φ̂]/φ(E(Q)[d])
=

#E(Q)[φ] ΩbE ∏
p cbE,p

#Ê(Q)[φ̂] ΩE
∏

p cE,p

· #Sel(
bφ)(Ê/Q)

#Ê(Q)[φ̂]/φ(E(Q)[d])
.

In addition, as long as X(Ê/Q)[φ̂]/φ(X(E/Q)[d]) is trivial, this will be an equality. Now from Lemma 2,

we have the following exact sequence:

0 → E(Q)/[d]E(Q) → Sel(d)(E/Q) → X(E/Q)[d] → 0.

So this implies that

(10) #E(Q)/[d]E(Q) 6 #Sel(d)(E/Q) 6
#E(Q)[φ] ΩbE ∏

p cbE,p

#Ê(Q)[φ̂] ΩE
∏

p cE,p

· #Sel(
bφ)(Ê/Q)

#Ê(Q)[φ̂]/φ(E(Q)[d])
,

where everything becomes an equality when X(Ê/Q)[φ̂]/φ(X(E/Q)[d]) and X(E/Q)[d] are trivial. So

we see that when this is the case, we can completely determine #E(Q)/[d]E(Q) (and thus E(Q)) simply by

computing Sel(
bφ)(Ê/Q) and some other values that can be easily calculated in Magma [21] or PARI [24].

Application 1. While we will use Theorem 6 mainly for the purpose of finding the order of Sel(φ)(E/Q) from

the order of Sel(
bφ)(Ê/Q), it has another use that does not seem to have been previously exploited. Namely,

given two isogenous curves, E and Ê , where the rank of E(Q) can be computed by a complete 2-descent, we

can sometimes quickly demonstrate the existence of nontrivial elements in the d-part of the Tate-Shafarevich

group, while avoiding the difficult portion of the isogeny computation, as follows.
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Let φ : E → Ê be a degree-d Q-rational isogeny of Q-rational elliptic curves, where d is a prime power.

Suppose that X(E/Q)[2] is trivial so that a complete 2-descent on E yields that the rank of E(Q) is some

r ∈ Z+. By also computing Etors(Q), we can immediately find #E(Q)/[d]E(Q) ⊆ Sel(d)(E/Q). It is similarly

an easy task to find #Ê(Q)[φ̂]/φ(E(Q)[d]). Now if we use Cassels formula from Theorem 6 to compute the

ratio of the sizes of our Selmer groups, we get

#Sel(φ)(E/Q)

#Sel(
bφ)(Ê/Q)

=
#E(Q)[φ] ΩbE ∏

p cbE,p

#Ê(Q)[φ̂] ΩE
∏

p cE,p

= qk

where q|d and k ∈ Z. Without loss of generality, we may assume that k > 0 (if k is negative, then relabel

φ̂ : Ê → E as φ : E → Ê and start over). Now since #Sel(
bφ)(Ê/Q) > 1, we see that this ratio gives us a lower

bound on the size of Sel(φ)(E/Q). Further, the exact sequence from Lemma 7,

0 → Ê(Q)[φ̂]/φ(E(Q)[d]) → Sel(φ)(E/Q) → Sel(d)(E/Q) →

Sel(
bφ)(Ê/Q) → X(Ê/Q)[φ̂]/φ(X(E/Q)[d]) → 0,

can be used to extend this to a lower bound on the order of Sel(d)(E/Q):

#Sel(d)(E/Q) >
#Sel(φ)(E/Q)

#Ê(Q)[φ̂]/φ(E(Q)[d])

>

(
#Sel(φ)(E/Q)

#Sel(
bφ)(Ê/Q)

)(
1

#Ê(Q)[φ̂]/φ(E(Q)[d])

)

=

(
#E(Q)[φ] ΩbE ∏

p cbE,p

#Ê(Q)[φ̂] ΩE
∏

p cE,p

)(
1

#Ê(Q)[φ̂]/φ(E(Q)[d])

)
.

Now if it happens that our lower bound on the order of Sel(d)(E/Q) exceeds the value we computed for

#E(Q)/[d]E(Q), then we have verified that X(E/Q)[d] is nontrivial. Further, the exact sequence from

Lemma 2 allows us to put a lower bound on the order of the d-part of Sha:

#X(E/Q)[d] >

(
#E(Q)[φ] ΩbE ∏

p cbE,p

#Ê(Q)[φ̂] ΩE
∏

p cE,p

)(
1

#Ê(Q)[φ̂]/φ(E(Q)[d])

)(
1

#E(Q)/[d]E(Q)

)
.

We summarize this result in the following proposition, which does not seem to have been written down

elsewhere in this form in the other descent literature, and which will prove useful in our subsequent examples.

Proposition 3. Let φ : E → Ê be a Q-rational isogeny of Q-rational elliptic curves such that deg(φ) is a

prime power. Then

#X(E/Q)[d] >

(
#E(Q)[φ] ΩbE ∏

p cbE,p

#Ê(Q)[φ̂] ΩE
∏

p cE,p

)(
1

#Ê(Q)[φ̂]/φ(E(Q)[d])

)(
1

#E(Q)/[d]E(Q)

)
and

#X(Ê/Q)[d] >

(
#Ê(Q)[φ̂] ΩE

∏
p cE,p

#E(Q)[φ] ΩbE ∏
p cbE,p

)(
1

#E(Q)[φ]/φ̂(Ê(Q)[d])

)(
1

#Ê(Q)/[d]Ê(Q)

)
.

Example 5. Consider

E : y2 + xy + y = x3 − x2 − 1005630x + 571521997

and

Ê : y2 + xy + y = x3 − x2 − 911138880x− 10586098442003.
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We notice that there exists a Q-rational isogeny of degree 13 such that φ : E → Ê . Using Magma [21] to

perform a complete 2-descent on E , we see that rank(E(Q)) = rank(Ê(Q)) = 0. Further, recall that elliptic

curves cannot have rational torsion points of order 13. Hence, we have that

X(Ê/Q)[13] >

(
#Ê(Q)[φ̂] ΩE

∏
p cE,p

#E(Q)[φ] ΩbE ∏
p cbE,p

)(
1

#E(Q)[φ]/φ̂(Ê(Q)[13])

)(
1

#Ê(Q)/[13]Ê(Q)

)

=

(
ΩE

∏
p cE,p

ΩbE ∏
p cbE,p

)
= 132.

So we have found an elliptic curve with nontrivial 13-part of Sha. However, to find the actual size of

X(Ê/Q)[13], we would need to actually compute Sel(13)(Ê/Q). As a point of interest, note that we can use

Magma [21] to see that the Birch and Swinnerton-Dyer conjecture (see [35]) predicts that #X(Ê/Q) = 132,

which coincides with the lower bound that we computed for #X(Ê/Q)[13].

10. A Sketch of the Algorithm

In this section, we combine all of the above discussion to outline our specific descent process. See [27]

for the more general algorithm on which this is based. This same approach is used for descents on elliptic

curves in, for example, [12] and [28].

Input: d ∈ {4, 5, 7, 8, 9} and t ∈ Q corresponding to the elliptic curve Ed
t from Table 1.

Output:
#Sel(φ)(E/Q) ·#Sel(

bφ)(Ê/Q)

#Ê(Q)[φ̂]/φ(E(Q)[d])
, which serves as an upper bound for #Ed

t (Q)/[d]Ed
t (Q).

Step 1: Pick d ∈ {4, 5, 7, 8, 9} and t ∈ Q∗ such that Ed
t = E is an elliptic curve (see Table 1).

Step 2: Use Lemma 1 to find the isogeny φ : E → Ê such that E [φ] = 〈(0, 0)〉 ⊆ E(Q). In addition, use

Table 2 to find the Weierstrass equation for Ê .

Step 3: Find the set of primes S of (5) where E has bad reduction (the prime at ∞, and the primes p such

that p|d) minus any primes p such that gcd(d, cE,p) = gcd(d, cbE,p) = 1. If d is odd, then Corollary 1 implies

that we can let S be S − {∞}.
Step 4: Refer to Table 3 to find a suitable map F : E(Q)/φ̂(Ê(Q)) → Q(S, d) as in Proposition 2. In

addition, let Fp be the natural extension of F to Fp : E(Qp)/φ̂(Ê(Qp)) → Q∗
p/(Q∗

p)
d.

Step 5: For each p ∈ S, find generators for E(Qp)/φ̂(Ê(Qp)) by using the method outlined in Remark 12.

Note that we continue our search until the number of generators we find implies that #E(Qp)/φ̂(Ê(Qp))

coincides with Lemma 10:

#E(Qp)/φ̂(Ê(Qp)) = |γbφ|−1
p #Ê(Qp)[φ̂]

cE,p

cbE,p

.

Step 6: Compute Sel(
bφ)(Ê/Q) by finding⋂

p∈S

β−1
p

(
Fp

(
E(Qp)/φ̂

(
Ê(Qp)

)))
.

Step 7: Use Theorem 6 to compute the size of Sel(φ)(E/Q):

#Sel(φ)(E/Q)

#Sel(
bφ)(Ê/Q)

=
#E(Q)[φ] ΩbE ∏

p cbE,p

#Ê(Q)[φ̂] ΩE
∏

p cE,p

.
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Step 8: Use the inequality in (10),

#E(Q)/[d]E(Q) 6 #Sel(d)(E/Q) 6
#Sel(φ)(E/Q) ·#Sel(

bφ)(Ê/Q)

#Ê(Q)[φ̂]/φ(E(Q)[d])
,

to find an upper bound for the order of Sel(d)(E/Q). Recall that as long as

X(Ê/Q)[φ̂]/φ(X(E/Q)[d]) and X(E/Q)[d]

are both trivial, then our upper bound is actually an equality. Now we can try to find the rank of E(Q) by

finding enough independent points on E(Q) to imply that, indeed,

#E(Q)/[d]E(Q) =
#Sel(φ)(E/Q) ·#Sel(

bφ)(Ê/Q)

#Ê(Q)[φ̂]/φ(E(Q)[d])
.

So in this step, we initiate a search on E(Q) to try to find these independent points. Note that we need a

criterion for determining whether two rational points on an elliptic curve are independent from one another

in E(Q). While we can use our F -map to determine this in E(Q)/φ̂(Ê(Q)), this is not sufficient for E(Q)

or E(Q)/[d]E(Q). Luckily, this is not considered to be a difficult problem. See [36] for a PARI function

that does precisely this by using height pairing matrices. Once we have found enough points to verify that

the above bound is an equality, we terminate the algorithm and return the rank of E(Q). Of course, if we

encounter nontrivial Sha, then this step will never terminate.

Remark 17. We have made available at [17] the PARI function SelmerBound(d, t). For example:

SelmerBound(5, 4) returns 5, which implies that the rank of E5
4 : y2 + 5xy + 4y = x3 + 4x2 is 0 and

E5
4 (Q) ∼= Z/5Z.

11. An Example of a Descent Via 9-Isogeny on a Curve of Rank 1

Let d = 9 and t = 2 in the algorithm from Section 10. Then our curves Ed
t and Êd

t are:

E : y2 + 13xy + 84y = x3 + 84x2 and Ê : y2 + 13xy + 84y = x3 + 84x2 − 154410− 41506050.

Further, S = {2, 3, 7, 37}. From Table 3, we have that

F : E(Q)/φ̂(Ê(Q)) → Q(S, 9)

(x, y) 7→ −6x4 + (y − 49)x3 + (15y − 196)x2 + 77yx + 196y.

Now a few simple calculations can be combined with Lemma 10 to yield the following:

p |γbφ|−1
p #Ê(Qp)[φ̂] cE,p cbE,p #E(Qp)/φ̂(Ê(Qp))

2 1 1 9 1 9

3 9 1 9 1 81

7 1 3 3 3 3

37 1 9 1 9 1
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Using the techniques from Section 8, we have the following information about our local quotient groups,

Q∗
p/(Q∗

p)
9:

p Generators for Q∗
p/(Q∗

p)
9 βp(2) βp(3) βp(7) βp(37)

2 〈2〉 2 1 1 1

3 〈2, 3〉 2 3 27 26

7 〈2, 7 : 23 = 1〉 2 22 7 2

37 〈2, 37〉 2 28 25 37

We notice that, since Q∗
2/(Q∗

2)
9 = 〈2〉 and #E(Q2)/φ̂(Ê(Q2)) = 9, it must be the case that

β−1
2

(
F2

(
E(Q2)/φ̂

(
Ê(Q2)

)))
= 〈2, 3, 7, 37〉.

Similarly, since #Q∗
3/(Q3)9 = #〈2, 3〉 = 81 and #E(Q3)/φ̂(Ê(Q3)) = 81, we have that

β−1
3

(
F3

(
E(Q3)/φ̂

(
Ê(Q3)

)))
= 〈2, 3, 7, 37〉.

In addition, since #E(Q37)/φ̂(Ê(Q37)) = 1, we see that

β−1
37

(
F37

(
E(Q37)/φ̂

(
Ê(Q37)

)))
= ker(β37)

= {2k2 · 3k3 · 7k7 : 0 6 ki 6 8 and k2 + 8k3 + 5k7 ≡ 0 mod 9}

= 〈21 · 31, 35 · 71〉.

Now all we have left to do is consider the case when p = 7.

We start by mapping our torsion points:

P ∈ E(Q)[φ] F (P ) F7(P )

(0, 0) 25 · 38 · 76 23 · 76

2(0, 0) 21 · 37 · 73 26 · 73

3(0, 0) 26 · 36 1

4(0, 0) 22 · 35 · 76 23 · 73

5(0, 0) 27 · 34 · 73 26 · 76

6(0, 0) 23 · 33 1

7(0, 0) 28 · 32 · 76 23 · 73

8(0, 0) 24 · 31 · 73 26 · 76

O 1 1

Hence, we see that

β−1
7

(
F7

(
E(Q7)/φ̂

(
Ê(Q7)

)))
= 〈23 · 73〉{2k2 · 3k3 : 0 6 ki 6 8 and k2 + 2k3 ≡ 0 mod 3}

= 〈21 · 31, 23 · 73, 33 · 73〉.
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When we take our intersection, we get

Sel(
bφ)(Ê/Q) = 〈21 · 31, 23 · 73, 33 · 73〉

⋂
〈21 · 31, 35 · 71〉 = 〈21 · 31, 23 · 73〉 ∼= Z/9Z× Z/3Z.

Using our formula from Theorem 6, we see that this implies #Sel(φ)(E/Q) = 3. Now recall the following

exact sequence from Lemma 7:

0 → E(Q)[φ]/φ̂(Ê(Q)[9]) → Sel(
bφ)(Ê/Q) → Sel(9)(Ê/Q) → Sel(φ)(E/Q) → . . . .

Since #Sel(φ)(E/Q) = 3, #Ê(Q)[φ̂] = 1, and #Sel(
bφ)(Ê/Q) = 27, we see that

#Sel(9)(E/Q) 6
#Sel(

bφ)(Ê/Q) ·#Sel(φ)(E/Q)
#E(Q)[φ]

= 92.

A short search for independent rational points on E(Q) yields the point (−21/4, 315/8) of infinite order.

Since #Etors(Q) = 9, this gives us that #E(Q)/[9]E(Q) > 92. Hence,

92 6 #E(Q)/[9]E(Q) 6 #Sel(9)(E/Q) 6 92,

which implies that the rank of E(Q) is 1 and

E(Q) = 〈(0, 0), (−21/4, 315/8)〉 ∼= Z/9Z× Z1.

12. An Elliptic Curve with Non-Trivial 9-part of Sha

Let d = 9 and t = 1/2 in the algorithm from Section 10. Then

E : y2 +
11
8

xy +
21
32

y = x3 +
21
32

x2 and Ê : y2 +
11
8

xy +
21
32

y = x3 +
21
32

x2 − 190905
2048

x− 49989225
131072

.

We recall from Proposition 3 that

#X(Ê/Q)[d] >

(
#Ê(Q)[φ̂] ΩE

∏
p cE,p

#E(Q)[φ] ΩbE ∏
p cbE,p

)(
1

#E(Q)[φ]/φ̂(Ê(Q)[d])

)(
1

#Ê(Q)/[d]Ê(Q)

)
.

Now by computing all of these values with a computer algebra package such as Magma [21], we see that

#X(Ê/Q)[9] >

(
1 · (9ΩbE) · 243

9 · (ΩbE) · 3
)(

1
9

)(
1
1

)
= 9.

We claim that, in fact, #X(Ê/Q)[9] = 9, as follows. The same method of descent via isogeny as above

yields that

Sel(
bφ)(Ê/Q) = β−1

7

(
F7

(
E(Q7)/φ̂

(
Ê(Q7)

)))⋂
〈2, 3, 7〉

= 〈73〉{2k2 · 3k3 · 17k17 : 0 6 ki 6 8 and k2 + 2 · k3 ≡ 0 mod 3}.

A quick calculation gives us that #Sel(
bφ)(Ê/Q) = 92. Using our formula from Theorem 6, we see that this

implies #Sel(φ)(E/Q) = 1. Now recall the following exact sequence from Lemma 7:

0 → E(Q)[φ]/φ̂(Ê(Q)[9]) → Sel(
bφ)(Ê/Q) → Sel(9)(Ê/Q)

→ Sel(φ)(E/Q) → X(E/Q)[φ]/φ̂(X(Ê/Q)[9]) → 0.

Since #Sel(φ)(E/Q) = 1, #Ê(Q)[9] = 1, #E(Q)[φ] = 9, #Sel(
bφ)(Ê/Q) = 92, we see that #Sel(9)(Ê/Q) = 9.

Hence, we have that

Sel(9)(Ê/Q) ∼= X(Ê/Q)[9]

and #X(Ê/Q)[9] = 9, as claimed.
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Note that based on the above calculations, we can only bound the order of the 9-Selmer group of E :

#Sel(9)(E/Q) 6 92.

However, if the well-known conjecture that the order of X(E/K) is finite for any elliptic curve E defined over

a number field K is someday proved, then we will be able to say a bit more about #Sel(9)(E/Q). Namely,

if we knew that #X(E/Q) < ∞, then this would imply that the order of X(E/Q)[d] is a perfect square

for any d > 2 (see, for example, [16], 5.5). This follows from results of Cassels and Tate, which imply that

if X(E/Q) is finite, then its order is a perfect square. They do this by constructing a pairing

X(E/Q)×X(E/Q) → Q/Z

with certain properties (see [3],[32]). So if we suppose that #X(E/Q) < ∞ for our particular E , then we

would be able to determine that either #Sel(9)(E/Q) = 9 and #X(E/Q)[9] = 1 or #Sel(9)(E/Q) = 92 and

#X(E/Q)[9] = 9. Note that using Magma [21], we can see that the Birch Swinnerton-Dyer conjecture [35]

predicts that #X(E/Q) = 1 and #X(Ê/Q) = 9, so the next logical step (which we have not been able to

complete, as the computations become unwieldy) would be to perform a complete 9-descent on E to verify

that the order of X(E/Q)[9] really is 1.

13. Conclusion

While the standard method of computing the rank of an elliptic curves and finding a set of generators for

the free part of the group is the well-described method of complete 2-descent, we have seen that our higher

descents can still be of considerable interest. First of all, when E has a rational torsion point of order > 3

and X(E/Q)[2] is nontrivial, then a descent via d-isogeny can be a useful method for finding the rank of

the curve. Further, we have shown that it is possible to compare the results of a complete 2-descent to a

descent via d-isogeny to find the order of X(E/Q)[d], which is of particular interest when the d-part of the

Tate-Shafarevich group is nontrivial. Finally, one of the main benefits of our method for descent via isogeny

is that fact that all of our calculations are performed over Q, which makes it easier to implement, in these

cases, than a complete descent. We should also note that our restriction that d is a prime power was merely

for computational convenience, and minor modifications of the above should also deal with elliptic curves

with rational points of order d = 10, 12, while still working over Q.

But while it is convenient that the method we used to perform descent via isogeny involves arithmetic

only over Q, it is not essential. One way to extend the results in this article is to apply the method to curves

that may require arithmetic over a higher degree number field. Namely, if E admits a K-rational isogeny

of degree k where k is a prime power but E [φ] 6⊂ E(Q), then we can attempt a descent via isogeny using

the same general method used earlier, with the slight modification that we do all of our arithmetic over a

number field K such that E [φ] ⊆ E(K). Often, the degree of this number field will still be low enough that

the computation will be feasible. In essence, if d is a prime power, the method described in this article is for

elliptic curves parametrized by the modular curve X1(d) where X1(d) is of genus 0, but we could extend it,

for example, to elliptic curves parametrized by the modular curve X0(d), where X0(d) is of genus 0.
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The obvious benefit of this generalization is that we have a larger body of curves on which to perform

descents: For X1(d), our method (when d is a prime power) can only be applied when d ∈ {2, 3, 4, 5, 7, 8, 9},
but for X0(d), it could be modified to accommodate d ∈ {2, 3, 4, 5, 7, 8, 9, 13, 16, 25}. Further, there exist

sporadically occurring curves with rational isogenies of prime power degree d ∈ {11, 17, 19, 27, 37, 43, 67, 163}
on which we could perform descents. This gives us a whole class of curves for which we can find the rank, with

a method other than a complete 2-descent, and a means of finding interesting orders of the Tate-Shafarevich

group.
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