Problem sheet (To be done in week 9) Linear Algebra I, Dr A Henke, MT 2007

Student Number: 654321 Deadline for online homework: Sun Jan 13 18:00:00 2008 This file has been created: Wed Oct 10 16:41:40 2007

There are no online-questions on this last problem sheet. The following problems should be solved during the lecture-free period.

(a) Write the following matrix *C* as a product of elementary matrices: 1 $C = \left(\begin{array}{rrrr} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{array}\right).$ (b) Given are matrices A and B with $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 2 \\ 2 & 1 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$ Find matrices *P* and *Q* such that PAQ = B. 2 (a) Determine the row rank and the column rank of the following matrix: $X = \left(\begin{array}{cccccccc} 1 & 2 & 3 & \dots & n \\ 2 & 3 & 4 & \dots & n+1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ & & & & & & & & \\ \end{array}\right).$ (b) Matrix U comes from matrix A by subtracting row one from row three: $A = \begin{pmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 1 & 3 & 2 \end{pmatrix} \qquad \qquad U = \begin{pmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ (i) Find bases for the two column spaces. (ii) Find bases for the two row spaces. (iii) Find bases for the two null spaces. (c) Let *V* be a vector space spanned by $\{v_1, \ldots, v_n\}$: $V = \text{Span}\{v_1, \ldots, v_i, \ldots, v_j, \ldots, v_n\}$. Prove that $V = \text{Span}\{v_1, \ldots, v_i + \lambda v_j, \ldots, v_n\}$ for any $\lambda \in \mathbb{R}$ and $i \neq j$. [The null space of a matrix A is by definition the set $\{x \mid Ax = 0\}$.]

Let V be a vector space of dimension n and $F: V \to V$ a linear map with $F^2 = F$. 3 (a) Show that there are subspaces U, W of V with $V = U \oplus W$ and F(W) = 0, F(u) = u for all $u \in U$. (b) Show that there exists a basis *B* of *V* and some $r \le n$ such that $M_B^B(F) = \left(\begin{array}{cc} I_r & 0\\ 0 & 0 \end{array}\right).$ [Here I_r denotes the identity matrix of size r, and 0 denotes zero matrices (of possibly different size).] Define the vectors $a_1 = (1,0,0)$, $a_2 = (0,1,0)$, $a_3 = (0,0,1)$ $a_4 = (2,1,3)$, $b_1 = (1,2,4,1)$, $b_2 = (1,2,4,1)$, $b_2 = (1,2,4,1)$, $b_3 = (1,2,4,1)$, $b_4 = (1,2,4,1)$, $b_5 = (1,2,4,1)$, $b_7 = (1,2,4,1)$, $b_8 = (1,2,4,1)$, b4 $(1, 1, 0, 1), b_3 = (-1, 0, 4, -1)$ and $b_4 = (0, 5, 20, 0).$ (i) Show that there is precisely one linear map $f : \mathbb{R}^3 \to \mathbb{R}^4$ with $f(a_i) = b_i$ for i = 1, 2, 3, 4. (ii) Describe the kernel and the image of f and give the rank and the nullity of f. Consider the vector space \mathbb{R}^4 . Let 5 $E := \{(1, -2, 6, 4), (2, -6, 15, 8), (0, 2, -9, -8), (3, -8, 21, 7)\}$ and $S = \{(0,0,1,0), (0,0,0,1)\}.$ (i) Show that E is linearly independent. Why is E a generating set for \mathbb{R}^4 ? (ii) Use the exchange procedure of Steinitz to get a basis B with $S \subseteq B \subseteq S \cup E$. Let E_2 and E_3 denote the canonical bases for \mathbb{R}^2 and \mathbb{R}^3 respectively, that is $E_2 = \{(1,0), (0,1)\}$ and $E_3 = \{(1,0,0), (0,1,0), (0,0,1)\}$. Let $f : \mathbb{R}^2 \to \mathbb{R}^3$ and $g : \mathbb{R}^3 \to \mathbb{R}^2$ be given by 6 f(x, y) = (x + 2y, x - y, 2x + y),g(x, y, z) = (x - 2y + 3z, 2y - 3z).(a) Determine the matrices $M_{E_3}^{E_2}(f)$, $M_{E_2}^{E_3}(g)$, $M_{E_2}^{E_2}(g \circ f)$ and $M_{E_3}^{E_3}(f \circ g)$ representing the linear maps $f, g, g \circ f$ and $f \circ g$ with respect to bases E_2 and E_3 . (b) Show that $g \circ f$ is bijective and determine $M_{E_2}^{E_2}((g \circ f)^{-1})$.

Consider the vector space *W* of functions from \mathbb{R} to \mathbb{R} . Let

 $B = \{sin(x), cos(x), sin(x) \cdot cos(x), sin^{2}(x), cos^{2}(x)\},\$

and define $V = \text{Span}(B) \subseteq W$. Consider the map $F : V \to V$ given by $f(x) \mapsto f'(x)$ where f' denotes the first derivative of f.

(i) Show that *B* is a basis of *V*.

7

- (ii) Determine the matrix $M_B^B(F)$.
- (iii) Give a basis of ker(f) and im(f).