Parnell College Algebra Revision

- 1 13, 26, 39, 52, 65
 - the number is 52
- 2 113, 106, 99, 92, 85

the number is 113

3 45, 40.5, 36, 31.5, 27 -4.5 -4.5 -4.5 -4.5

the number is 36

4 18, 27, 36, 45, 54

the number is 27

5 $800\ 000,\ 40\ 000,\ 2000,\ 100,\ 5$

the number is 2000

6 $\underbrace{1, 2, 6, 24, 120}_{\times 2 \times 3 \times 4 \times 5}$,

the number is 120

- 7 a $M = 3 \times n + 2$ where M is the number of matchsticks and n is the number of units.
 - b Example:

- 8 a $M = 2 \times n + 1$ where M is the number of matchsticks and n is the number of units.
 - b Example:

U	Unit number (n)	1	2	3	4	5	6	
	Matches needed (M)	5	8	11	14	17	20	
		+3 +3 +3 +3 +3						

c As the n values increase by 1, the M values increase by 3. So $M = 3 \times n \pm \square$.

If n = 1, M = 5 and $5 = 3 \times 1 + 2$

 \therefore the rule is $M = 3 \times n + 2$

d When n = 17, $M = 3 \times 17 + 2$ = 51 + 2= 53

So 53 matches are needed.

b	Unit number (n)	1	2	3	4	5	6
	Matches needed (M)	2	5	8	11	14	17
	+3 +3 +3 +3 +3						-3

c As the n values increase by 1, the M values increase by 3. So $M=3\times n\pm\square$.

If
$$n = 1$$
, $M = 2$ and $2 = 3 \times 1 - 1$

$$\therefore$$
 the rule is $M = 3 \times n - 1$

d When
$$n = 32$$
, $M = 3 \times 32 - 1$
= $96 - 1$
= 95

So 95 matchsticks are needed.

c As the *n* values increase by 1, the *M* values increase by 3. So $M = 3 \times n \pm \square$.

If
$$n = 1$$
, $M = 6$ and $6 = 3 \times 1 + 3$.

 \therefore the rule is $M = 3 \times n + 3$.

d When
$$n = 59$$
, $M = 3 \times 59 + 3$
= 177 + 3
= 180

So 180 matchsticks are needed.

12 As the *n* values increase by 1, the *M* values increase by 2. So $M = 2 \times n \pm \square$.

If n = 1, M = 4 and $4 = 2 \times 1 + 2$.

 \therefore the rule is $M = 2 \times n + 2$

When
$$n = 495$$
, $M = 2 \times 495 + 2$
= $990 + 2$
= 992

13 As the *n* values increase by 1, the *M* values increase by 6. So $M = 6 \times n \pm \square$.

If n = 1, M = 8 and $8 = 6 \times 1 + 2$.

 \therefore the rule is $M = 6 \times n + 2$.

When
$$n = 37$$
, $M = 6 \times 37 + 2$
= $222 + 2$
= 224

14 As the n values increase by 1, the M values increase by 11. So $M = 11 \times n \pm \square$.

If
$$n = 1$$
, $M = 8$ and $8 = 11 \times 1 - 3$.

$$\therefore$$
 the rule is $M = 11 \times n - 3$.

When
$$n = 121$$
, $M = 11 \times 121 - 3$
= $1331 - 3$
= 1328

15 As the *n* values increase by 1, the *M* values increase by 4. So $M = 4 \times n \pm \square$.

If
$$n = 1$$
, $M = 6$ and $6 = 4 \times 1 + 2$.

$$\therefore$$
 the rule is $M = 4 \times n + 2$.

When
$$n = 441$$
, $M = 4 \times 441 + 2$
= $1764 + 2$
= 1766

16 The values of C for n = 0, 1, 2, 3 are:

-	n	0	1	2	3	
	C	1800	2600	3400	4200	
+800 +800 +800						

a As the *n* values increase by 1, the *C* values increase by 800.

This suggests that
$$C = 800 \times n \pm \square$$
.

If
$$n = 1$$
, $C = 2600 = 800 \times 1 + 1800$

$$\therefore$$
 the rule is $C = 800 \times n + 1800$

b When
$$n = 5$$
, $C = 800 \times 5 + 1800$
= $4000 + 1800$
= 5800

So the charge is \$5800.

17 **a**
$$7 + s = 18$$

 $\therefore s = 11$

b
$$2 \times m - 4 = 12$$

∴ $2 \times m = 16$

m=8

18 a
$$3+m=14$$

$$m = 11$$

b
$$f \times 7 - 5 = 51$$

 $\therefore f \times 7 = 56$
 $\therefore f = 8$

- 19 a The tap was turned so that the water was flowing into the bath at a slower rate.
 - b The tap was turned off.
 - c A person got into the bath.
 - d The person got out of the bath.

- 20 a He was delayed between the 5 and 6 minute marks (the graph is flat), so he was delayed 1 minute at the lights.
 - b The boy travelled slowest between the 6 minute and 10 minute marks, so he was going up-hill. He reached the top of the hill at the 10 minute mark of his trip.

Parnell College Algebra

- 1 a certain b unlikely c highly likely
- seldom good chance almost certain impossible 50-50 chance certain
- 3 a Yes, the chance that the apple is red is 39 in 40. The chance that the apple is green is only 1 in 40.
 - b no
 - c false
- 4 There are six tickets which could be selected with equal chance.
 - a Since three are red there is a 3 in 6 chance of selecting a red
 - \therefore the probability of a red is $\frac{3}{6}$.
 - b Since three are red and three are blue there is a 6 in 6 chance of selecting a red or blue
 - ... the probability of a red or blue is $\frac{6}{6} = 1$, in other words, it is certain.
 - c There are no yellow tickets
 - : the probability of a yellow is $\frac{0}{6} = 0$, in other words it is impossible.
- 5 There are 14 sweets which could be selected with equal chance.
 - a i Since seven are chocolates there is a 7 in
 14 chance of selecting a chocolate
 - \therefore the probability of a chocolate is $\frac{7}{14}$.
 - ii Since seven are caramels there is a 7 in 14 chance of selecting a caramel
 - \therefore the probability of a caramel is $\frac{7}{14}$.
 - b If all the chocolates are eaten there are no chocolates left and seven caramels
 - \therefore the probability of a chocolate is $\frac{0}{7} = 0$
- 6 4 faces are purple, 2 are pink.
 - a P[a purple] = $\frac{4}{6}$
 - b P[a pink] = $\frac{2}{6}$
 - c P[a black] = $\frac{0}{6}$ = 0
- 7 The equally likely outcomes are:
 - 1, 2, 3, 4, 5 and 6.
 - a A 2 is one of the 6 possibilities.
 - $P[2] = \frac{1}{6}$
 - b There are three even possibilities (2, 4 and 6)
 - \therefore P[an even] = $\frac{3}{6} = \frac{1}{2}$
 - c There are two possibilities greater than 4 (5 and 6)
 - $\therefore P[\text{greater than 4}] = \frac{2}{6} = \frac{1}{3}$

- 8 The equally likely outcomes are:
 - A, B, C and D.
 - a B and D are two of the 4 possibilities
 - :. P[B or D] = $\frac{2}{4} = \frac{1}{2}$
 - b There is one vowel (A)
 - \therefore P[a vowel] = $\frac{1}{4}$
 - c S is not one of the possibilities
 - $P[S] = \frac{0}{4} = 0$
- 9 The equally likely outcomes are:
 - 1, 2, 3, 8.
 - a 2 and 4 are two of the 8 possibilities
 - \therefore P[2 or 4] = $\frac{2}{8} = \frac{1}{4}$
 - b There are no possibilities greater than 8
 - \therefore P[greater than 8] = $\frac{0}{8}$ = 0
 - these are seven possibilities less than 8 (1, 2, 3,, 7)
 - \therefore P[less than 8] = $\frac{7}{8}$
- 10 There are 52 cards, all equally likely to be selected.
 - a P[a spade] = $\frac{13}{52} = \frac{1}{4}$ {13 out of 52 poss.}
 - b P[an ace] = $\frac{4}{52} = \frac{1}{13}$ {4 out of 52 poss.}
 - c P[a King or Queen] = $\frac{8}{52} = \frac{2}{13}$ {8 out of 52 possible}
 - d P[a black Jack] = $\frac{2}{52} = \frac{1}{26}$ {two out of 52 possible}
- 11 a The possible results are:

- b There are 12 possible results.
- c P[T1, T3 or T5] = $\frac{3}{12} = \frac{1}{4}$
- 12 There are 16 equally likely outcomes:

- a $P[A1] = \frac{1}{16}$
- b P[an A and an odd] = $\frac{2}{16} = \frac{1}{8}$ {two possibilities; A1 and A3}
- c $P[B1] = \frac{2}{16} = \frac{1}{8}$

13

- a P[a head and an A] = P[HA] = $\frac{1}{6}$
- b P[a tail and a B or C] = P[TB or TC] = $\frac{2}{6} = \frac{1}{3}$

c P[an A] = P[HA or TA]
=
$$\frac{2}{6} = \frac{1}{3}$$

14

b i P[two As] = P[AA]
=
$$\frac{1}{9}$$

- ii P[B followed by C] = P[BC] = $\frac{1}{9}$
- iii P[an A and a B] = P[AB or BA] = $\frac{2}{\alpha}$