Problem sheet (To be done in week 5) Linear Algebra I, Dr A Henke, MT 2007

Student Number: 654321

Deadline for online homework: Sat Nov 3 18:00:00 2007 This file has been created: Wed Oct 10 16:41:06 2007

The points of this online-homework will be recorded. For every correct answer, you get 1 point; for			
every wrong answer, you get -1 points. For every question you decide not to answer (indicated by the			
<u> </u>	option -) you get 0 points. Submit your answers via the web-interface.		
Given is a vector space and a subset. Are the given subsets linearly independent?			
	$\{(1,2,3),(2,3,1),(3,1,2),(0,0,0)\}\subseteq \mathbb{M}_{1\times 3}(\mathbb{R})$	○ Yes / ○ No	
	$\{(1,2,3),(3,1,2)\}\subseteq \mathbb{M}_{1\times 3}(\mathbb{R})$	○ Yes / ○ No	
	$\{\pi\}\subseteq\mathbb{R}$	○ Yes / ○ No	
2	Let $\mathbb{R}^{\mathbb{R}}$ be the vector space of all functions from \mathbb{R} to \mathbb{R} .		
	Are the given subsets of $\mathbb{R}^{\mathbb{R}}$ linearly independent?		
	$\{-5+x+3x^2, 13+x, 1+x+2x^2\} \subseteq \mathbb{R}^{\mathbb{R}}$	○ Yes / ○ No	
	$\{f,g,h\} \subseteq \mathbb{R}^{\mathbb{R}} \text{ with } f(x) = 5x^2 + x + 1, g(x) = 2x + 3 \text{ and } h(x) = x^2 - 1$	○ Yes / ○ No	
	$\{\cos^2(x),1\}\subseteq\mathbb{R}^\mathbb{R}$	○ Yes / ○ No	
3	Given is a vector space V with basis $\{b_1, b_2, b_3\}$. Are the following sets bases of V ?		
	$\{b_1-b_3,2b_1+b_2,b_1-b_2-3b_3\}$	○ Yes / ○ No	
	$\{b_1,b_1+b_2,b_1+b_2+b_3\}$	○ Yes / ○ No	
	$\{b_1,b_2,b_1+b_2,b_1-b_3\}$	○ Yes / ○ No	
4 Let A and B be matrices with real entries such that $A \cdot B$ is defined. Consider the		the columns and rows	
	of matrices as vectors. Which of the following statements is correct?		
	Each column of $A \cdot B$ lies in the vector space spanned by the columns of A .	○ Yes / ○ No	
	The rows of $A \cdot B$ are linear combinations of the rows of A .	○ Yes / ○ No	
	The columns of $A \cdot B$ are linear combinations of the columns of B .	○ Yes / ○ No	
5	Let <i>V</i> be a (finitely generated) vector space and $X \subseteq Y \subseteq V$. Are the following statements correct		
	If Y is linearly independent, then also X is linearly independent.	\bigcirc Yes / \bigcirc No	
	If Y is a generating system of V , then also X is a generating system of V .	○ Yes / ○ No	
	Assume there exists a subset $Y' \subseteq Y$ with $X \subseteq Y'$ such that Y' forms a basis	○ Yes / ○ No	
	of $Span(Y)$, then X is a basis of $Span(X)$.		
Please submit your written solutions to the following problems to your college tutor. For this written			
part of your homework, the deadline set by your college tutor applies.			
6	Determine all $\alpha \in \mathbb{R}$ for which the set $\{(1,\alpha,\alpha),(\alpha,1,\alpha) \text{ and } (\alpha,\alpha,1)\} \subset \mathbb{R}^3$ is linearly independent		
	dent.		

7 Let *V* be an \mathbb{R} -vector space, $n \in \mathbb{N}$ and $v_1, \dots, v_n \in V$. Define vectors w_i for $1 \le i \le n$ by

$$w_i = \sum_{j=1}^i v_j.$$

- (a) Show that $\operatorname{Span}\{v_1,\ldots,v_n\}=\operatorname{Span}\{w_1,\ldots,w_n\}.$
- (b) Show that $\{w_1, \ldots, w_n\}$ is linearly independent if and only if $\{v_1, \ldots, v_n\}$ is linearly independent.
- 8 Show that the vectors $1, 1+x, 1+x+x^2, \dots, 1+x+\dots+x^n$ form a basis of $\mathbb{R}_n[x]$, the polynomials of degree at most n in one variable x.
- 9 (Optional.)

Let V, W be vector spaces over \mathbb{R} . Consider the cartesian product $V \times W$ with componentwise addition and scalar multiplication:

$$(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2), \qquad \lambda \cdot (v_1, w_1) = (\lambda v_1, \lambda w_1)$$

for all $v_1, v_2 \in V, w_1, w_2 \in W$ and $\lambda \in \mathbb{R}$ (which defines on $V \times W$ a vector space structure). Let S be a basis of V and T be a basis of W. Give a basis for the vector space $V \times W$ and justify your answer.