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Preface

These lecture notes, still incomplete in parts, support the lecture course ‘Mathematics
and the environment’ in its 2006 form. This edition is essentially the same as the
2005 version, except that I have removed the appendices. Also the material in section
4.3 has been reordered and revised. Note that these are draft chapters of a book in
preparation, and thus contain more (but worthwhile!) material than is covered in the
lecture course. As ever, any updated versions of the notes will be posted on the web
as they become available.

I am grateful to Felix Ng, who rapidly and expertly produced some of the figures
for chapters 1 and 2. Thanks also to Emanuele Schiavi, Thomas Vitolo and Dave
Cocks for their vigilance in spotting errors in previous versions.

A.C.F.
October 27, 2006
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Chapter 1

Climate dynamics

The most noticeable facets of the weather are those which directly impinge on us:
wind, rain, sun, snow. It is hotter at the equator than at the poles simply because the
local intensity of incoming solar radiation is greater there, and this differential heat-
ing drives (or tries to), through its effect on the density of air, a poleward convective
motion of the atmosphere: rising in the tropics, poleward in the upper atmosphere,
down at the poles and towards the equator at the sea surface. The buoyancy-induced
drift is whipped by the rapid rotation of the Earth into a predominantly zonal flow,
from west to east in the northern hemisphere. In turn, these zonal flows are baroclin-
ically unstable, and form waves (Rossby waves) whose form is indicated by the isobar
patterns in weather charts.

All this frenetic activity obscures the fact that the weather is a rather small detail
in the determination of the basic climate of the planet. The mean temperature of the
planetary atmosphere and of the Earth’s surface is determined by a balance between
the radiation received by the Earth from the Sun (the incoming solar radiation), and
that re-emitted into space by the Earth.

1.0.1 Radiation budget

We denote the incoming solar radiation by Q; it has a value Q = 1370 W m 2 (watts
per square metre). A fraction a of this (the albedo) is reflected back into space,
while the rest is absorbed by the Earth; for the Earth, a =~ 0.3. In physics we learn
that a perfect radiative emitter (a black body) at absolute surface temperature T
emits energy at a rate E, = oT*, where o is the Stefan-Boltzmann constant, given
by 0 = 5.67 x 1078 W m=2 K=*. If we assume that the Earth acts as a black
body of radius R with effective (radiative) temperature T, and that it is in radiative
equilibrium, then
4rR*oT? = 7R*(1 — a)Q,

ST "

o)

whence

Computing this value for the Earth using the parameters above yields T, ~ 255 K. A
bit chilly, but not in fact all that bad!



Actually, if the effective temperature is measured (T,,) via the black body law from
direct measurements of emitted radiation, one finds 7, ~ 250 K, which compares well
with T,. On the other hand, the Earth’s (average) surface temperature is T, ~ 288
K. The fact that T, > T is due to the greenhouse effect, to which we will return later.
First we must deal in some more detail with the basic mechanisms of radiative heat
transfer.

1.1 Radiative heat transfer

We are familiar with the idea of conductive heat flux, a vector with magnitude and
direction, which depends on position r. Radiant energy transfer is a more subtle
concept. A point in a medium will emit radiation of different frequencies v (or
different wavelengths A: they are conventionally related by A = ¢/v, where c is the
speed of light), and the intensity of emitted radiation will depend not only on position
r, but also on direction, denoted by s, where s is a unit vector. Also, like heat flux,
emitted radiation is an area-specific quantity (i. e., it denotes energy emitted per unit
area of emitting surface), and because it depends on orientation, this causes also a
dependence on angle between emitting surface and direction: the intensity you receive
from a torch depends on whether it is shone at you or not.

Figure 1.1: A pencil of rays emitted from a point r in the direction of s.

So, the radiation intensity I,(r,s) is defined via the relation
dE, = I, cos0dv dS dw dt, (1.2)

where dF, is the energy transmitted in time dt through an area dS in the frequency
range (v,v + dv) over a pencil of rays of solid angle dw in the direction s; see figure
2.1. 6 is the angle between s and dS.

The solid angle (element) dw is the three-dimensional generalisation of the or-
dinary concept of angle, and is defined in an analogous way. The solid angle dw
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subtended at a point O by an element of surface area dS located at r is simply

r.dS

dw =
r3

. (1.3)

r.dS

, and for exam-
r3

The solid angle subtended at O by a surface X is just w = /
b

ple / dw = 4m, representing the solid angle over all directions from a point, and
o

/ dw = 27, representing the solid angle subtended over all upward directions.
[

Three processes control how the intensity of radiation varies in a medium.

e Absorption occurs when a ray is absorbed by a molecule, e.g. of Oy or CO5 in
the atmosphere, or by water droplets or particles. The rate of absorption is
proportional to the density of the medium p and the radiation intensity I,,, and
is thus given by pk,I,, where k, is the absorption coefficient.

e Fmission occurs (in all directions) when molecules or particles emit radiation;
this occurs at a rate proportional to the density p, and is thus pj,, where j, is
the emission coefficient.

e Scattering can be thought of as a combination of absorption and emission, or
alternatively as a local reflection. An incident ray on a molecule or particle —
a scatterer — is re-directed (not necessarily uniformly) by its interaction with
the scatterer. The process is equivalent to instantaneous absorption and re-
emission. Reflection at a surface is simply the integrated response of a distribu-
tion of scatterers. Scattering leads to an effective scattering emission coefficient

7% and is discussed further below in section 1.1.6.

1.1.1 Local thermodynamic equilibrium

In order to prescribe j,, we will make the assumption of local thermodynamic equi-
librium. More or less, this means that the medium is sufficiently dense that a local
(absolute) temperature T' can be defined, and Kirchhoff ’s law then defines j, as

Jv = K, B,(T), (1.4)
where B, (T') is the Planck function given by

2h1?

B,(T) = lehv/kT )’

(1.5)
where h = 6.6 x 10734 J s is Planck’s constant, £k = 1.38 x 10723 J K~! is Boltzmann’s
constant, and j, dv represents the emitted energy per unit mass per unit time per
unit solid angle in the frequency range (v, v + dv).



EXERCISE. Show that f ~cosfdw = 7, and deduce that B, = E, /7, where Ey,
is the black body radiation emitted normally from a surface, per unit area, and (we
write Fp, in terms of wavelength A = ¢/v, denoting it as Ejy)
A5 [exp (cp/AT) — 1]’

Eby = Eb)\ (16)

and ¢; = 3.74 x 108 W pym* m=2, ¢y = 1.44 x 10* ym K (1 gm = 1075 m).

1.1.2 Equation of radiative heat transfer

Considering figure 2.1, the rate of change of the radiation intensity 7, in the direction
s is given by

oI,

0s
and this is the equation of radiative heat transfer. Note that the meaning of I, /0s
in (1.7) is that it is equal to s.VI,, where V is the gradient with respect to r. (1.7)
is easily derived from first principles, given the definition of absorption and emission
coefficients.

= _pK:VIV + pK:VBV7 (17)

1.1.3 Radiation budget of the Earth

We will use (1.7) below to derive a model for the vertical variation of the intensity
of radiation in the Earth’s atmosphere. We need to do this in order to explain the
discrepancy between the effective black body temperature of the Earth (250 K) and
the observed surface temperature (290 K). The discrepancy is due to the greenhouse
effect of the atmosphere, which acts both as an absorber and emitter of radiation.
Importantly, the absorptive capacity of the atmosphere as a function of wavelength
A is very variable. Figure 2.2 shows the variation of k, (or, we might write k))
as a function of A, or more specifically, log;qA. Above it we have also the black
body radiation curves (from (1.6)) for two temperatures corresponding to those of
the effective Earth emission temperature, and that at the surface of the Sun. From
these, we see that solar radiation is concentrated at short wavelengths, including the
band of visible light (A = 0.4 — 0.7 pm), whereas the emitted radiation is all infra-
red (IR). Furthermore, the absorption coefficient variation with X is such that the
atmosphere is essentially transparent (k ~ 0) to solar radiation (in the absence of
clouds), but (mostly) opaque to the emitted long-wave radiation, with the exception
of an IR window between 8 and 14 pym. It is this concept of transparency to solar
radiation, but the presence of only a small emission window, that leads to the analogy
of a greenhouse. The incoming radiation is trapped by the atmosphere, and it is this
which causes the elevated surface temperature.

The actual radiation budget of the Earth’s atmosphere is shown in figure 2.3,
which indicates the complexity of the transfer processes acting between the Earth’s
surface, the atmosphere and cloud cover, and which also shows the role played by
sensible heat loss (i.e., due to convective or conductive cooling) and latent heat loss
(due to evaporation from the oceans, for instance).
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Figure 1.2: Absorption spectrum of the Earth’s atmosphere. The upper graphs indi-
cate the different wavelength dependence of the radiation emitted by the Earth and
the sun. ) is measured in um, and the solar output (from (1.6)) is scaled by 3.45x 1076
so that it overlays the Earth’s output, if additionally A in (1.6) is scaled by 0.043. In

this case the areas under the two curves (note that / B)d\ =1n10 / AByd log;, A)

are equal, as they should be in radiative balance. The factor 3.45 x 10~ represents
the product of (1 — a) (cf. (1.1)) with the square of the ratio of the sun’s radius
to the distance from the Earth to the sun. The radius of the sun is 6.96 x 108 m
and the distance from the Earth to the sun is 1.5 x 10* m, so that the value of the
square ratio is about 21.53 x 107, Multiplying this by the discount factor (1 — a)
gives 3.45 x 1079 if the albedo a = 0.36. The curves can be made to overlap for the
meagsured albedo of a = 0.3 by, for example, taking Earth and sun radiative tem-
peratures to be 255 K and 5780 K, but this is largely a cosmetic exercise. The lower
curve represents the absorption by atmospheric gases over a clear vertical column of
atmosphere (i.e., it does not represent the absorption coefficient); we see that there
is a long wave window for wavelengths between about 8 and 15 pym. This figure is
redrawn from figure 2.1 of Houghton (2002).
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Figure 1.3: Radiation budget of the Earth. Versions of this figure, differing slightly
in the numerical values, can be found in many books. See, for example, Gill (1982),
figure 1.6.

As indicated in this figure, and as can be seen also from figure 2.2, one can
essentially think of the short wave budget and long wave budget as separate systems.
We shall be concerned here with the variation of IR radiation intensity, by solving
(1.7). If k, varies with v, the problem requires computational solution. However,
we can gain significant insight by introducing the idea of a grey atmosphere. This
is one for which k, = k is independent of v (and as mentioned, we will restrict this
assumption to the long wave budget).

We then define the radiation intensity I and emission density B as

1:/ I, dv, B:/ B, dv. (1.8)
0 0

Note that, following the discussion before (1.6), we have

oT*

= (1.9)

B =

where o is the Stefan-Boltzmann constant; thus B = E,/m. The factor of = arises
because FEj represents the radiation per unit surface area emitted normally to the
surface, while B represents emission per unit area per unit solid angle in any direction.
It is important to understand the distinction between the two.

8



From (1.7), we have for a grey atmosphere

o1

— =—kp([ — B). 1.10

= —wp(I-B) (1.10)
We now consider the important case of a one-dimensional atmosphere. Let z be the
direction in the upward vertical, and 6 the (polar) angle to the z-axis. We also define

the optical depth

7':/ kpdz, (1.11)

and put u = cosf. For a one-dimensional atmosphere, we have I = I(7, ), where
T represents the vertical position, and p represents the direction of the ray pencil in
figure 2.1. Note also that ds = dz/u (some care is needed here: z and s are inde-
pendent, but this relation correctly interprets d/0s = s.V, for the one-dimensional
case), so that (1.10) is
or
For =
for a one-dimensional, grey atmosphere.
This seems simple enough, but note that B depends on T', which is as yet uncon-
strained. In order to constitute B, we define the average intensity

I- B, (1.12)

1

1
J:i/Idw:%/ I(r, p) du, (1.13)
o _

and we make the assumption of local radiative equilibrium! that J = B, i.e., that
the total absorbed radiation at a point is equal to that determined by black body
emission (note that this does not necessarily imply I = B for all 6, however). The
radiative intensity equation for a one-dimensional, grey atmosphere is thus

oI !
poo=1- %/ I(7, p) dp, (1.14)

1

and is in fact an integro-differential equation.

We require two further pieces of information to determine I completely. In view of
our previous discussion, we take I as referring to long-wave radiation, and therefore
it is appropriate to specify

I=0forp<0at7T=0, (1.15)

i.e., no incoming long-wave radiation at the top of the atmosphere. Furthermore, we
can see from the equation (1.14) that the net upward flux

1
/Icos@dw:27r/ uldpy = (1.16)
o -

1

1This now specifically assumes that no other energy transport processes occur.



is conserved (i.e., is independent of depth). (The factor 27 is due to integration

1 0

with respect to the azimuthal angle ¢.) Since this is 27 [/ wl dp — / (—pl) d,u} =
0 -1

outgoing IR radiation minus incoming IR radiation, it is in fact equal to the net

emission of IR radiation. By the assumption of global radiative balance, ® is equal
to the net received short wave radiation, thus

(1-a)@
4

o = =oT?, (1.17)

where the factor 4 allows for the variation of received solar radiation per unit area
with latitude. (Strictly, the assumption of a one-dimensional atmosphere assumes
horizontal variations due to latitude are rapidly removed, e.g. by mixing, but in fact
the horizontal variation is small anyway, because the atmosphere is geometrically
thin.) In fact, even if there is global imbalance, as in climatic energy balance models
(see section 2.3), we still have ® = oT%.

1.1.4 The Schuster-Schwarzschild approximation

The solution of (1.14) with (1.15) and (1.16) is possible but technically difficult, and
is described in appendix A. A simple approximate result can be obtained by defining
the outward and inward flux integrals

1
L= [ 1d
0

0

I / Idy, (1.18)

-1

0

1
and then approximating / pldp =~ 11, / pl dp = —1I_, based on the idea that
0 1

1
/ pdp = 5. This causes (1.14) to be replaced by
0
I = I,-1,
I = I, -1 (1.19)
so that I, —I_ = ®/7 is the conservation law (1.16), and thus (with I_ = 0 at 7 = 0)
I = &7/m,
d
I, = —(1+7). (1.20)
7r

It follows that the average intensity

®
J=3Iy+1)= 5 (1+27) = B, (1.21)

™
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and using (1.9) and (1.17), we thus find the atmospheric temperature 7" in terms of
the emission temperature 7:

T=T, {%} v . (1.22)

The surface temperature is determined by the black body emission temperature
corresponding to I, at the surface, where 7 = 7, that is I, = B = 0T/, so that
the ground surface temperature is

T, = T.(14 7,)Y4, (1.23)

whereas the surface air temperature T, is, from (1.22),

T =T. (3 +7,)"" (1.24)
Note that there is a discontinuity in temperature at the surface, specifically
T -T2 = 0.5T% (1.25)

molecular heat transport (conduction) will in fact remove such a discontinuity. If we
use Ty = 290 K and T, = 255 K, then (1.23) implies that the optical depth of the
Earth’s atmosphere is 7, = 0.67.

1.1.5 Radiative heat flux

Although radiative heat transfer is the most important process in the atmosphere,
other mechanisms of heat transport are essential to the thermal structure which is
actually observed, notably conduction and convection. In order to incorporate radia-
tive heat transfer into a more general heat transfer equation, we need to define the
radiative heat fluz. This is a vector, analogous to the conductive heat flux vector, and
is defined (for a grey medium) by

qR:/ I(r,s)sdw(s). (1.26)

Note that qgr.n = / Icosfdw (see figure 1.1) is the energy flux density through

o

a surface element dS with normal n. Determination of qg requires the solution of
the radiative heat transfer equation for I, but a simplification occurs in the optically
thick limit, when 7 > 1 (i.e., kp is small). We write

1
I=B- —sVI, (1.27)
PK

and solve for I using a perturbation expansion in powers of 1/px. One thus obtains

1
I=B——sVB+..., (1.28)
PK

11



and substitution into (1.26) leads to the expression

~_ M gp_ A0y
dr ~ 3/-chB = 3/<;pVT , (1.29)
so that for an optically dense atmosphere, the radiative heat flux is akin to a con-
ductive heat flux, with a nonlinear temperature-dependent (radiative) conductivity.
Because of its simplicity, we will often use this expression for the radiative flux despite

its apparent inappropriateness for the Earth.

1.1.6 Scattering

In a scattering atmosphere, a beam of radiation is scattered as it is transmitted, as
indicated in figure 1.4. At any position r, an incident beam of frequency v in the
direction s’ will be deflected to a new direction s with a probability distribution which
we define to be p,(s,s’)/4m; thus the integral of p, over all directions is one, i.e.,

/p,,(s,s') d“;gfl) = 1. (1.30)

If all the incident radiation is scattered, then we have perfect scattering: no radiation

is lost. More generally, we may suppose that a fraction a, is scattered (and the rest is
a,p, dw

absorbed), and a, is called the albedo for single scattering. Thus we define

to be the probability that incident radiation from the direction s’ will be scattereﬁ in
the direction s over a solid angle increment dw. In general, p, depends on frequency,
and we also suppose it depends only on the angle between s’ and s, thus p, = p,(s.s').

Integrating this probablility over all directions s’, we obtain the emission coefficient

for scattering as
d !
§b) = a,,m,,/ p,(s,s'),(r,s) w(s),
o 47

where k, is the emission coefficient. The equation of radiative transfer is modified
from (1.7) to

oI, dw(s')

ds = —pPKy !Lf - (1 - (l,,) BV - a/u/c;pu(sv Sl)Iu(rvsl) ? . (132)

(1.31)

Scattering in the atmosphere is most closely associated with Rayleigh’s explana-
tion for the blue colour of the sky. For the visible spectrum we can ignore short wave
emission, B, = 0. Rayleigh derived an expression for the scattering distribution of
sunlight by air molecules. Importantly, the intensity of scattered radiation is propor-
tional to v* (or 1/A%), and thus is much larger for high frequency, or short wavelength,
radiation. In terms of the visible spectrum, this is the blue end. The wavelength of
blue light is about 0.425 pm, while that of red light is 0.65 um, so that blue light is
scattered about five times more than red light. Hence the blue sky.

Rayleigh scattering applies to scattering by entities which are much smaller than
the radiation wavelength, and in particular, molecules. Scattering by objects much
larger than the wavelength (dust particles, water droplets, etc.) is called Mie scatter-
ing and is determined by WKB theory applied to the electromagnetic wave equation.

12



Figure 1.4: Scattering from direction s’ to s.

1.1.7 Troposphere and stratosphere

Thus far, we have not considered the vertical structure of the atmosphere. The
principal feature of the atmosphere is that it is stratified: the density decreases, more
or less exponentially, with height. This is why it becomes difficult to breathe at high
altitude. The reason for this decrease is simply that the atmospheric pressure at
a point depends on the weight of the overlying air, which obviously decreases with
height. Since density is proportional to pressure, it also decreases with height.

To quantify this, we use the fact that for a shallow atmosphere (whose depth
d is much less than a relevant horizontal length scale 1), the pressure p is nearly
hydrostatic, that is,

dp

dp _ 1.
o =—h0, (1.33)

where z is height, p is air density, and g is gravitational acceleration (approximately
constant). If we assume (reasonably) that air behaves as a perfect gas, then

_ M,p
p_ RT,

(1.34)

where M, is the molecular weight® of air, R is the perfect gas constant, and T is

1
absolute temperature. For a perfect gas, the thermal expansion coefficient ——a—; is
p

simply 1/T.

2The molecular weight is effectively the weight of a molecule of a substance. Equivalently, it is
determined by the weight of a fixed number of molecules, known as a mole, and equal to Avogadro’s
number 6 X 10?3 molecules. For air, a mixture predominantly of nitrogen (78%), oxygen (21%) and
argon (0.9%), the molecular weight is given by the equivalent quantity for the mixture. It has the
value M, = 28.8 x 10~2 kg mole~!. Useful references for such quantities and their units are Kaye
and Laby (1960) and Massey (1986).
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In terms of the temperature, the pressure and density are then found to be

Zdz ?dz
—_— — —_— f— -_— 1-
p poeXp[ /OH:| p poeXp[ /O—H}, (1.35)

where the scale height is H = RT/M,g, having a value in the range 6-8 km. The
temperature varies by less than a factor of two over most of the atmosphere, and an
exponential relation between pressure or density and height is a good approximation.

We mentioned earlier, in deriving (1.14), that we assumed local radiative equi-
librium, that is to say that radiative transport dominates the other transport mech-
anisms of convection and heat conduction. As we discuss further below, this is a
reasonable assumption if the atmospheric density is small. As a consequence of the
decrease in density with height, the atmosphere can therefore be divided into two
layers. The lower layer is the troposphere, of depth about 10 km, and is where con-
vective heat transport is dominant, and the temperature is adiabatic, and decreases
with height: this is described in section 1.2 below. The troposphere is separated from
the stratosphere above it by the tropopause; atmospheric motion is less relevant in the
stratosphere, and the temperature is essentially governed by radiative equilibrium.
In fact the adiabatic decrease in temperature in the troposphere stops around the
tropopause, and the temperature increases again in the stratosphere to about 270 K
at 50 km height (the stratopause), before decreasing again (in the mesosphere) and
then finally rising at large distances (in the thermosphere, > 80 km).

The temperature structure of the atmosphere can thus be represented as in figure
1.5: the convection in the troposphere mixes the otherwise radiative temperature field
to produce the adiabatic gradient which is observed.

170K

50 km stratopause ) 270 K

stratosphere

10 km | tropopause ( 210 K
troposphere

290K

Figure 1.5: Atmospheric temperature profile. Below the tropopause, convection stirs
the temperature field into an adiabatic gradient. Above it, radiative balance is dom-
inant.
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1.1.8 The ozone layer

The elevated vertical temperature profile in the stratosphere is basically due to a
radiative balance between ultraviolet absorption by ozone and long wave emission
by carbon dioxide. As is indicated in figure 1.2 (and as is well known), ozone (O3)
in the stratosphere is responsible for removing ultraviolet radiation, which would
otherwise be lethal to life on Earth. Ozone is produced in the stratosphere through
the photodissociation of oxygen. The basic sequence of reactions describing this
process is due to Sydney Chapman:

Oy+hv 35 20,
k2
0+0:+M — O3+M,
Os+hr 3 040,

k3

O+0; — 20,. (1.36)

The first of these reactions represents the breakdown of oxygen by absorption of
ultraviolet radiation of wavelength less than 0.24 pym (hv is Planck’s quantum of
energy). The next two reactions are fast. The arbitrary air molecule M catalyses
the first of these. The final reaction represents the removal of ozone. Overall, the
reaction can be written as

305 = 20, (1.37)

T—

with the first two reactions of (1.36) providing the forward reaction, and the last two
the backward reaction. If we assume (as is the case) that j3 and ky are sufficiently
large that

s jaks 1"
e=— B <1 §=|- <1, 1.38
BB ] (139
then one can show (see question 1.8) that the forward and backward rates for (1.37)
are e
ry=2j, =58 1.39
+ 3]2 kz[OQ][M] ( )
and the (stable) equilibrium ozone concentration is given by
koM M2
0 = [222X) oy (1.40)
Jaks

Ozone occurs principally in the ozone layer, at heights between 15 and 50 km
(i.e., in the stratosphere), where it attains concentrations of about 10 ppmv (parts
per million by volume). It is formed here because the reactions in (1.36) require UV
radiation to be absorbed, which in itself requires the presence of the absorber (ozone).
So at the top of the stratosphere, where the pressure and thus also density are both
small, absorption is small and little ozone is formed. Deeper in the stratosphere,
density increases, which allows increased production of ozone. However, this increased
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ozone causes further absorption of the UV radiation, and so the source for the ozone
forming reaction disappears at the base of the stratosphere.

A simple model for the formation of this structure, which is called a Chapman
layer, assumes a constant volume concentration, or mixing ratio, for ozone. The
radiative transfer equation for incoming shortwave radiation of intensity I can be
written

— = kpl; 1.41
82' h;p 7 ( )

there is no radiative source term, and the incoming beam is unidirectional, and here
taken to be vertical (the sun is overhead). We suppose a constant pressure scale
height so that

p = poexp(—z/H). (1.42)

With I negative, and [ — —I, as 2z — 0o, the solution to this is
I =—I,exp[—kpoHe "], (1.43)
: or . .
and the consequent heating rate () = ~ is given by
z

I
Q= TOH exp [—% - Toe_Z/H] , (1.44)

where
T0 = /{pOH (145)

is a measure of the opacity of the stratospheric ozone layer.

If 79 is sufficiently high, the heating rate exhibits an internal maximum, as seen
in figure 1.6. This is the distinguishing feature of the Chapman layer. Since @ is also
volumetric absorption rate of radiation, it indicates maximal production of ozone in
the stratosphere, as is found to be the case. This structure additionally explains why
the temperature rises with height through the stratosphere, because of the increased
heating rate.

In the stratosphere almost all the short wave absorption is due to ozone. There
is very little water vapour. The resultant heating is almost exactly balanced by long
wave radiation, mostly from carbon dioxide, the remnant being from ozone again.
While the resulting radiation balance controls the temperature, there is very little
radiant energy lost. As can be seen from figure 1.2, the UV tail is taken off by ozone,
but the visible and infra-red spectrum passes through the stratosphere unscathed.

In the troposphere, the water vapour concentration is much higher than ozone,
which is virtually absent, and also of carbon dioxide. Although discussions of global
warming are fixated by the greenhouse gases — carbon dioxide, methane, and so on,
it needs to be borne in mind that water vapour is also a greenhouse gas, and is in
fact the most important one. Adding to that the dominating influence of clouds and
their somewhat mysterious influence on climate, one sees that an understanding of
moisture is of principal concern in determining radiative processes in the troposphere.
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Figure 1.6: Variation of heating rate @ given by (1.44) with I, =342 W m=2 H = 8
km, and 7y = 30, this somewhat arbitrary value being chosen to show a maximum
heating rate at 30 km altitude. Units of z are km, and of Q W m~3. The choice of
I, = 342 W m~2 refers to all incoming short wave radiation, whereas it is only a
small fraction of this in the ultraviolet range which is absorbed in the stratosphere.

1.2 Convection

We have seen that for a purely radiative atmosphere, a discontinuity in temperature
occurs at the Earth’s surface. Such a discontinuity does not occur in reality, because
of molecular conduction. In fact, atmospheric motion causes heat transport in the
troposphere to be more importantly due to convection rather than conduction —
the transport of heat is primarily due to the motion of the atmosphere itself. The
temperature of the atmosphere is described by the heat equation
dTl’ dp
cp— — BT~ = kV*T — V.qg, 1.46
Per gy — T g qr (1.46)

where the terms represent respectively advection of heat, adiabatic (compression)
heating, thermal conduction and radiative heat transfer. The time derivative d/dt is
a material derivative, and represents the rate of change of a property following a fluid
element. Thus, dT'/dt = 0 means the temperature of a fluid element is conserved as
it moves. It is related to the ordinary partial derivative by the relation

d 0

—=—+4+uV 1.47

a oY (1.47)
where u is the fluid velocity. ¢, is the specific heat, § is the thermal expansion
coefficient, 3 = —p 10p/0T, k is the thermal conductivity, and qg was defined above
in (1.25).
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If we use the optically dense approximation (1.28), then

qr ~ —kRVT, (148)
where L60T®
ag
kp = . 1.49
"= 3 (1.49)

We will use (1.48) as a pedagogic tool rather than as an accurate model. To estimate
kg, we use values kpd = 0.7, d = 10 km; then we find kg ~ 10° W m ! K~!. This
compares to a molecular thermal conductivity of order 1072 W m~! K1, which is
therefore negligible. In fact, atmospheric flows are turbulent, and a better measure of
the effective heat conduction is the eddy thermal conductivity, of order pc,Ud times
a small dimensionless drag coefficient, where d is depth scale and U is wind speed
scale. Eddy conductivity is found to be comparable to the nominal radiative value
deduced above.

A measure of the importance of the advective terms is provided by the Péclet
number, which represents the size of the ratio (pc,dT'/dt)/V .qg, and is given by

_ pe,Ud?

P
T kAl

(1.50)

where U and d are velocity and depth scales as mentioned above, and [ is a relevant
horizontal length scale. Using values p ~ 1kgm 3, ¢, ~103 J kg ' K1, U ~ 20 m
s 1 d~ 10 km, [ ~ 10® km (representing the length scale of planetary waves in the
atmosphere), we find Pe ~ 20, so that in fact atmospheric motion plays a significant
role in the redistribution of heat. Since Pe is large, we can obtain an approximation
to the vertical thermal structure of the atmosphere by neglecting the radiative and
conductive transport terms altogether. This leads to the adiabatic lapse rate, which
is determined by putting the left hand side of (1.46) to zero, and thus

dr T
a _ AT (1.51)
dp  pecp

To obtain the variation of 7" with height z, we use the fact that the pressure is
hydrostatic, given by (1.33), and assume a perfect gas law (1.34); then we find the

(dry) adiabatic lapse rate

dT g

o =-Tu= = (1.52)
having a value of about 10 K km~!. In practice, the observed temperature gradient
is nearer 6 K km~!, a value which is due to the presence of water vapour in the
atmosphere, the effect of which is considered below.

One of the basic reasons for the presence of convection in the troposphere is the
presence of an unstable thermal gradient. The higher temperature at the ground
causes the air there to be lighter; convection occurs as the warm air starts to rise,
and it is the resultant overturning which causes the mixing which creates the adiabatic
gradient. On a larger scale, the unstable thermal gradient which drives large scale
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atmospheric motion is due to the energy imbalance between the equator and the
poles.

Perturbations to the adiabatic gradient occur; for example, temperature inversions
can occur under clear skies at night when IR radiation from the Earth is larger. The
resultant temperature structure is convectively stable (the inversion is cold and there-
fore heavy), and its removal by solar irradiation can be hampered by the presence of
smog caused by airborne dust particles. Moreover, the cool inversion causes fog (con-
densed water vapour), and the condensation is also facilitated by airborne pollutant
particles, which act as nucleation sites. Hence the infamous smogs in London in the
1950s, and the consequent wide-spread ban of open coal fires in cities.

While temperature inversions are convectively stable and thus persistent, supera-
diabatic temperatures are convectively unstable, and cannot be maintained.

1.2.1 The wet adiabat

For a parcel of air of density p, containing water vapour of density p,, the mizing
ratio is defined as P

m P (1.53)
A typical value in the troposphere is m =~ 0.02, so that we can practically take the
density of moist air as constant. As m increases, the air can become saturated and
thus the water vapour will condense. This happens when the partial pressure p,
reaches the saturation vapour pressure p,,, which depends on temperature via the

Clausius-Clapeyron equation

dpsy  puL
= 1. 4
dT T’ ( > )

where L is the latent heat and T in (1.54) is the saturation value Ty,;. Figure 2.7 shows
the phase diagram for water, delineating the curves in (7', p) space at which freezing,
condensation and sublimation occur. (1.54) describes the water/vapour curve in this
figure. The ratio p,/ps, (normally measured as a percentage) is called the relative
humidity. It is an anthropocentric measure of discomfort, since when the (relative)
humidity is high, very little exertion will cause sweat to condense.

Let us now suppose that the atmosphere is (just) saturated. The existence of
clouds actually negates this proposition, but not too badly, in the sense that we
suppose rainfall removes condensed water droplets. As a moist parcel of air moves
about, the increment of heat content per unit volume due to changes in 7', p and p,
is then p,c,dT" — dp + Ldp, (using ST = 1), and thus (1.46) is modified to

dI" dp dm 9
— — — + poL— = kV°T — V.qx. 1.
pacp dt dt + 10 dt V V qR ( 55)

Using the definition of m in (1.53), and the perfect gas laws

poRT puRT
p —= =

sv ) 1.56
Ma, Y p Mv ( )
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Figure 1.7: Phase diagram for water substance (not to scale).

where M, is the molecular weight of water vapour, we find that the temperature
gradient is given approximately (by ignoring the right hand side of (1.55)) by

poL
AT 1+ »
= _T. =—_T 1.
dz w d » va Mv L ) ( 57)
p \ My, T

which is the wet adiabat. Using values p, = 0.01 kg m~3, M, = 18 x 1073 kg mole™!,
L =2.5x10%J kg™!, we find a typical value I, ~ 6 K km™!, close to that which is
observed in practice.

1.3 Emnergy balance models

Although convective transport is the dominant mechanism of energy transfer within
the atmosphere, the role of radiative transport is fundamental to the determination
of the average temperature. Moreover, this is equally true if we do not assume ra-
diation balance, and this allows us to study long term variations in climate which
are of relevance to the evolution of paleoclimatic temperatures, quaternary ice age
climates, and more recently, the effect of CO, levels on global temperature. All of
these phenomena can be roughly understood on the basis of energy-balance models.

Since most of the mass of the atmosphere is contained in the troposphere, we define
the mean temperature T of the atmosphere to be the vertically averaged temperature
of the troposphere. Suppose the temperature is adiabatic, with constant lapse rate
I', and of depth d. The surface temperature 7 is thus

T =T+ 1Td. (1.58)
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In a purely radiative atmosphere, we found earlier that the greenhouse effect causes
the surface temperature to be warmer than the planetary long wave emission tem-
perature (cf. (1.23)). Let us define a greenhouse factor

)= (%)4 (1.59)

1
1+ 7
and this enables us to write the emitted long wave radiation in terms of the mean
surface temperature, and a quantity v which depends on atmospheric radiative prop-
erties.

We can still define a greenhouse factor by (1.59) for a radiative-convective atmo-
sphere, but consultation of figure 1.3 shows that its theoretical determination in terms
of atmospheric properties is likely to be non-trivial. Nevertheless, we shall suppose v
can be defined; for the Earth v & 0.61 at present (based on T, = 255 K, T' = 288 K).

The incoming solar radiation per unit area is (1 — a)Q (a is the albedo, the
fraction of short wave radiation which is reflected back to space), while the emitted
IR radiation per unit area is o7 (units are W m™2). It follows that the net received

radiation over the planetary surface is 7 R?(1—a)Q—4n R*0T}, with units of W, and we

dT
can equate this to the rate of change of the atmospheric heat content?, 47rR2dpacp —,

where for (1.23), this would be

v = (1.60)

where d is the depth of the troposphere; ¢, is the specific heat, and R is the planetary
radius. Since p,R>d has units kg, ¢, has units J kg™' K~', and dT'/dt has units K
s~ 1, this also has units W, and thus (adopting (1.59))

dr
dt
in view of (1.58), since we take ;I'd to be constant.

For constant @, (1.61) is a simple first order differential equation with stable
positive steady state, the radiative equilibrium state

T=T,= {%} v . (1.62)

Pacpd— = 3(1 —a)Q — oyT*4, (1.61)

The response time for small deviations from 7} is then determined by the linearised
equation, where we put 7' = Ty + 6, whence

PaCpdly -
and the response time is
PaC TOd

3This is something of a simplification. Net addition of radiant energy to the atmosphere can
cause changes in sensible heat (via temperature), latent heat (via moisture) or gravitational potential
energy (via thermal expansion); we thus implicitly neglect the latter two; see also the next footnote.
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With a density p, = 1 kg m 3, ¢, = 103 J kg™? K!, T, = 288 K, d = 10*
m, a = 0.3, Q = 1370 W m~2, we have tg ~ 35 days, so that climatic response is
relatively rapid.

1.3.1 Zonally averaged energy balance models

Energy balance models are obviously crude, but attractive nonetheless because they
portray the essential truth about atmospheric energy balance. One of the more obvi-
ous features of the planetary climate is the temperature difference between equator
and poles, due to the latitudinal variation of received solar variation. Indeed, it is this
imbalance which drives the atmospheric weather systems. A simple modification to
the ‘zero-dimensional’ energy balance model (1.61) is to allow a latitudinal variation
in temperature. We denote latitude (angle north of the equator) by A and we define

§ =sinA, (1.65)

thus —1 < ¢ < 1, and £ = 0 at the equator, £ = 1 at the north pole. We suppose
T(&,t) is the zonally-averaged (i.e., integrated over longitude) temperature, and we
pose the zonally-averaged energy balance equation

c_pl [(1—5%‘2—?

ot ot } +3Q(1L —a)S(§) - I(T). (1.66)

In this equation, C is a heat capacity coefficient. For a dry atmosphere?, (1.61)
indicates C = p,c,d. D is a diffusion coefficient, scaled with 1/R?, and thus having
(like C') units of W m~2 K~'; it represents the poleward transport of energy through
the eddy diffusive effect of large weather systems in mid-latitudes, which will be
discussed further in the following chapter. I(T) represents the outgoing long wave
radiation, supposed to depend only on mean surface temperature. Finally, S(z)

represents the latitudinal variation of received solar radiation, normalised so that
1

S(&) d¢ = 1. If the albedo a is constant, then we regain (1.61) by integrating from

§O: —1 to £ = 1, assuming T is regular at the poles. If S = 1, then T' = T'(¢), and
we also regain the earlier model.

In the formulation of (1.66), we again interpret 7 as the mean surface temperature,
in view of (1.58), and this is what is conventionally done, though without explicit
mention. It is also conventional, in view of the limited range of 7', to take a linear
dependence of I on T, thus

I=A+ BT, (1.67)

with values of A and B from measurements. Typical such values are A = 200 W m 2
and B=2Wm 2 K2

The resulting linear equation for 7' can then be solved as a Fourier-Legendre
expansion if the albedo is known. For example, let us suppose that a as well as S

4For a moist, saturated atmosphere, we may take the moisture mixing ratio m to be a function
of T', and in this case the latent heat p,Lm (L being latent heat) simply modifies the heat capacity
coefficient. Question 1.11 shows how to calculate m(T).
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is an even function of ¢ (thus exhibiting north-south symmetry). It is convenient to
write the equation (1.66) in terms of I, thus

0" =D g |-

of or
ot = o€

29
where D* = D/B, C* = C/B. We solve this in the steady state by writing

I'=)" inPu(§), (1.69)

n even

} +1Q(1 —a)S(¢) - I, (1.68)

where P, is the n-th Legendre polynomial (and is an even function of £ for n even).
If we expand

1Q(1—0a)S(E) = ) anPa($), (1.70)

n even

where ( Q [
2n +1
e AL GLAGES (1.71)
0
then the coefficients ¢,, are given by

Gn

D) (1.72)

For example, if we take a to be constant and the realistic approximation § = 1 —
aPs(£), a ~ 0.48, then
aP. 2(5)}

1+6d

A better approximation uses a = ag + a2P>(§), where a = 0.68 and a; = —0.2; this
represents to some extent the higher albedo (due to ice cover) in the polar regions.
The resultant two term approximation for the temperature, T' = (ig — A+ i3 P (€))/ B,
then yields a good approximation to the observed mean surface temperature if we take
D=0.65Wm 2K

I=1Q(1-a) [1 — (1.73)

1.3.2 Carbon dioxide and global warming

If we are interested in the gradual evolution of climate over long time scales, then in
practice we can neglect the time derivative term in (1.61), and suppose that T is in
a quasi-equilibrium state. Figure 1.8 shows the rising concentration of CO; in the
atmosphere over the last two hundred years. Essentially, the secular rise is due to the
increased industrial output since the industrial revolution.

Although COs is only present in small quantities, it is an important absorber for
the long-wave emitted IR radiation. The effect of increasing its concentration is to
increase the optical density, and thus to decrease . Let us suppose then that the
change in CO, leads to a change in the greenhouse coefficient v given by

Y=%=7 (1.74)
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Figure 1.8: Rise in atmospheric concentration of CO4 since 1750. The squares indicate
measurements from Antarctic ice cores, and the triangles represent direct measure-
ments from Mauna Loa observatory in Hawaii.

7o is the pre-industrial reference state, and 7 represents the (positive) secular change
due to CO,. With 4 <« 1, we thus have the quasi-equilibrium given by (1.62), which
leads to _
AT ALY (1.75)
4o
Of course the difficulty lies in evaluating an effective dependence of ¥ on CO,
levels, and in reality, the problem is made more difficult by the non-greyness of the
atmosphere. To understand this, let us consider the long wave thermal emission
as a function of wavelength. This is shown in figure 1.9, together with black body
irradiance curves at various temperatures. The emission curve divides quite neatly
into a number of distinct wavelength intervals, in each of which the emission quite
closely follows the black body radiation corresponding to distinct temperatures. We
see a window between 10 and 13 p, where there is little absorption, and the effective
emission temperature is that at ground level. At higher wavelength, (14-16 ), there
is a CO, absorption band, and the radiation appears to emanate from the lower
stratosphere.
In order to understand how this can be, we revisit the concept of the Chapman
layer discussed above in section 1.1.8. We write the radiation intensity equation (1.7)
for a one-dimensional atmosphere in the form

I,
u%z = —kypoe #H[I, - B, (1.76)
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Figure 1.9: Vertical thermal emission from the Earth measured over the Sahara.
The horizontal axis is linear in wavenumber, hence the irregular intervals for the
wavelength in microns. The units of radiation are mW m=2 sr=! (cm~!)~!, the last
two indicating inverse steradian (the unit of solid angle) and wavenumber. The dashed
lines are the black body radiation curves at the indicated temperatures. Redrawn
from figure 12.7 of Houghton (2002).

where H is the scale height, taken as constant. For local thermodynamic equilibrium,
B,(T) is an increasing function of temperature given by (1.5). When p = 1, the
solution for upwards travelling radiation is

I, =1%exp [—Ty (1 — e’C)] + T, exp [T,,e’c] /C B,(T) exp [—C — T,,e’q ¢, (1.77)
0

where
C = Z/Ha Ty = HupOH- (178)
When 7, is small, as for the window between 10 and 13 y, then
I~ 10 (1.79)

When 7, > 1 the kernel of the integrand has an internal maximum at ( = In7,, and
by putting

(=In1, + Z, (1.80)
we have if 7, is large the approximation
Z !
I, ~exp e 7] / B,(T) exp [—Z’ - e*Z] dz'. (1.81)
—InT
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The kernel exp [—Z " — e’ZI] of the integrand is a peaked function with a maximum

at Z' = 0. It thus filters out the values of B in the vicinity of ( = In7,. If we idealise
the kernel as a delta function centred on ( = In7,, then we have

L] o0 % Bu(T) (1.82)

|§:1n7',, ’

and it is in this sense that the thermal emission picks out black body radiation at the
level corresponding to the opacity at that frequency.
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Figure 1.10: Schematic variation of the effective emission height with wavelength in
the CO4 absorption band.

We denote the effective emission altitude for a particular frequency as z,, thus
z, = Hln[k,poH] . (1.83)

Inspection of figure 1.9 then suggests that the variation of z, with frequency (or
wavelength) in the 15 COg absorption band is as indicated in figure 1.10, this
variation being due to the variation of absorption coefficient with v.

We can now infer the effect of increasing CO, density. Increasing py has the effect
of shifting the emission altitude upwards. In the stratosphere, this increases the
temperature and therefore also the emission rate. Because of this, the stratosphere
will cool under increased CO5. On the other hand, the upwards shift of emission height
at the fringes of the absorption band causes a cooling in the adiabatic troposphere
and thus decreased emission. It is this shift of the emission height which is the cause
of tropospheric heating under raised CO; levels.

Estimates of the consequential effect of increasing COs levels is rendered uncer-
tain because of various feedback effects which will occur in association. In particular,
water vapour is also a major greenhouse gas (as can be seen from figure 1.9), and in-
creased temperature causes increased evaporation and thus enhances the greenhouse
effect. Perhaps more importantly, change of cloud cover can have a strong effect on
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temperature, because of its multiple influences: short wave albedo, as well as long
wave absorption and emission (see figure 1.3). It is because of the uncertainty in
parameterising cloud formation and structure that there is so much uncertainty asso-
ciated with forecasts of global warming. Current estimates suggest that doubling CO,
leads to a global increase of surface temperature of 2—4 K. It is politically attractive
to associate the recent dry summers in England to the effects of CO,, but although
this may indeed be the cause, nevertheless the natural variability of climate on short
time scales does not allow us to make this deduction with any real justification.

1.3.3 The runaway greenhouse effect

If the blanketing effect of the greenhouse gases is the cause of the Earth’s relatively
temperate climate, what of Venus? Its surface temperature has been measured to be
in the region of 700 K, despite (see question 1.1) an effective emission temperature of
230 K. That the discrepancy is due to the greenhouse effect is not in itself surprising;
the atmosphere is mostly CO5 and deep clouds of sulphuric acid completely cover the
planet. What is less obvious is why the Venusian atmosphere should have evolved in
this way, since in other respects, Venus and Earth are quite similar planets.

A possible explanation of this can be framed in terms of the simple energy balance
model proposed above, together with a consideration of the evolution of the amount
of water vapour in the atmosphere. Initially, primitive terrestrial planets have no
atmosphere (and no oceans or land ice). The heat generated by planetary accretion
and by radioactive heat release is, however, enormous, and causes a huge amount of
volcanism. In the eruption of magma, dissolved gases including H,O and CO, are
exsolved (for example, by pressure release, in much the same way bubbles form when
a champagne bottle is opened). On the Earth, the increasing atmospheric density
causes a slow rise in the temperature, while simultaneously the increasing partial
pressure p, of water vapour brings the atmosphere closer to saturation. On the
Earth, it is supposed (see figure 2.9) that p, reaches the saturation vapour pressure
Psy When p, > 600 Pa (the triple point pressure). Clouds form of water droplets, and
the ensuing rain forms the oceans and rivers. Most of the COs is then removed from
the atmosphere to form carbonate rocks.

On Venus, on the other hand, the slightly higher received solar radiation causes
the (T, p,) path which is traced to be higher. As p, increases, so does T, and we
suppose (see figure 2.9) that saturation never occurs. The water vapour continues to
increase, leading to ever higher greenhouse temperatures.

A subsidiary question is then, what happens to the HoO on Venus? The at-
mosphere is essentially devoid of HyO. Here the idea is that UV radiation in the
upper atmosphere dissociates the hydrogen from oxygen, the hydrogen then escapes
to space, while the oxygen is used up in oxidising reactions with surface rocks.

The mechanism above is attractively simple, and can be understood using the
concept of radiation balance in a grey atmosphere. The equilibrium temperature
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Figure 1.11: A schematic representation of the evolution of temperatures on Venus
and Earth. As the atmospheric water vapour increases on Earth, condensation occurs,
leading to clouds, rainfall and ocean formation. On Venus this does not occur, and
the water vapour is ultimately lost through dissociation, hydrogen escape and surface
oxidation reactions.

from (1.62) is »
T = [%} , (1.84)

and we can expect both the albedo a and greyness v to depend on the density of
water vapour p,. For simplicity, take a = 0 and for v we use a formula suggested by
(1.60) in the optically dense limit (7, > 1):

Taking 75 = kp,d, we then have

Ord 1
and using the perfect gas law (1.56) in the form p, = p,RT /M, gives

QrdM, 1'°

and we write this in the form

de 0 11/5

T = {%47;%} ¢, (1.88)
o
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where
£ = +In(py/p%,), (1.89)

and p? is a reference value of the saturation vapour pressure, which we will take to
be the triple point pressure, 6 mbar. On the other hand, the saturation temperature
is determined by solving the Clausius-Clapeyron equation (1.54). The exact solution

of this is
0 T,
Dsv = Pgy €Xp |1 — == 5|, (1.90)
T'sat

where Ty, is the saturation temperature, a = M, L/RTY,, and for Ty, — T, < T2,
this is

Tear = T [1 + V€], (1.91)

where O
===t 1.92
YT YT ML (1.92)

with approximate value v ~ 1/4. T2

wt 1s the saturation temperature at the triple

point, T2, ~ 273 K. If we write Tiay = To.0sar, T = T2,0, then the planetary and
saturation temperature curves are given respectively by
0 = re,
Ot = 1+ VE, (1.93)

where

r

1 M 0 11/5
[Q“d ”p”} . (1.94)

T T0 | 40R
The definition of r here should not be taken too seriously, as we implicitly assumed
that absorption was entirely due to water vapour. However, the intersection of the

curves in (1.93) makes the point that the runaway effect can be expected if r is large
enough, specifically if

1 —
r>r. = vexp < ”) ~ 5 (1.95)
14

for v = 1/4, and this corresponds to a sufficiently large value of (). Hence, the
distinction between Earth and Venus, for which the value of @) is twice that of Earth.
The situation is illustrated in figure 1.11.

1.4 Ice ages

Most people are probably aware that we live in glacial times. During the last two mil-
lion years, a series of ice ages has occurred, during which large ice sheets have grown,
principally on the northern hemisphere land masses. The Laurentide ice sheet grows
to cover North America down to the latitude of New York, while the Fennoscandian
ice sheet grows in Scandinavia, reaching into the lowlands of Germany, and possibly
connecting across the north sea to a British ice sheet which covers much of Britain
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Figure 1.12: A proxy measurement from deuterium isotope data of the climate of
the last 740,000 years. The measurements come from an Antarctic ice core (see the
EPICA team members’ paper, Agustin et al. 2004), and were provided by Eric Wolff.
Each data point is the measurement of deuterium isotope ratios in a column of ice
representing 3,000 years accumulation (i.e., the data represents 3,000 year averages).
Time moves from right to left along the abscissa, and the deuterium isotope ratio is
a proxy measurement of prevailing climatic temperature.

and Ireland down to Kerry in the west and Norfolk in the east. The global ice volume
which grows in these ice ages is sufficient to lower sea level by some 120 metres, thus
exposing vast areas of continental shelf.

These Pleistocene ice ages occur with some regularity, with a period of 100,000
years (although prior to the last half million years, a periodicity of 40,000 years
appears more appropriate). The great ice sheets grow slowly over some 90,000 years,
and there is then a fairly sudden deglaciation. This is illustrated in figure 1.12, which
shows a proxy measurement of temperature over the last 740,000 years, obtained from
an Antarctic ice core. Five sharp rises in temperature can be seen separating the last
four ice ages, which show a characteristic slow decline in temperature. As we shall
see, the mechanism which causes this sequence of pseudo-periodic oscillations in the
climate is not very well understood.

The present glacial climate is thought to have been a result of a gradual cooling
initiated by the collision of India with Asia starting some 40 million years ago, and
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causing the rise of the Himalayas. Although these mountains affect weather systems
directly, their effect on climate may be due to the increasing precipitation and thus
weathering which they induce, which leads to a removal of carbon from the atmosphere
and a consequent cooling of the atmosphere. It is certainly the case that COy has
faithfully followed climatic temperatures through the recent ice ages, and it is difficult
not to suppose that it has been a major causative factor in their explanation.

If we go further back in time, we encounter much warmer climates. The time of
the dinosaurs, extending back to the Triassic, some 200 million years ago, saw a very
warm climate and some very large creatures. There were no ice sheets: the Antarctic
ice sheet only began to grow some tens of millions of years ago after the India—Asia
collision.

Further back, however, we find evidence of major glaciated periods of Earth his-
tory, in the Carboniferous period some 300 million years ago. The glacial deposits
which indicate this are located in India, South Africa, Australia and South America.
But at the time of the glaciation, these continental masses were all sutured together
in the great palaeo-continent of Gondwanaland, and they resided at the south pole.
The break up of Gondwanaland to form the continents as we now see them only be-
gan some 200 million years ago, and is more or less coincident with the global rise in
temperature and the flourishing of the dinosauria.

Even earlier in time, we have evidence of further massive glaciation on the super-
continent of Rhodinia during Proterozoic times, some 600 million years ago. The fact
that these glaciations occur at then equatorial positions has led to the challenging
concept of the ‘snowball Earth’, the idea that the whole planet was glaciated. Like
most outrageous ideas, this is both enticing and controversial; we shall say more about
it in section 1.5 below.

1.4.1 Ice-albedo feedback

The simplest type of model to explain why ice ages may occur in a sequential fashion
is the energy balance model of section 1.3. On its own, it predicts a stable climatic
response to solar radiative input, but when the feedback effect of ice is included, this
alters dramatically. Although simple in concept, the energy balance model provides
the platform for more recent models of ‘intermediate complexity’.

The mechanism of the ice-albedo feedback is this. In winter, Antarctica is sur-
rounded by sea ice, and the Arctic ocean is permanently covered by sea ice. Land ice
is also present on the Earth near the poles, or in mountainous regions. The presence
of ice has a dramatic effect on the surface albedo. While the reflectivity of oceans or
forest is typically 0.1, that of sea ice or snow is in the range 0.6—0.8. From figure 1.3,
we see that of 50% of incoming solar radiation received at the surface, 4% is reflected
from the surface: a surface albedo of 0.08. However, if the planet were covered in
ice, the surface albedo might be 0.7, so that 35% would be reflected. Overall, the
planetary albedo would be doubled (from 0.3 to 0.6) from this effect alone.

It is thus of interest to examine the effect on the energy balance equation of
including this effect of ice and thus temperature on albedo, since the occurrence of
precipitation as snow or rain is essentially related to the atmospheric temperature.
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Figure 1.13: A representation of the possible variation of equilibrium surface albedo
eq(T") due to variations in ice cover due to climatic temperature. The function plotted
is Geq(T') given by (1.98), with a; = 0.58, ap = 0.47, T* = 283 K, AT = 24 K,which
tends to 0.58 for small 7', and equals 0.3 at about 7" = 288 K (the point marked +).

We write (1.61) in the form .
¢I =R, — R, (1.96)

where ¢ = p,c,d is the specific heat capacity of the atmosphere, and
Ri=11-a)Q, R,=oyT, (1.97)

are respectively the incoming short wave radiation and the emitted IR radiation.

The effect of decreasing temperature on the albedo is to increase the extent of land
and sea ice, so that a will increase. It is convenient to define a family of equilibrium
albedo functions

T-T*
aeq(T) = a1 — L1as [1 + tanh ( AT )] , (1.98)

an example of which is shown in figure 1.13. The epithet ‘equilibrium’ refers to the
assumption that the land ice cover is in dynamical equilibrium with the ground surface
temperature: more on this below. The effect of the albedo variation on the emitted
radiation is shown in figure 1.14: R, is an increasing function of 7', but the sigmoidal
nature of R; can lead, for a range of () and suitable choices of the albedo function,
to the existence of multiple steady states. If this is the case, then the equilibrium
response diagram for steady states 7' in terms of () is as shown in figure 1.15.

The parameters used in figure 1.14 are chosen to illustrate the multiple intersection
of R; with R,, but do not correspond to modern climate (for which 7' = 288 K and
R; = R, = 235 W m~2). The reason is that with more appropriate parameters, such
as those used in figure 1.15, the two curves become very close, and the range of ()
over which multiplicity occurs is very small. Insofar as these paramerisations apply
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Figure 1.14: Variation of R; and R, with temperature 7. Parameters used are a; =
0.6, ag = 0.45, v = 0.6, T* = 280, AT = 15.

to the Earth, it does suggest that the current climate is close to a switching point, as
seen in figure 1.15, corroborating this explanation for ice age formation.

It is easy to see from figure 1.14 that the upper and lower branches in figure 1.15
are stable, while the middle branch is unstable; this follows because the stability of
the equilibria of (1.94) is determined by the slope of R; — R, there: if R, < R.,
then the equilbrium is stable, and vice versa. Thus if ) varies slowly backwards
and forwards beyond ()_ and @), , then the temperature will vary up the lower and
down the upper branch, with sudden jumps at @), and @)_. This oscillatory response
exhibits hysterests, it is irreversible, and it forms the basis for the Milankovitch theory
of the ice ages, since the lower branch is associated with widespread glaciation.

1.4.2 The Milankovitch theory

The solar radiation received seasonally by the Earth is not in fact constant. Due to
variations in the Earth’s orbit, the value of ) varies by about & 5% either side of its
mean. Nor are these variations periodic. Because the solar system has planets (and
moons) other than the Earth, and because also the planets do not act exactly as point
masses, the orbit of the Earth is not precisely a Keplerian ellipse. The Earth’s axis of
rotation precesses, its angle of tilt (from the plane of the ecliptic) oscillates, and the
eccentricity of the orbit itself oscillates. All of these astronomical features cause the
value of @) to oscillate quasi-periodically, when considered for a particular latitude and
a particular season. The reason for focussing on a particular season is because of the
seasonal imbalance in snowfall, whence it might be supposed that, for example, it is
the summer insolation received at (say) 65°N which is important, since this is likely to
control the inception of northern latitude ice sheets via year round retention of snow
cover and the consequent operation of the ice-albedo feedback. The importance of a
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Figure 1.15: Multivalued response curve for 7' in terms of (). Parameters used are
a; = 0.58, a; = 0.47, v = 0.6175, T* = 283, AT = 24. Also shown is the point (+)
corresponding to current climate (Q = 1370 W m—2, T' = 288 K).

particular latitude is due to the fact that the seasonal insolation curves are different
at different latitudes, as indeed found by Milankovitch — see figure 1.16. The major
periodicities in the signals consist of one of 41,000 years due to oscillations in the
tilt axis, and periods of 23,000 and 19,000 years in the precessional variation of the
rotation axis. The third component, eccentricity, causes a variation over a period of
100,000 years, though its amplitude is much smaller.

The test of the Milankovitch theory, that variations in climate (and thus ice ages)
are associated with the variation in @), can then be made by computing the Fourier
power spectrum of a record of past climatic temperature. Oxygen isotope ratios in
deep-sea sediment cores (or in ice cores) provide a proxy measurement of temperature,
and figure 1.12 showed just such a record. When a spectral analysis of records of
this type is made, it is indeed found that the principal frequencies are (in order of
decreasing amplitude) 100 ka (100,000 years), 41, 23 and 19 ka. This seems to serve
as dramatic confirmation of the Milankovitch theory. In our simple energy balance
model, the concept is enunciated by the hysteretic oscillations exhibited by the system
as () varies.

1.4.3 Nonlinear oscillations

There is currently a consensus that the Milankovitch solar variation indeed acts as
pacemaker for the Quaternary ice ages, but it is as well to point out that there is
an essential problem with the Milankovitch theory, even if the basis of the concept is
valid. The spectral insolation frequencies do match those of the proxy climate record,
with one essential discrepancy: the largest climatic signal is the 100 ka period. Ice
ages essentially last 90 ka, with an interval of 10 ka between (and since the last ice
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Figure 1.16: Milankovitch radiation curves for 15° N, 45° N, and 75° N. The lower
two curves indicate the ~ 22,000 year precession cycle, while the upper one shows
more clearly the 41,000 year tilt cycle.

age terminated about 10 ka ago, as the Scottish ice sheet withdrew from the lochs in
the Highlands, and the North American Laurentide ice sheet shrank from the Great
Lakes, we might be on the verge of starting the next). But the 100 ka astronomical
signal is very weak, and it is unrealistic to imagine that the forcing can directly drive
the strong response which is observed. What may happen is that the weak 100 ka
forcing resonates with the climatic system, suggesting that the climate is essentially
a (nonlinear) oscillator, with a natural period close to 100 ka, which is tuned by the
astronomical forcing. A mathematical paradigm would be the forced Van der Pol
oscillator

i+e(z® — 1) +w’z = f(t), (1.99)

where f(t) would represent the astronomical forcing. If ¢ is small, the oscillator has a
natural frequency close to 27/w, and if forced by a frequency close to this, tuning can
occur. If the oscillator is non-linear, other exotic effects can occur: subharmonics,
chaos; no doubt these effects are present in the forced climate system too.

The simplest kind of model which can behave in an oscillatory manner is the
energy balance model (1.96) subjected to an oscillating radiation input which can
drive the climate back and forth between the cold and warm branches, presumably
representing the glacial and interglacial periods. Two questions then arise; where does
the 100,000 year time scale come from, and why is the climatic evolution through an
ice age (slow development, rapid termination) so nonlinear?

There are three principal components of the climate system which change over
very different time scales. These are the atmosphere, the oceans and the ice sheets.
The time scale of response of ice sheets is the longest of these, and is measured by
[/u, where [ is a horizontal length scale and w is a horizontal velocity scale. Estimates
of I ~ 1000 km and u ~ 100 m y ! suggest a time scale of 10* y, which is within
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range of the value we seek. Since ice sheet extent is directly associated with albedo.
it suggests that a first realistic modification of the energy balance model is to allow
the ice sheets, and therefore also the albedo, to respond to a changing temperature
over the slow ice sheet time scale ;. A simple model to do this is to write

I = 1Q(1-a)—oT?,
tia = aeq(T) — a, (1.100)
and aeq(7T') is the equilibrium albedo represented in figure 1.13. Since the thermal

response time scale is so rapid (months), we may take the temperature to be the
equilibrium temperature,

T=T(a,Q) = {Q(iT;a)} 1/4. (1.101)
The energy balance model thus reduces to the first order albedo evolution equation
tia = I(a,Q) — a, (1.102)

where
I(a,Q) = aeq[T'(a, Q)]. (1.103)

As () varies backwards and forwards about the critical switching values in figure
1.15, the ice extent (as indicated by a) changes on the slow time scale ¢;, aiming to
follow the hysteretically switching equlibria. Oscillatory inputs ¢) do indeed cause
oscillations; if ¢; is sufficiently small, these are large scale, going from warm branch
to cold branch and back, whereas at larger t;, two different oscillatory climates are
possible, a cold one and a warm one (see question 1.14). None of these solutions
bears much resemblance to real Quaternary ice ages, for which a more sophisticated
physical model is necessary.

1.4.4 Heinrich events

The study of climate is going through some exciting times. The pulse of the ice
ages can be seen in figure 1.12, but the signal appears noisy, with numerous irregular
jumps. Twenty or thirty years ago, one might have been happy to ascribe these to
the influence of different spectral components of the Milankovitch radiation curves
on a nonlinear climatic oscillator, together with a vague reference to ‘noisy’ data.
Increasingly in such circumstances, however, one can adopt a different view: what
you see is what you get. In other words, sharp fluctuations in apparently noisy data
are actually signals of real events. Put another way, noise simply refers to the parts
of the signal one does not understand.

It has become clear that there are significant climate components which cause
short term variations, and that these events are written in the data which is exhumed
from ocean sediment cores and ice cores. Perhaps the most dramatic of these are
Heinrich events. Sediment cores retrieved from the ocean floor of the North Atlantic
reveal, among the common ocean sediments and muds, a series of layers (seven in all

36



have been identified) in which there is a high proportion of lithic fragments. These
fragments represent ice rafted debris, and are composed of carbonate mudstones,
whose origin has been identified as Hudson Bay. The spacing between the layers is
such that the periods between the Heinrich events is 5,000-10,000 years.

What the Heinrich events are telling us is that every 10,000 years or so (more or
less periodically) during the last ice age, there were episodes of dramatically increased
iceberg production, and that the ice in these icebergs originated from the Hudson Bay
underlying the central part of the Laurentide ice sheet. Ice from this region drained
through an ice stream some 200 km wide which flowed along the Hudson Strait and
into the Labrador sea west of Greenland.

The generally accepted cause of these events is also the most obvious, but equally
the most exciting. The time scale of 10,000 years is that associated with the growth
of ice sheets (for example, by accumulation of 0.2 m y~! and depth of 2000 m), and
so the suggestion is that Heinrich events occur through a periodic surging of the ice
in the Hudson Strait, which then draws down the Hudson Bay ice dome. This would
sound like a capricious explanation, were it not for the fact that many glaciers are
known to surge in a similar fashion; we shall discuss the mechanism for surging in
chapter 4.

Another feature of Heinrich events is that they appear to be followed by sudden
dramatic warmings of the Earth’s climate, which occur several hundred years after
the Heinrich event. Dating of these is difficult, because dating of ice cores and also
of sediment cores relies on an assumption of accumulation or sedimentation rates, so
precise association of timings in different such cores is risky.

How would Heinrich events affect climate? There are two obvious ways. A sudden
change in an ice sheet elevation might be expected to alter storm tracks and precipi-
tation patterns. Perhaps more importantly, the blanketing of the North Atlantic with
icebergs is likely to affect oceanic circulation. Just like the atmosphere, the ocean
circulation is driven by horizontal buoyancy induced by the difference between equa-
torial and polar heating rates. This large scale flow is called the global thermohaline
circulation, and its presence in the North Atlantic is the cause of the anomalously
temperate climate of Northern Europe, because of the poleward energy flux. If this
circulation is disrupted, there is liable to be an immediate effect on climate.

If the North Atlantic is covered by ice, one immediate effect is a surface cooling,
because of the increased albedo. This is liable to cause an increase in the thermohaline
circulation, but would not cause atmospheric warming until the sea ice melted. On
the other hand, the melting itself releases fresh water, which is buoyant in a saline
ocean, suggesting a shutdown of ocean circulation. As we discuss further below, this
can lead, following a delay, to a massive restart of ocean circulation and thus sudden
warming.

1.4.5 Dansgaard—Oeschger events

There are other rapid changes in the climate which are seen during the last ice age.
Figure 1.17 shows a segment of oxygen isotope measurements (a proxy for surface
temperature) from the GRIP ice core on Greenland. Time marches from right to
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left on this diagram. There are numerous sudden rises in temperature that can be
seen, followed by a more gentle sinking of temperature. These sharp rises are called
Dansgaard-Oeschger events. Between 30,000 and 45,000 years B. P., for example there
are seven of these events, thus, like Heinrich events, they occur at regular intervals,
with a typical repetition period being thought to be about 1,500 years.

520
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Figure 1.17: Oxygen isotope ratio (§'80) measurements from the GRIP ice core on
Greenland, as a function of age in ka (1 ka = 1000 years). This is a proxy for surface
temperature (with four units corresponding to about 10 K on the vertical axis). The
data represents averages from segments of 55 cm length, and the age scale is deter-
mined from a model of ice burial rate. Near the surface, the separate measurements
are yearly, but the compression of ice with burial causes the ice segments to encom-
pass longer and longer time periods. At the age of 90,000 years ago (at a depth of
some 2685 m), each segment is a time average of some 120 years. Thus the data is
increasingly sparsely resolved further into the past.

Let us examine one of these events in greater detail, that of the D-O event between
44,000 and 45,000 years B. P. In the GRIP core, this ice lies between 2,316 and 2,330
metres depth. A higher resolution data set is that of Sigfus Johnsen, and is shown in
figure 1.18. This shows that the climatic temperature changes abruptly, over a time
scale of about a century. Other such inspections show that the transitions can be
even shorter.

What is the cause of these warming events? Why are they so rapid, and why do
they have a regular period of some 1,500 years? The idea here is that the climate in
the northern hemisphere is essentially controlled by the oceanic conveyor circulation,
and so the change in climate occurs because of a sudden disruption to this. Model
studies have shown that an injection of a massive pulse of fresh water into the North
Atlantic can cause just such a disruption.

The mechanism is, however, counter-intuitive. A warm climate is associated with
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Figure 1.18: GRIP core data between 2,316 m and 2,330 m. The sharp jump near
2,324 m occurs over a range of about 1.3 metres, corresponding to a time interval of
some 90 years.

a vigorous circulation, and a cold one with the circulation off, but a freshwater pulse
has the initial effect, being buoyant, of switching the (relatively weak) circulation
off. In an already cool climate, this has no dramatic effect. However, the effect is
temporary, and a situation with no circulation is unstable. Thus when convection
begins again, it does so dramatically, with deep water formation occurring further
north (as it does in interglacial times), causing a sudden shift to a warmer climate.
The same model studies have shown that even larger meltwater pulses, such as would
be produced by melting of massive iceberg production, can produce the warming
following Heinrich events.

If freshwater pulses are the cause of the sudden climate shifts, what is their origin?
For Heinrich events, the ice rafted debris gives the clue; for Dansgaard—Oeschger
events, there is apparently no such clue. However, it is pertinent to note that these
events are associated with the presence of large ice sheets. Since we seek an origin of
melt water, the most obvious (and really, the only) candidate for the source of the
pulses is that they come from meltwater from the ice, and one way in which meltwater
drainage is known to occur episodically is in the large subglacial floods known as
jokulhlaups. As with surges, these are well documented from beneath glaciers, but
not (yet) from beneath modern day ice sheets. Nevertheless, as a hypothesis it seems
sensible to suggest that Dansgaard-Oeschger events arise as a consequence of semi-
regular Laurentide jokulhlaups which occur with a rough periodicity. It remains to be
seen whether such floods are dynamically possible, and whether they could produce
the necessary fresh water at the required frequency to do the job.
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1.4.6 The 8,200 year cooling event

One climatic event which is thought to have been caused by a sub-glacial flood is a
sudden cooling event dated to 8,200 years B. P. This is shown in context in figure 1.19.
which also shows the termination of the ice age after the Younger Dryas readvance of
the ice sheets between 13,000 and 11,600 years B. P. Two Heinrich events precede the
two warmings at about 15,000 and 12,000 years B.P. Following the Younger Dryas,
there is a gradual return to an interglacial climate by 9,500 years B. P., and the onset
of the current (Holocene) period. A cursory glance might suggest that the 8,200 year
dip is just a noisy outlier, but this is not the case. It represents a genuine climatic
cooling of some 4 °K.
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Figure 1.19: Oxygen isotope data from the GRIP core at the transition to the
Holocene interglacial.

Figure 1.19 shows a high resolution record of this event. Inspection of the coarse
(55 cm samples) GRIP data shows that the 8,200 year event is actually (on the age
scale used) at 8,126 years B.P., and occurs in a single 55 cm segment at a depth of
1334 metres; blink, and you miss it. At this depth, six metres of ice (1,331-1,337) is
considered to represent 65 years of accumulation. Plotting the data using Johnsen’s
higher resolution data set over a more restricted range, we can see (figure 1.20) various
features.

One is that the event occupies three data points from an ice depth between 1,334
and 1,335 metres depth. These three samples are 27.5 cm long, as are the two im-
mediately above and below. This suggests that the ‘duration’ of the event is between
82 and 137 cm, which corresponds to a period of between 9 and 15 years. This is
incredibly fast.

The other thing to notice from figure 1.20 is that there are a good number of
other large spikes and oscillations. Since, more or less, each data point represents a
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Figure 1.20: High resolution data set from 20 metres of ice near the 8,200 year event.

three year average, these are not seasonal fluctuations. Do they represent real events,
or simply the natural fluctuation of the climate from year to year? If one looks at
a slightly larger slice of the time series, from 1305 m to 1365 m, it is apparent (see
figure 1.21) that these short term fluctuations sit on top of a broader cooling trend
from about 1340 to 1315 m, with rapid decrease in the first 5 m (~ 54 years), and
slower recovery over the following 20 m (~ 217 years). It is perhaps easier to imagine
that this slower average trend represents the underlying event.
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Figure 1.21: The cooling trend of the 8,200 year event.

The explanation which is currently thought to apply to this event is that it is
caused by a sub-glacial jokulhlaup which drains the massive proglacial Lake Agassiz
into the Hudson Strait, whence it pours into the Labrador Sea and the North Atlantic.

41



As the remnant of the Laurentide ice sheet dwindles, it builds up a massive proglacial
lake on its southern margin. The topography is such that this lake is prevented from
outflow to the south, and at some point it drains catastrophically, either over or more
probably under the ice sheet to the north. The resulting fresh water eflux to the
North Atlantic causes the cooling event.

One might wonder, if glacial meltwater pulses produce a warming, why would
an interglacial one produce a cooling? The putative answer to this lies in our idea
of what a meltwater pulse will actually do. In an interglacial climate, the ocean
circulation is strong, and meltwater dims it temporarily: a cooling. In a glacial
climate, the circulation is weaker, and deep water formation occurs further south,
say near Iceland, than it does currently. Then a meltwater pulse may shut down
the circulation entirely, which would indeed cause further cooling, but the resultant
overshoot when circulation resumes causes the warming. Since Dansgaard—Oeschger
events occur at the end of cooling cycles, the initial cooling is swamped by the trend.
It is interesting to note that the D-O warming events in figure 1.19 are initiated
at 14,500 B.P. and 11,600 B.P., the interval between these being 2,900 years. The
interval between the Younger Dryas and the 8,200 event is about 3,500 years. If the
D-O events are due to subglacial floods, then possibly the 8,200 event is simply the
last of these. It is then tempting to look further on for similar, smaller events. There
is one at 5,930 B. P., for example, and another at 5,770 B. P.; these are about another
2,400 years further on. It is a natural consequence of the hypothesis that jokulhlaups
occurred from below the Laurentide ice sheet to suppose that they will occur also
from beneath Greenland and Antarctica, and that this may continue to the present
day. It has been suggested, for instance, that the cool period in Europe between 1550
A.D. and 1900 was due to a similar upset of the oceanic circulation.

1.4.7 North Atlantic salt oscillator

Deeply embroiled in this whole saga of Quaternary climate and the ice ages is the
role of the North Atlantic ocean circulation. For the descriptions we have given
of Heinrich events and Dansgaard-Oeschger events to work, the ocean needs to be
able to circulate in different ways. That this is indeed the case has been found in a
number of model studies, and the resultant flip-flop circulation is sometimes known
as the ‘bipolar seesaw’. In its original form, the idea is due to Henry Stommel, and
can be described with a simple ‘box’ model, as illustrated in figure 1.22.

In this model, we parameterise the thermohaline circulation in the North Atlantic
by considering it to be partitioned between two compartments, an equatorial and a
polar one. We label the temperature 7', salinity (mass fraction of salt) S, density p
and volume V of each box by a suffix ‘¢’ or ‘p’, and we write conservation laws of
mass, energy, solute and state for each box. Transports in and out of each box are
considered to be a freshwater flux F}, to the polar cell, an evaporative flux F, from
the equatorial cell, and a convective flux ¢ due to buoyancy difference from equatorial
to polar cell. (The reverse flux is then ¢ + F), in order to allow conservation of the
sizes of both cells.)
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Figure 1.22: Stommel’s box model of the North Atlantic circulation.

Suitable equations to describe the convective flow are then
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poll — (T, = To) + (S, — So)],

B (pe — py) (1.104)

The terms in these equations are fairly self-explanatory. o and [ are coefficients
of thermal and saline expansion, pg is the freshwater density, A. and A, are the
equatorial amd polar ocean surface areas, and for simplicity we take A, = A, = A.
The heating terms H represent the heat flux to the deep ocean from the surface waters.
The sea surface temperature is determined by a radiative balance, which determines
equatorial and polar surface temperatures 7P and Tg, say. We then suppose that heat
transfer to the deep ocean can be parameterised by a suitable heat transfer coefficient
hr, thus we put

H.=hp(T)-T.), H,=he(T)—T,). (1.105)
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If we add the two energy equations, we have

4 0ecVoTo + pocVo, 1) = hp A(T? + T — T, — T5,). 1.106
dt p~"pTp e P p

We use the facts that p. , ~ po and we will suppose that V, and V,, both approximately
constant, are also approximately equal, V., ~ V;. It then follows from (1.106) that,
after an initial transient,

T.+T,~ T+ T, (1.107)

and we suppose this generally to be the case. We define Tj by
peVele + ppVpIp = 2poVoTh, (1.108)

where
To=3 (TP +10), (1.109)

and we then define the temperature excess T via
T.=To+T, T,=T,—-T. (1.110)

If we now make the assumptions that p. ~ pg, V. & V} in (1.104);, then we have the
approximate equation for 7"

pocVoT = 1 [hr A (T2 — T?2) + pocF, (TS + T0)] — (hrA + 2poclg)T.  (1.111)
In a similar way, we have
PeVeSe + ppVpSp = 2poVoSo, (1.112)
where S is constant, and we define
Se=580+S5, Sp=5-5. (1.113)
With the same Boussinesq type assumption, that p. =~ py and V. ~ Vj, we obtain
VoS = F,Sy — (F, + 2|q|)S. (1.114)

The equations (1.111) and (1.114) are essentially Stommel’s box model. Their validity
relies on the use of the other equations to show that it is indeed realistic to take p
and V as constant, though these assumptions appear fairly reasonable ones. Note
that with the definitions of the variables, we have

q = 2kpo(—aT + S). (1.115)

To parameterise the heat transfer coefficient hr, we use the ideas of Reynolds
averaging for turbulent flow (see appendix B). This suggests choosing
_ &rPoCqo

hr = =, (1.116)
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Parameter | Value
£0 10° kg m 3
c 42 x10® J kg ' K1
Vo 1.6 x 10'7 m?
A 0.4 x 104 m?
Er 0.01
o 300 K
Tg 270 K
To 285 K
F, 105 m3 s7!
% 1.6 x 10" m3 57!
o' 1.8 x 1074 K!
I} 0.8
So 0.035

Table 1.1: Typical parameter values.

where the number e is typically chosen to be in the range 0.001—0.01, and ¢q is a
scale for q.
We non-dimensionalise the box model by writing

T=AT6H, S=ASs, t~ty, q~ qo, (1.117)
where we choose
F, F,S, Vi
AT = |er(T=T)) + 2 (T +T)) |, AS==, to=5 " (L118)
do 0 do

Using the values in table 1.1, we find AT ~ 1 K, AS ~ 1.1 x 1074, t; ~ 150 y. We
use a value of gy as observed, rather than k, which we would in any case choose in
order that q was the right size, some 16 Sv (Sverdrups: 1 Sv = 106 m3 s71).

The observed surface temperature variation is of order 30 K, and the observed
surface salinity variation is of order 30 x 10~*. However, these values represent the
concentrative effect of surface evaporation and heating; at depth (as is more relevant)
the variations are much smaller, of order 2 K for temperature and 4 x 10~* for
salinity at 1000 m depth. The time scale is comparable to the time scales over which
Dansgaard—Oeschger events occur. These features suggest that this simple model has
the ring of truth.

We can write the model in dimensionless form as

1— (8 + |Q|)8a
¢ = k(—0+Rs), (1.119)

3
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where the parameters are given by

F, 2AT

€=5, P=mo_100
dp Te - Tp
aAT 2kpoa AT

R=——, k=—770—. 1.120
5AS @ (1-120)

Typical values of these are, from table 1.1,
e~ 0.003, pu~0.07, R~2, (1.121)

and we can assume without loss of generality that x = 1, which fixes the value of g
(given k). Both ¢ and p are small, and we will take advantage of this below.

It is straightforward to analyse (1.119) in the phase plane. Figure 1.23 shows the
steady states of ¢ as a function of R when pu = 0.07, ¢ = 0.003. Neglecting ¢ and
taking p to be small, we deduce that the steady states are given by

g~ (R-1Y2, R>1,

g~—-(1-R)"Y? R<I1, (1.122)
if g=0(1), and
uR
~+1— R<1 1.123
I "R T (1.123)

if ¢ = O(p). As we might expect, the upper and lower branches are stable, and
the middle one is unstable. The upper branch corresponds to present climate, with
a northwards circulation at the surface. The stable lower branch corresponds to a
reversed haline circulation (saline buoyancy dominates thermal buoyancy because
R <1).

Stommel’s box model is not an oscillator as such, but it does point out the possibil-
ity of multiple convective states of the North Atlantic, and this feature has been found
to be robust in other models. What appears to distinguish more realistic models from
the Stommel box model is that they allow North Atlantic deep water formation to
occur at different latitudes. Thus rather than simply switching from a northerly flow
to a southerly one, adjustments can occur between strong northerly flows with deep
water formation in the Norwegian sea, and weaker flows with deep water formation
further south. It seems that these switches are instrumental in causing the rapid
climatic changes during ice ages.

1.5 Snowball Earth

The story of climate on the Earth becomes perhaps more fascinating if we shift our
gaze from the relatively recent geologic past to that of more ancient times. There is
evidence of glaciation on Earth throughout geologic time, and on all continents. Since
the continents move, through the process of plate tectonics, on time scales of hundreds
of millions of years, and since their positions and configuration are instrumental in

46



R

Figure 1.23: Steady states of (1.122) as a function of R.

determining ocean circulations and carbon budget (as described below), it seems that
plate tectonics is implicated in the long term control of climate.

Recently, one of these periods of glaciation has been at the centre of a scientific con-
troversy concerning what has been picturesquely termed the ‘snowball Earth’. In the
Neoproterozoic era, some 600 to 500 million years ago, there was a sequence of glacial
episodes. At that time, the Earth’s land masses were assembled into a superconti-
nent called Rodinia which broke up in a similar way to that in which Gondwanaland
fragmented some 200 million years ago. The glaciation of Rodinia would not in itself
be surprising, except for the fact that it seems that the supercontinent was located
near the equator. It is not impossible for glaciers to exist in equatorial regions at
high altitudes (there is an ice cap today on Mount Kilimanjaro in Tanzania), but the
suggestion for the Neoproterozoic is that there were widespread ice sheets, and that
in fact the land masses were covered with ice. If we suppose also that the oceans were
largely ice covered, we see how the concept of a snowball Earth arises.

Although the concept of an ice-covered Earth is entirely consistent with a simple
energy balance model, it is less easy to explain in detail. At that period, the Sun
was 6% fainter than today. Model simulations appear able to produce equatorial
glaciation providing there is very little CO4 in the atmosphere, but it is not obvious
how to produce such low levels. Nor is it easy to see how to terminate a snowball
glaciation.

An interesting idea to explain this latter conundrum is the widespread occurrence
of cap carbonate rocks overlying the glacigenic tillites formed from the subglacial basal
sediments. The idea is that with widespread glaciation and very low temperatures,
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there would be no water vapour in the atmosphere. Subglacial volcanic eruptions
would continue to produce CO, however, and with no clouds or water vapour to
dissolve it (and rain it out), it would simply build up in the atmosphere. Eventu-
ally, the consequent greenhouse effect would cause a rise in temperature, followed by
massive deglaciation, moistening of the atmosphere, and thus widespread acid rain.
The resulting weathering processes produce the cap carbonate rocks which are seen
overlying the glacial tillites.

If this end part of the story is enticing, it is not easy to initiate an equatorial
glaciation. One possible way is to allow increased weathering of an equatorial super-
continent (because of tropical climate) which causes reduction of atmospheric COj;
this then causes the cooling which initiates the glaciation. Once under way, the
ice-albedo feedback effect leads to the snowball. Evidently, the whole account relies
strongly on the interaction of the carbon cycle with climate. This idea is attractive,
because it is widely thought that the onset of the current ice age climate originated
with the collision of India and Asia some forty million years ago. The resulting (and
continuing) uplift of the Himalayas resulted in massively increased weathering rates,
and therefore reduction of atmospheric CO, and consequent planetary cooling. It is
thought that the growth of the Antarctic Ice Sheet some 15 million years ago is a
consequence of this cooling.

1.5.1 The carbon cycle

Just as living organisms have a variety of cycles (sleep-wake cycle, menstrual cycle,
cell renewal and so on), so the Earth has a number of cycles. Water, rock, topography
all go through cycles, which we will describe later in this book. There is also a carbon
cycle, which we now describe, which is central to plant and animal life, and is also
central to the long term control of the Earth’s temperature. We have only to look at
what has happened on Mars and Venus to see how delicate the control of climate is.

Carbon dioxide is produced as a by-product of volcanism. When mantle rocks
melt, some COs is dissolved in the melt, and depressurisation of the ascending magma
causes exsolution. This eruptive production adds about 3 x 10! kg y~! to the atmo-
sphere. On the Earth, water in the atmosphere dissolves the CO,, forming a weak
carbonic acid, and thus when rain falls, it slowly dissolves the silicate rocks of the
continental crust. This process is called weathering. One typical reaction describing
this dissolution is

CaSiO3 + 2CO, + H,0 — Ca’* 4+ 2HCO3 + SiO, : (1.124)

water dissolves calcium silicate (wollastonite) in the presence of carbon dioxide to form
calcium ions, bicarbonate ions and silica. A similar reaction produces magnesium ions.

The ionic species thus produced run off in streams and rivers to the oceans, where
the further reaction

Ca?t 4+ 2HCO; — CaCOj3 + CO, + H,0 (1.125)

creates carbonate sediments. These sink to the ocean floor where they are eventually
subducted back into the Earth’s mantle. Overall, the pair of reactions (1.124) and
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(1.125) can be summed to represent
CaSiO3 + COy —+ CaCOg3 + SiOs. (1.126)

A very simple model to describe the evolution of the atmospheric COy concentra-
tion is then
mco2 — _ALW + ’Ucoz, (1.127)

where mg, is the mass of CO; in the atmosphere, Ay is the available land surface
for weathering, W is the rate of weathering, and vqg, is the eruptive production rate
of CO,. It is common practice in discussing CO, levels to measure the amount of
COg as a pressure, i.e., in bars. The conversion is done by defining

m

Poo, = —22%, (1.128)
where ¢ is gravity and A is total planetary surface area. The current atmospheric
carbon mass is 750 Gt (gigatonnes, 10'? kg). Multiplying by the ratio 44/12 of the
molecular weights of carbon dioxide and carbon yields the current value of mgg, ~
2.75 x 10'® kg. Using g = 9.81 m s 2 and A = 5.1 x 10'4 m?, this converts to a value
of pco, = Po = 0.53 x 1072 bars, or 53 Pa. .

Weathering rate

In general we may suppose that W = W (p¢q,,T,r), where T is temperature and
r is runoff rate of water to the oceans. This dependence encapsulates the reaction
rate of (1.126), and the rate of product removal by runoff. Weathering rates have
been measured and range from 0.25 x 1073 kg m~2 y~! in arid regions to 16 x 1073
kg m~2 y~! in the tropics. If we suppose that (1.127) applies in equilibrium, then
the consequent current average value would be Wy ~ 2.2 x 1073 kg m~2 y~1, which
appears reasonable. This uses values of A;, = 1.5 x 10'* m? and volcanic production
rate vgo, = 3.3 x 10 kg y 1.5
One relation which has been used to represent weathering data is

Pco, g T - Ty
W =Wy —=2 1.12

where u = 0.3, and the subscript zero represents present day values: thus 7T ~ 288K,
as well as the values of py and W, given above. The current value of the Earth’s
runoff is 7p ~ 4 x 10'® m® y=!, and in general runoff will depend on temperature
(by equating runoff to precipitation to evaporation). This dependence is subsumed
into the exponential in (1.129). In general, 0W/0pyo, > 0, so that with constant
production rate, CO, will reach a stable steady state. An inference would be that
dramatic variations of climate and COs levels in the past have been due to varying
degrees of volcanism or precipitation on altered continental configurations, associated
with long time scale plate tectonic processes.

5The current net annual addition of CO; to the atmosphere because of fossil fuel consumption
and deforestation is 3.5 Gt carbon, or 1.3 x 10'3 kg y—'; this is forty times larger than the volcanic
production rate. (The actual rate of addition is more than twice as large again, but is compensated
by net absorption by the oceans and in photosynthesis.)

49



Energy balance

In seeking to describe how climate may depend on the carbon cycle, we use an energy
balance model. Thus, we combine the ice sheet/energy balance model (1.100) with
(1.127), to find the coupled system for T', a and pg,:

I = 1Q(1—a) — 0T,
tia = aeq(T) —a,
A,
gPeo. = —ALW + g, (1.130)
We take aeq(T') to be given by (1.98), and W to be given by (1.129).
We model the climatic effect of the greenhouse gases CO5 and HyO by supposing
that v depends on po,:

Y =Y = N1Pco,; (1.131)

the value 7, < 1 represents the HyO dependence, while the small corrective coefficient
7, represents the COy dependence.

We have already seen that the response time of 7" is rapid, about a month, whereas
the time scale for albedo adjustment is slower, with the time scale of growth of
continental ice sheets being of order 10* years. An estimate for the time scale of
adjustment of the atmospheric CO,, based on this model, is

A
¢ = Po

_ , (1.132)
gv002

Using values A = 5.1 x 10 y, py = 53 Pa, g = 9.81 m s 2 and Voo, = 3.3 X 10! kg
y~ !, this is ¢, ~ 0.8 x 10* y, comparable to the ice sheet growth time.

Although (1.130) is a third order system, it is clear that T' relaxes rapidly to a
well-defined ‘slow manifold’

Q1 —a)

— : (1.133)
407(pco,)

T~ T(a7p002)

on which the dynamics is governed by the slower a and p equations. The nullclines in
the (a,p) phase plane are shown in figure 1.24. The a nullcline is multivalued for the
same reason that figure 1.15 indicates multiplicity, since both graphs are described by
the same equations, the only difference being that pyo, (and thus 7) is used rather
than Q. The horizontal axis of figure 1.15 could equally be taken to be @/~ and thus
(for fixed Q) pgo, -

The analysis of this model is indicated in question 1.16. The solutions depend on
the two critical dimensionless parameters

w= ALWO, § = Yoo,9ti

Vco, Apo

, (1.134)

which are measures of weathering rate and volcanic production. These can vary
depending on current tectonic style. The three indicated intersection points in figure
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W =2

Tw=1.04

Figure 1.24: a and p nullclines for (1.130) assuming that 7" has rapidly equilibrated
to T'(a,pcp,).- The three curves occur for the values of the weathering coefficient
w = 1.04, 2 and 5, corresponding to present climate (the point marked +), oscillatory
ice ages and snowball Earth. The parameters for a,, are the same as those in figure
1.13, and other values used are py = 53 Pa, u = 0.3, AT, = 13 K, Ty = 288 K,
c=567Tx10*Wm2K™* Q=1370 Wm 2, 7 = 0.64, v; = 4.25 x 104 Pa"L.

1.24 correspond to steady states at low (current), intermediate and high weathering
rates (relative to volcanic output). The solution on the upper branch indicates a
snowball at enhanced weathering rates. Upper and lower branch solutions are stable,
but the intermediate solution is oscillatorily unstable if § is sufficiently small. If ¢ is
very small, then the motion becomes relaxational. Figure 1.25 shows an oscillatory
solution illustrating this discussion.

The corresponding time series is shown in figure 1.26. It does not look much like
the sawtooth oscillation of the Pleistocene ice ages, and the period is too long, some
half million years. No doubt one can find something more persuasive by fiddling with
parameters, but it may not be worth the effort, given the enormous simplicity of the
model. The main use of the model is to illustrate the point that the carbon cycle
contains a feedback effect which is capable of generating self-sustaining oscillations.

1.6 Notes and references

A good, recent book which addresses most of the issues of concern in this chapter is
the book by Ruddiman (2001), which provides an expert’s view. The book is aimed
at undergraduates, and is very accessible. It is only marred by an addiction to design
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Figure 1.25: Limit cycle oscillation which passes through current climate (+) (7' = 288
K, a = 0.3, pco, = 53 Pa). Also shown is the a nullcline of (1.130). The parameters
are those of figure 1.24, with ¢; = 10* y, A = 5.1 x 10" m?, A; = 1.5 x 10! m?,
g = 9.81 m s 2. The temperature is taken to be the quasi-equilibrium value of (1.133),
and the weathering and eruption rates are taken to be Wy = 0.26 x 1073 kg m~2 y 1,
Voo, = 0.2 x 10" kg y~'. With these values, the parameters in (1.134) are w = 1.95
and § = 0.0726.

and graphics, which makes the book expensive and rather over the top — it is a book
where there is a production team. Despite this, it is very up to date and informative.

1.6.1 Radiative heat transfer

The classic treatise on radiative heat transfer is the book by Chandrasekhar (1960),
although it is dated and not so easy to follow. A more recent book aimed at engineers
is that by Sparrow and Cess (1978). Most books on atmospheric physics will have
some material on radiative heat transfer, for example those by Houghton (2002) and
Andrews (2000). Other books are more specialised, such as those by Liou (2002) and
Thomas and Stamnes (1999), but are not necessarily any easier to follow.
Rayleigh scattering is described by Strutt (1871), J. W. Strutt being Lord Rayleigh’s

given name.
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Figure 1.26: Time series of temperature for the periodic oscillation of figure 1.25.

1.6.2 The ozone layer

The description of the ozone layer dynamics essentially follows Chapman (1930). An
elegant exposition is in the book by Andrews (2000). Reality is of course more com-
plicated than the version presented here, and many more reactions can be included,
in particular involving catalytic cycles, in which various chemical species catalyse the
conversion of ozone to oxygen.

Chlorine species created by man-made chlorofluorocarbons have been implicated
in the destruction of stratospheric ozone in the Antarctic, with the formation of the
well known ‘ozone hole’.

1.6.3 Energy balance models

The original energy balance models are due to Budyko (1969) and Sellers (1969).
They differ essentially only in the choice of parameterisation of emitted long wave ra-
diation, and consider only the global balance of energy. North (1975a) allows latitude
dependent albedo, and additionally allows for a parameterisation of poleward heat
transport by oceans and atmosphere through a diffusive term, as in (1.66). North
(1975b) added the time derivative. These meridionally averaged energy balance mod-
els do a rather good job of simulating the mean latitude dependent temperature
profile, and have formed the basis for the atmospheric component of the more recent
models of ‘intermediate complexity’. A later review is given by North et al. (1983).
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1.6.4 The greenhouse effect

The first person who is generally credited with discussing the greenhouse effect is
Arrhenius (1896), but Arrhenius himself refers to an earlier discussion by Fourier in
1827, where he refers to the atmosphere acting like the glass of a hothouse. Arrhe-
nius’s assessments of the effect of CO, are rather more severe than today’s considered
opinion. For a more recent discussion, see Houghton et al. (1996).

1.6.5 Ice ages

The data shown in figures 1.17-1.21 are taken from the GRIP (Greenland ice core
project) ice core, drilled through the central part of the Greenland ice sheet project.
This data is provided by the National Snow and Ice Data Centre of the University of
Colorado at Boulder, Colorado, and the World Data Centre—A for Paleoclimatology
at the National Geophysical Data Centre in Boulder, Colorado. This and other such
data is publicly available at
http://www.ngdc.noaa.gov/paleo/icecore/greenland/summit/index.html

and has been reported in a number of publications, for example Johnsen et al. (1992),
who, in particular, describe Dansgaard—Oeschger events. The higher resolution data
sets in figure 1.20 and 1.21 were provided by Sigfus Johnsen, through the agency of
Eric Wolft.

Abrupt climate change is documented by Severinghaus and Brook (1999) and
Taylor et al. (1997). Taylor et al. (1993) find evidence of rapid ice age climate change
in measurements of dust content in ice cores.

The cooling event at 8,200 years b. p. is described by Alley et al. (1997); Leuen-
berger et al. (1999) calibrate the temperature scale indicated by oxygen isotope vari-
ation by studying nitrogen isotope variations, suggesting that the cooling at 8,200
b. p. was of the order of 7°K; see also Lang et al. (1999).

1.6.6 Heinrich events

Heinrich events were first described in North Atlantic deep sea sediment cores by
Heinrich (1988). MacAyeal (1993) introduced his ‘binge-purge’ model to explain
them as a consequence of ice sheet oscillations induced by thermal instability, but
assumed that a melting base would automatically cause large ice velocities. Fowler
and Schiavi (1998) proposed a more physically realistic model which introduced the
concept of hydraulic runaway, and Calov et al. (2002) showed that large scale ice
sheets could oscillate somewhat as these earlier studies suggested, using a climate
model of ‘intermediate complexity’ (essentially resolved oceans and ice sheets, and an
averaged energy balance model of atmospheric fluxes).

1.6.7 Dansgaard-Oeschger events

Rahmstorf (2002) gives a nice review of the interplay of oceans and ice sheets in
causing climatic oscillations during the last ice age. Ganopolski and Rahmstorf (2001)
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show how fluctuating freshwater delivery to the North Atlantic can cause abrupt
alterations in circulation.

1.6.8 Oceans and climate

Stommel (1961) introduced the idea of different possible North Atlantic circulations.
His model is not too realistic, but nevertheless simple and compelling. Rahmstorf
(1995) uses a model of intermediate complexity to examine multiple circulation pat-
terns in the North Atlantic. Depending on the freshwater flux to the North Atlantic,
he finds hysteretic switches between different possible flows. Stocker and Johnsen
(2003) is a more recent addition to the subject. Ganopolski and Rahmstorf (2001)
provide a convincing picture of how switches of ocean circulation can cause rapid
climate change. Their intermediate complexity model indicates hysteretic switches in
ocean circulation due to changes in freshwater flux to the North Atlantic of unknown
origin; we have suggested that the origin could be periodic subglacial floods. Broecker
et al. (1990) and Manabe and Stouffer (1995) provide a similar thesis.

A great advocate of the 1000-2000 year rhythm in climate has been Gerard Bond;
for example Bond et al. (1999) describe this rhythm, and also suggest that it has con-
tinued beyond the end of the ice age (into the Holocene), its most recent manifestation
being the little ice age of 1500-1900. See also Bond et al. (1997).

1.6.9 Snowball Earth

The idea of a snowball Earth is discussed by Hoffman et al. (1998), for example,
although the idea of ancient glaciations had been extant for a long time before that.
Various modelling efforts have been made to assess the snowball’s viability, for ex-
ample, see Crowley and Baum (1993), Hyde et al. (2000), Chandler and Sohl (2000),
and Pierrehumbert (2004).

1.6.10 The carbon cycle

Our (too) simple model of the interaction of the carbon cycle with ice sheet growth
and climate change is based on the discussion of Walker et al. (1981), although their
emphasis was on the role of COy as a buffer in stabilising climate over geological
time, despite the increasing solar luminosity. These ideas are elaborated by Kasting
and Ackermann (1986) and Kasting (1989), who consider the effects of very large
atmospheric CO; concentrations in early Earth history. Kasting (1989) suggests that
because of the buffering effect of CO,, a terrestrial (i.e., with liquid water) planet
could be viable out as far as the orbit of Mars. In view of the plentiful evidence of
water on Mars in its early history, this raises the intriguing prospect of a hysteretic
switch from early temperate Mars to present cold Mars.

The buffering effect of CO, on climate and the role of continental location is dis-
cussed by Marshall et al. (1998). Berner et al. (1983) and Lasaga et al. (1985) discuss
more complicated chemical models of weathering, and their effect on atmospheric
COq levels.
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Petit et al. (1999) document the close relation between CO, levels and atmospheric
temperature over the past 400,000 years. Unlike the result in figure 1.25, which to-
gether with (1.133), indicates that temperature and COs will vary independently, the
data shows that there is an excellent match. The model can be made consistent with
this observation if the relaxation time ¢; is reduced. In fact, this is not unreasonable,
since the change of albedo due to sea ice coverage will be very fast, and this will shift
the effective albedo time scale downwards.

Exercises

1.1

1.2

1.3

14

1.5

The planetary albedos of Venus, Mars and Jupiter are 0.77, 0.15, 0.58 respec-
tively, and their distances from the sun are 0.72, 1.52, 5.20 astronomical units
(1 a.u. = distance from Earth to the sun). Calculate the equilibrium tempera-
ture of these planets, and compare them with the measured effective black body
temperatures, T,, = 230 K, 220 K, 130 K. Which, if any, planets appear not to
be in equilibrium; can you think why this might be so?

Use Planck’s law to derive the Stefan-Boltzmann law in the form
/ Eb)‘ d\=o T4,
0

where o can be written down in terms of a definite integral. By evaluating this
integral, and using the values ¢; = 3.74 x 108 W um* m 2, ¢, = 1.44 x 10* ym
K, evaluate the Stefan Boltzmann constant o.

Show that [, cosfdw = m, where 6 is the polar angle, and the integral is over
the range 0 < ¢ < 27, 0 < # < 7/2. In a one-dimensional atmosphere, show
that the average intensity is given by J = 1 f_ll I(r,p)dy', and show also that
if the energy flux vector is qg = fo I(r,s)sdw(s), then for a grey atmosphere

V.qr = —4rnkp|J — B].
Deduce that in radiative equilibrium, J = B.

For a purely absorptive atmosphere, show, by interpreting the radiation inten-
sity along a ray path as a probability distribution function for the photon free
path length (before absorption), that the mean free path is 1/pk,. Deduce that
an optically thin layer is one for which the photon mean free path is larger than
the layer thickness.

In a purely scattering atmosphere, emission occurs by the scattering of radiation
in all directions. Suppose that for a beam of intensity I,,, the loss in intensity in
a distance ds due to scattering is k, 1, ds, of which a fraction P,(s,s’) dw(s')/4m
is along a pencil of solid angle dw(s’) in the direction s’. Explain why it is
reasonable to suppose that the scattering function P, should depend only on
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1.6

1.7

s.s’, and show that the equation of radiative transfer can be written (assuming
a grey atmosphere)

or _
as_p”

—I-l—%/OP(ss)( s') dw(s)

Deduce that for isotropic scattering, where P = 1, the radiative flux qg (see
question 1.3) is divergence free.

For a plane parallel atmosphere in which I = I(7, ), show that

Lo L [ peeniaias

where ¢’ is the azimuthal angle associated with s’. Use spherical polar coordi-
nates to show that

S8 = gt + (1= 1) (1= 1) cos( — &),

and deduce that for Rayleigh scattering, where P(cos©) = 3(1 + cos®©), I

satisfies
ol

Hor =

1 1
where Iy = / Idu, I, = / w21 dp.

1 1

— 13_6 [3]0 — .[2 — ,LLQ(IO — 3[2)] 5

By non-dimensionalising the radiative heat transfer equation for a grey atmo-
sphere using a length scale d (atmospheric depth) and an appropriate radiation
intensity scale, show that in the optically thick limit, the equation takes the
dimensionless form

I =B —¢s.VI,

where ¢ < 1 and should be specified. Find an approximate solution to this
equation, and hence show that the (dimensional) radiative energy flux vector
qr is given approximately by

The equation of radiative transfer in a grey, one-dimensional atmosphere is
given by
ol
.
S 5

with I =0at 7 =0, u <0, and I = Bg = B(7g) at 7 = 7g, u > 0. Write down
the formal solution assuming B is known, and hence show that the radiative

1
flux qp = 27r/ wl dy is given by
-1

qp = 27 [—/ B(T)Ey(t — 7')dr’' + BgEs(1g — T) + / ° B(T"Ey(" — 7)dr'|,
0 T
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where the exponential integrals are defined by

 ¢#t
En(z) = / ¢

A
and Bg = B(7g).

1
Show that E!, = —E,_,, E,(0) = 7 and deduce that

94r

5 = or {—ZB + BgEy(1g —7) + / ° B(TE, (|7 — 7'|) d’]”:| )
T 0

Show also that the intensity J =

N =

1
/ Idy is given by
-1

J

Ts
: {/0 B(T)E\ (|t — 7'|) dT’' + BgE,(1g — T):| )
By integrating the expression for g5 by parts, show that
Ts
qr = 2w [BOEg(T) + /o B'(T"Es(|T — 7)) dTI:| ) (%)

If 74 is large, so that B varies slowly with 7, show that when 7 is large,

47
dr ~ ?BI(T)

(essentially, this uses Laplace’s method for the asymptotic evaluation of inte-
grals).

Use the integral expression (x) for g to show that if g = 7By at 7 = 0, then

and deduce that the temperature gradient cannot be monotonic for such an
atmosphere.

1.8 Chapman’s model for the production of ozone in the stratosphere is

J2
Oy +hr — 20,

k
O+0,+M —2> O3 + M,

Os+hy 3 040,

k3
O+ 03 —  20,.
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1.9

Write down the rate equations for the concentrations X, Y and Z of oxygen
atoms O, oxygen Oy and ozone Og, and show that

X +2Y 432 = 2[0y),
where [Os] is constant.

Suppose, as is observed, that X < k_3 and ¥ > —/— " [M]

centration of M. Use these observations to scale the equations to the form

where [M] is the con-

dx
== 2
ey =% xy + 20y — dxz,
% =zy— 2z —dxz,
y+ A3z +ez) =1,
where L L
£ = 7‘73 )= |: j2k3 :| / A= |:]2k2[M]:| !
k2[O2][M]’ Jaka[M] jaks '

Assuming ¢,6, A < 1, show that the model can be partially solved to produce

the approximate equation
dz

=2 (1-2%),
where t = 7/0.
ka[M]

J2J3ks
reaction scheme can be represented by the overall reaction

Hence show that [O3] — A[Os] on a time scale t ~ < ) , and that the

30, = 203,
where .
ro— gj o= Jaks
TR R0 M]
Suppose that stratospheric heating by absorption of ultraviolet radiation is given
g
by
ol
Q - _57
where
I =—1I,exp [—Toe_z/H} ,
and

To = KpoH.
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1.10

1.11

Suppose also that the (upwards) long wave radiative flux is given by

oT
= —k _—
qr Raz,

where the radiative conductivity is given by

160T3e*/H
kp=—7—.
3KPc

Write down the energy equation describing radiant energy transport, and show
that the temperature 7' is given by

T =T, [A — ¢e™¢ —Oexp (—Toe_c)] 1/4,

where A and ¢ are constants, and

3.\ V4 :
T0:< ) ) 0:7—_7 CZ

Ol z
40 T0 H

Suppose that ¢,0, A ~ O(1), and that 75 > 1. Find approximations for T" for
¢ <lnTy and ¢ ~ In Ty, and deduce that 7" has a maximum at z ~ H Iln1y. How
is this related to the temperature in the stratosphere?

Using values d = 10 km, xkpd = 0.67, show that a representative value of the
radiative conductivity kg defined by qg = —krVT for an opaque atmosphere
is kg ~ 1.08 x 10° W m~! K~!. Hence show that a typical value for the effective

Péclet number
_ pe,Ud?

kgl
is about 20, if U ~ 20 m s~!, [ &~ 1000 km. Explain the import of this in terms
of the heat equation

Pe

dTr
Pep gy = V.[krVT].

A wet adiabat is calculated from the isentropic equation

dl' dp dm
aCp—>— — S aL— = Oa
PaCp dz dz T dz
where
Po poRT puRT
m = —_— = —-— =
paa p Ma y Psv Mu )
and

dpSV:va d_p:_
ar T ' dz P
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1.12

Deduce that 7" and pgy can be calculated from the equations

dT

- = _Fw v 7Ta
7 (po, 0, T)
dpsv _ _polp

dz T "

where p, = p,(psv,T), and T, should be determined. Using values M, /M, =
062, L=25x10°Jkg !, T=290K,c, =10 Jkg 1 K !, p, = 0.01 kg m 3,
p=10° Pa, g = 10 m s 2, p, = 1 kg m 3, show that a typical value of Ty, is 6
K km™1.

By assuming that 7' &~ constant near the ground (why?), derive a differential
equation for pgy as a function of p in terms of two dimensionless coefficients

_ M,L 5= M, L
~ RT’'"

¢ M, c, T’

and estimate their values (you will need also the values M, = 18 x 102 kg
mole !, R = 8.3 J mole ! K!). Hence show that the molar humidity h = psy /p
decreases approximately linearly with altitude.

Show that the solution of the Clausius-Clapeyron equation for saturation vapour
pressure pgy as a function of temperature 7' is

0 To
DSy = Pgy €xXp |a 1—? ,

where for water vapour, we may take Ty = 273 K at p%;, = 6 mbar (= 600 Pa),
the triple point, and a = M,L/RT;,. Show that if T is close to T, then

0

If the long wave radiation from a planet is cyT*, where 7T is the mean surface
temperature, if the solar flux is @ (and planetary albedo is zero), and the
greyness factor is taken to be given by

Y =1+ b(pu/PYy)",

where p, is the HyO vapour pressure, show that the occurrence of a runaway
greenhouse effect is controlled by the intersection of the two curves

6 =1+XE, 0= p(1+be%),
where A = 1/a, p = (Q/40T})/*. Show that runaway occurs if p > p., where

pe+06 =1+ 61n[6/bp,]
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1.13

with 6 = A\/c. Show that this determines a unique value of p., and that if ¢ is
small,

pe~14+61n(d/b) — 0.

Estimate values of p and A appropriate to the present Earth, and comment on
the implications of these values for climatic evolution if we choose b = 0.06,
¢ = 1/4. What are the implications for Venus, if the solar flux is twice as great?
What if solar radiation were 30% lower when the planetary atmospheres were
being formed?

For the energy balance model
CT = RL - Roa

where R; = Q(1 —a), R,=oyT*,and a =a, for T < T;, a =a_ for T > T,
(>T;), ar > a_, with a(T') linear between these two ranges, show that multiple
steady states are possible in a range )_ < Q < (), where
07Ty o T}
Q-=1 ;
—a_

Qs =

B 1-— a ’
providing
Tw — CFZ ay —a—
< )
Tw 41—a-)
and in this case prove that the upper and lower branches are stable, but the
intermediate one is unstable.

By normalising () and T with respect to present day values Qq, 7y satisfying
Qo(1—a_) = 0T}, show that the corresponding dimensionless solar fluxes and
mean atmospheric temperatures g and 6 satisfy

e = 6,
1—a_
= @
q+ 1 <1_a+>7

0, —0; ay —a_
< .
O 4(1-a-)
If 6, = 1 (we are starting an ice age now) show that if ; =1—4, ay = a_ +v,
where J, v < 1, then regular ice ages will occur providing

providing

14

o< 4(1-a-)’

and providing the solar flux g oscillates beyond the limits ¢ ~ 1+v/(1—a_)—44
and ¢_ = 1.
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1.14

1.15

Suppose that the planetary albedo a is given by the ordinary differential equa-
tion

tia = I(G,Q) —a,

where

I(a,Q) = aeg[T'(a,Q)],
teq(T) = a1 — Lay {1 + tanh (TA_TT*H ,

Q-a)]"
doy } '

7(0,0) - |

Determine the graphical dependence of I as a function of a, and how this varies
with @, and hence describe the form of oscillations if () is periodic, and ¢; is
sufficiently small.

For large t;, show that the equation can be written in the dimensionless form

a= E[I{aaQ(t)} - a]a

where ¢ < 1. The method of averaging implies that a varies slowly, and thus
can be written approximately as the series

an~ Ao(1) +eAi(t,7)+ ...,

where 7 = ¢t, and ‘
A= I(A07Q) - A07

where I(Ag, @) denotes the time average of I over a period of Q. Deduce that
for a range of values of (), two periodic solutions can exist, and comment on
their climatic interpretation.

Give explicit approximate solutions for the cases ¢ < 1 and € > 1 when AT is
very small.

Ocean temperature # and salinity s are described by Stommel’s box model
0 =1— (u+|0— Rs|)b,

$=1-160 — Rs|)s,

where p and R are positive. By analysing the equations in the phase plane,
show that up to three steady states can exist, and assess their stability.

By drawing the phase portrait, discuss the nature of the solutions when there
is one steady state, and when there are three.

63



1.16 The temperature T, CO4 pressure p, and planetary albedo a satisfy the ordinary
differential equations

T = 1Q(1 —a) —onT*,
tia = aeq(T) —a,

A

Ep - _ALW + v,

where

T-—-T*
aeq(T) = a1 — %ag [1 + tanh ( AT )} :

where a1 = 0.58, as = 0.47, T* = 283 K, AT =24 K,

w
. £ T—TO
W =W, <p0> exp{ AT } ,

and
¥(p) = Y0 — 1p-

Show how to non-dimensionalise the system to the dimensionless form

e = 1—a—(1-ag) (1+%y9)4(1—1/)\p),
a = B(#)—a,
p = 0 [1 — wp“eo} ,

and show that
vgt; AWy 4cAT, 4AT, Y1Po
= y w y €= ) = ) A= :
Apo v ;Q Ty 12000
What is the function B(6)?

Using the values v = 3 x 10 kg y 1, g=98ms 2, ¢, = 10"y, A = 5 x 10
m?, po =50 Pa, A, = 1.5x 10" m?, Wy =2x 103 kgm 2y, ¢ =10" J m™2
KYLQ=1370Wm2, AT, =13 K, Ty = 285 K, 7o = 0.64, 7; = 4.25 x 104
Pa !, show that

4]

d~12, w~~1l ex~12x10% v=~018 A=0.3,

and find the value of ag, assuming ¢ = 5.67 x 1078 W m 2 K.

Hence show that 6 rapidly approaches a quasi-steady state given by
0 ~ ©(a,p) = a(a — a) + Ap,

where



In the phase plane of a and p satisfying

a = B(©)-—a,
p = (5[1—wp”e®], *

show that the p nullcline is a monotonically increasing function a,(p) of p, and
that the a nullcline is a monotonically decreasing function aq(p) of p, providing
—B'(f) < v(1 — ap) for all §. Show conversely that if there is a range of 6 for
which —B'(0) > v(1 — ag), then the a nullcline is multivalued.

Suppose that the a nullcline is indeed multivalued, and that there is always a
unique steady state. Show that at low, intermediate and high values of w, this
equilibrium can lie on the lower, intermediate or upper branch of the a nullcline.

By consideration from the phase plane of the signs of the partial derivatives of
the right hand sides of (*) (and without detailed calculation), show that when
they exist, the upper and lower branch steady states are stable, but that the
intermediate steady state will be oscillatorily unstable if § is small enough.

How would you expect the solutions to behave if § < 17
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Chapter 2

River flow

Much of the environment consists of fluids, and much of this book is therefore con-
cerned with fluid mechanics. Oceans and atmosphere consist of fluids in large scale
motion, and even later, when we deal with more esoteric subjects: the flow of glaciers,
convection in the Earth’s mantle, it is within the context of fluid mechanics that we
formulate relevant models. This chapter concerns one of the most obvious common
examples of a fluid in motion, that of the mechanics of rivers.

Fluid mechanics in the environment is, however, altogether different to the subject
we study in an undergraduate course on viscous flow, and the principal reason for this
is that for most of the common environmental fluid flows with which we are familiar,
the flow is turbulent. (Where it is not, for example in glacier flow, other physical
complications obtrude.) As a consequence, the models which we use to describe the
flow are different to (and in fact, simpler than) the Navier-Stokes equations.

2.1 The hydrological cycle

Rainwater which falls in a catchment area of a particular river basin makes its way
back to the ocean (or sometimes to an inland lake) by seepage into the ground,
and then through groundwater flow to outlet streams and rivers. In severe storm
conditions, or where the soil is relatively impermeable, the rainfall intensity may
exceed the soil infiltration capacity, and then direct runoff to discharge streams can
occur as overland flow. Depending on local topography, soil cover, vegetation, one
or other transport process may be the norm. Overland flow can also occur if the soil
becomes saturated. The hydrological cycle is completed when the water, now back
in the ocean, is evaporated by solar radiation, forming atmospheric clouds which are
the instrument of precipitation.

River flow itself occurs on river beds that are typically quasi-one-dimensional,
sinuous channels with variable and rough cross-section. Moreover, if the channel
discharge is @ (m® s7!), and the wetted perimeter length of the cross section is [ (m),
then an appropriate Reynolds number for the flow is

Re = Q/vl, (2.1)
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where v = u/p is the kinematic viscosity (and p is the dynamic viscosity). If [ = 10
m, v =10"% m? s7!, Q@ = 1 m® s7! (a small value), then Re ~ 10°. Inevitably, river
flow is turbulent for all but the smallest rivulets. Thus, to model river flow, and
to explain the response of river discharge to storm conditions, as measured on flood
hydrographs, for instance, one must model a flow which is essentially turbulent, and
which exists in a rough, irregular channel. The classical way in which this is done is
by applying a time average to the Navier-Stokes equations

aui
=0
8.’L'i ’
ou; 0 Op 9
) = — ) 2.2
P ot + ,OaxJ (Uzu]) 8.1’1 + .uv Uy, ( )

where suffixes ¢ represent the components, and the summation convention is used
(i.e., summation over repeated suffixes is implied). If we denote time averages by an
overbar, and fluctuations by a prime, thus

u; = u; + uj, (2.3)
then averaging of (2.2) yields
o0u;
8.’L'i - 0,
0 ,_ _ 0, —— op o

The second of these can be written in the form
(A.V)i=-Vp+ V.{r+71"}, (2.5)

where 7;; = p1€;; is the ordinary molecular stress, and

T = —pulu (2.6)

is called the Reynolds stress. The essential problem in describing fully turbulent flows
is to close the averaged model by prescribing the Reynolds stress.

For a flow u = (u,v,w) which is locally unidirectional on average, such as that
in a river, we may take @ = (@,0,0), and then the  component of the momentum
equation becomes

op 0%

o, Ox * Koz

because the time averages of the transverse Reynolds stresses are zero. Integration

over the depth shows that the resistance to motion is provided by the wall stress 7,
and this is

(vw') = (2.7)

ou -
™= pg + {-prw'}, (2:8)

evaluated at the wetted perimeter of the flow. Strictly, the Reynolds stress vanishes
at the boundary (because the fluid velocity is zero there), and the molecular stress
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changes rapidly to compensate, in a very thin laminar wall layer. It is common to
evaluate (2.8) just outside this layer, close to but not at the boundary, where the
molecular stress is negligible and the Reynolds stress is parameterised in some way.
A common choice is to use a friction factor, thus

T = fpii?, (2.9)

where the dimensionless number f (called the friction factor) is found to depend
rather weakly on the Reynolds number. A crude but effective assumption is simply
that f is constant, with a typical value for f of 0.01. Further discussion of turbulent
flows, and how to model them, is given in appendix A.

2.2 Chezy’s and Manning’s laws

Our starting point is that the flow is essentially one-dimensional: or at least, we focus
on this aspect of it. As well as the cross sectional area (of the flow) A and discharge
@, we introduce a longitudinal, curvilinear distance coordinate s, and we assume that
the river axis changes direction slowly with s. Then conservation of mass is, in its
simplest form,

04, 99 _

ot  0Os
This ignores, for the moment, source terms due to infiltration seepage and overland
flow from the catchment.

(2.10) must be supplemented by an equation for @ as a function of A, and this
arises through consideration of momentum conservation. There are three levels at
which one may do this: by exact specification, as in the Navier-Stokes momentum
equation; by ignoring inertia and averaging, as in Darcy’s law; and most simply, by
ignoring inertia and applying a force balance using a semi-empirical friction factor.
We begin by opting for this last choice, which should apply for sufficiently ‘slow’ (in
some sense) flow. Later we will consider more complicated models.

We have already defined the Reynolds number Re in terms of () and A, or equiv-
alently a mean velocity u = Q/A and a channel depth d ~ A'/2. ‘Slow’ here means a
small Froude number, defined by

0. (2.10)

u Q
Fr= (90172 = G AT (2.11)
If Fr < 1, the flow is tranquil; if F'r > 1, it is rapid. Gravity is of relevance, since the
flow is ultimately due to gravity.
Now let [ be the perimeter of a cross section, and let 7 be the mean shear stress
exerted at the bed (longitudinally) by the flow. If the downstream slope is «, then a

force balance gives

IT = pg Asina, (2.12)

where p is density. For turbulent flow, the shear stress is given by the friction law
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T = fpu?, (2.13)

where the friction factor f may depend on the Reynolds number. Since

u=Q/A, (2.14)
and defining the hydraulic radius
R=A/l, (2.15)
we derive the relations
u=(g/f)"*R?5'2, (2.16)
where
S =sina, (2.17)
and
1/2
Q= (%) A3/281/2, (2.18)

For wide, shallow rivers, [ is essentially the width. For a more circular cross-section,
then [ ~ A2 and
Q = (9/f)"2 A%, (2.19)

The relation (2.16) is the Chezy velocity formula, and C = (g/f)'/? is the Chezy
roughness coefficient. Notice that the Froude number, in terms of the hydraulic
radius, is

Fr= QR = (S/F)Y?, (2.20)

and tranquillity (at least in uniform flow) is basically due to slope.
Alternative friction correlations exist. That due to Manning is an empirical for-
mula to fit measured stream velocities, and is of the form

u= R*38"2/n’ (2.21)

where Manning’s roughness coefficient n’ takes typical values in the range 0.01-0.1
m~1/3 s, depending on stream depth, roughness, etc. For Manning’s formula, we have

Q~ A3 if R~ A2

Q~ A% if | iswidthy, R=A/l~ A. (2.22)
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Thus we see that for a variety of stream types and velocity laws, we can pose a
relation between discharge and area of the form
Q~A™ m >0, (2.23)

with typical values m = 1/4 —2/3. In practice, for a given stream, one could attempt
to fit a law of the form (2.23) by direct measurement.

2.3 The flood hydrograph

We can nondimensionalise the equation for A so that it becomes

0A mOA
— + A" —
ot 0s
a first order nonlinear hyperbolic equation, also known as a kinematic wave equation,
whose solution can be written down. Specifically, take initial data parameterised as

0, (2.24)

A=Ay(0), s=0>0, t=0. (2.25)

2

Figure 2.1: Formation of a shock wave in the solution of (2.24).

Then the characteristic equations are

at =Y
ds
— =A™ 2.26
dt ) ( )
whence
A= A(o), s=o+ Ajt, (2.27)
thus
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A= Ag[s — A™] (2.28)

determines A implicitly. It is a familiar fact that humped initial conditions Ay(o)
will lead to propagation of a kinematic wave, and then to shock formation, as shown
in figure 2.1, when 0A/0s reaches infinity. Since 0A/J0s = A, = Ay[s — A™t](1 —
mt A™~1A,), this is on the characteristic through ¢ which maximises —(AZ')’, and at
a time ¢ which is the inverse of this maximum. Thereafter a shock exists at a point
s4(t), and propagates at a rate given, by consideration of the integral conservation
law

0 [** s
ot /. Ads = —[QI3}, (2.29)
by
() o

Sq—
As an application, we consider the flood hydrograph, which measures discharge

at a fixed value of s as a function of time. As an idealisation of a flood, we consider
an initial condition

A~ Agd(s) at t=0, (2.31)

where §(s) is the delta function, representing the overland flow of a short period of
localised rainfall. Since A = f(s — A™t), it follows that A ~ 0 except where s = A™t.
The humped initial condition causes a shock to form at s4(t), with s4(0) = 0, and we
have

A=0, s> sq,

A= (s/t)/™ s<sq (2.32)

as shown in figure 3.2.
The shock speed is given by

Am
m—+1

= —(mi” I (2.33)

84 = (Q/A)|sd— =

Sd—

whence sg o t/(m*1)_ To calculate the coefficient of proportionality, we use conser-
vation of mass in the form

Sd
/ Ads = Ao, (234)
0

whence, in fact,

sq = [(m + 1) Ag/m]™/(m+Dl/(m+1) (2.35)
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Figure 2.2: Propagation of a shock front.

Denoting b = [(m + 1)Ag/m]™ ™+ the flood hydrograph at a fixed station s = s*
is then as follows. For t < t*, where

t* = (s*/b)™, (2.36)
Q =0. Fort > t*, A= (s*/t)Y/™ and thus
*(m+1)/m
S —\m m

This result is illustrated in figure 2.3, together with a typical observed hydrograph.
The smoothed observation can be explained by the fact that a more realistic initial
condition would have delivery of the storm flow over an interval of space and time.
More importantly, one can expect that a more realistic model will allow diffusive
effects.

2.4 St. Venant equations

We now re-examine the momentum equation, which we previously assumed to be
described by a force balance. Again consider the equations in dimensional form.
Conservation of mass is written in the form

0A 0
— 4+ —(Au) = 2.
ot 88( u) =0, (2:38)

and then conservation of momentum (from first principles) leads to the equation
(adopting the friction law (2.13))
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Figure 2.3: Ideal and observed hydrographs.

pic) S 2 (), (2.39)

T + pg(Azﬂ) = pgAsina — plfu? — 5

where p is the mean pressure. Now the pressure is approximately hydrostatic, thus
p ~ pgz where z is depth. Then pA = [ ;pgh®dz where h is total depth, z is width,
and supposing 0h/ds is independent of x, we find?

0 oh
—(Ap) = pgA— 2.40
55 (AP) = pgA—, (2.40)
where h is the mean depth. Using (2.38), (2.39) reduces to
. 9 oh
up + uus = gsina — flu®/A — 955" (2.41)

Equations (2.38) and (2.41) are known as the St. Venant equations.

2.4.1 Nondimensionalisation

We choose scales for u = Q/A, t, s, A, R (the hydraulic radius, = A/I), h as follows,
in keeping with the assumed balances adopted earlier:

Au ~ Q,

gsina ~ Ifu’/A = fu®/R,

!The assumption that Oh/s is constant across the stream means that along a transverse section
of the river, the surface is horizontal. This is really due to the smallness of the width compared
to the length. It is importantly not exactly true for meandering rivers, but is still a very good
approximation.
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t~s/u,
s ~ d/sina,
h,R ~d, (2.42)

where we can suppose ( is a typical observed discharge, and d is a typical observed
depth. Explicitly, the scales are

[h],[R] = d, [s]=d/sinq,
[W] = (gdsina/f)'?, [t] = (fd/gsin’a)'/?,
[A] = Q(f/gdsina)'/?, (2.43)

and we put u = [u]u*, etc., and drop asterisks. The resulting equations are
A+ (Au)s =0,

F?luy +wuy) = 1 —u?/R — hy, (2.44)

where we would choose h ~ R ~ A for a wide channel, h ~ R ~ A2 for a rounded
channel. In particular, for a wide channel, we have R = h, so that the momentum
equation can be written

(wh): + (wuh)s = 0,
F?(u; +uu,) = 1—u?/h—h,, (2.45)

since A = wh, where w is the (dimensionless) width. The Froude number F' is given
by

I 1/2
F = T (sina/ f)1/2. (2.46)

2.4.2 Long wave and short wave approximation

To estimate some of these scales, we take d = 2 m, u = 1 m s~! and sina = 0.001,
typical lowland valley values. We then have the length scale s ~ 2 km, and the
time scale t ~ 33 minutes, and in some sense these are the natural length and time
scales for the dynamic river response. However, it is fairly clear that these scales
are not appropriate either for variations over the length of a whole river, or for the
shorter length and time scales appropriate to waves generated by passage of a boat,
for example. Both of these situations lead to further simplifications, as detailed below.
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Long wave theory
Suppose we have a river of length 100 km, and we are concerned with the passage of
a flood wave along its length. It is then appropriate to rescale s and ¢ as
1 1
S~ —, te~—) 2.47
. . (2.47)

where in this instance € ~ 0.02 < 1. In this case the equations (2.45) become

ht + (Uh)s = 0,
eF?*(us +uu,) = 1—u?/h—ch, (2.48)

and in the limit ¢ — 0, we regain the slowly varying flow approximation.

Short wave theory

An alternative approximation is appropriate if length scales are much shorter than 2
km. This is often the case, and particularly in dynamically generated waves, as we
discuss further below. In this case, it is appropriate to rescale length and time as

1 1
~ st~ = 2.49
S R (2.49)
where § < 1, and then the model equations (2.45) become
ht + (Uh)s = 0,
2
F(uy+uu,) = 6 (1 - %) — hs, (2.50)

and when § is put to zero, we regain the shallow water equations of fluid dynamics.

2.4.3 The monoclinal flood wave

One of the suggestions made at the end of section 2.3 was that the shocks predicted
by the slowly varying flood wave theory would in reality be smoothed out by some
higher order physical effect. This shock structure is called the monoclinal flood wave
(because it is a monotonic profile), and it can be understood in the context of the
long wave St. Venant theory (2.48). The simplest version is when F' < 1 as well as
e < 1, for then we can approximate the momentum equation (2.48), by the relation

um h?(1—Leh,...), (2.51)
and 2.48); becomes
oh ) oh
— 3R Ph, L (R32 ). 2.52
ot 2 2% 55 ( 95 (2.52)

This is a convective diffusion equation much like Burgers’ equation, and we expect
it to support a monoclinal wave which provides a shock structure joining values h_
upstream to lower values h, downstream. We analyse this shock structure by writing

s =385 +eX, (2.53)
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where sy is the flood wavefront, and X is a local coordinate within the shock structure.
To leading order we then obtain the equation

—chx + [h*? (1 - 1hx)], =0, (2.54)
where ¢ = $5 is the wave speed. Integrating this, we obtain
ch=h*"?(1-1hx) + K, (2.55)
where we require
K =ch_—h*? =ch, — 1 (2.56)

(which gives the shock speed determined in the usual way by the jump condition
c= [h3/ ] t /[h]F). Hence h is given by the quadrature

ho h3/2dh
29X — / TR (2.57)

where the arbitrary choice of hg € (hy,h ) simply fixes the origin of X. (2.57) can
be simplified to give

v w dw
X = /w (w—w+)(w_ —w)(w+c)’ (258)

where w = h'/2, and
W+W-—

C=——,
Wy +w-

(2.59)

and X (w) can of course be evaluated.
Of particular interest is the small flood limit, in which Aw = w_ — w, is small.
In this case C' =~ %w+, and h can be found explicitly, as the approximation

2
h1/2 h1/2 —X/AX
[ L , (2.60)
14 e X/AX
where 03 2
w
AX=_—+=_= 2.61
3Aw  3Ah (2:61)
is the shock width. A further simplification (because Ah = h_ — h, is small) is
AheX/2X
In dimensional terms, the shock width is of order
d2
—_— 2.63
Adsina’ (2:63)

where d is the depth. Following a storm, if a river of depth two metres and bedslope
103 rises by a foot (thirty centimetres), the shock width is about thirteen kilometres:
not very shock like! Figure 2.4 shows the form of the monoclinal flood wave (as given
by (2.60)).
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Figure 2.4: The monoclinal flood wave given by (2.60), with h_ = 1.5, h, = 1,
AX =1.
2.4.4 Waves and instability

The monoclinal flood wave is one example of a river wave. More generally, we can
expect disturbances to a uniformly flowing stream to cause waves to propagate, and
in this section we study such waves. In particular, we will find that if the basic
flow is sufficiently rapid, then disturbance waves will grow unstably. Such waves
are commonly seen in fast flowing rivulets, for example on steep pavements during
rainfall, and even on car windscreens.
To analyse waves on rivers, we take the basic river flow as being (locally) constant,
thus in (2.45) (with R = h)
u=nh=1, (2.64)

and we examine its stability by writing

u=1+v, h=1+H, (2.65)

and linearising. We obtain the linear system
Ht + Hs —+ v = 0,

F*(v;+v,) = —2v+ H — H,, (2.66)

whence

o 0\’ o 0
2 — —_— = — — —_— —
F (8t + 83) v 2 (6t + ag)v Vg + Vss- (2.67)

Solutions v = exp[iks + ot] exist, provided o satisfies
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F?(o +ik)?® + 2(0 +ik) + ik + k* = 0, (2.68)

or

G =—ik—14[1—ik—k*/F\/2 (2.69)

where we write

oc=56/F? k=k/F (2.70)

There are thus two wave like disturbances. The possibility of instability exists, if
either value of & has positive real part. We define the positive square root in (2.69)
to be that with positive real part. Specifically, we define

72 1/2
p+z‘kq:{1—z‘1}—ﬁ} : (2.71)

where we take p > 0; thus, the real and imaginary parts of ¢ are given by

Gr=4p—1, —%:1; g, (2.72)

and the criterion for instability is that 6g > 0, i.e., p > 1. In this form, the growth
rate of the wave is 6r/F?, while the wave speed is —G7/k. From (2.71), we find

1 o,k k?
q=—5-, L(p=p —@—1—ﬁ- (2.73)
As illustrated in figure 2.5, L(p) is a monotonically increasing function of p, and
therefore the instability criterion p > 1 is equivalent to L(p) > L(1). Since p is
determined by L(p) = 1 — (k?/F?), while from (2.73), L(1) = 1 — (k2/4), we see that
instability occurs if
F>F =2 (2.74)

Thus, for tranquil flow, F' < O(1), the flow is stable. For rapid flow, F' > O(1), it
can be unstable. The wave which goes unstable (when p = 1) propagates downstream,
because its wave speed is 1 — g = %, and in fact the p > 0 wave always propagates
downstream. The other wave, always stable, propagates downstream unless 1+¢q < 0,
i.e., if and only if p < 1/2, or equivalently,

Fep = 2% (2.75)
(3 + 4k2)1/2
Note that ' depends on k, and that 0 < F < 1; we therefore have three distinct
ranges for F'

F > 2: two waves downstream, one unstable;

1 < F < 2: two waves downstream, both stable;

F < 1: stable waves can propagate upstream and downstream.
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Figure 2.5: The function L(p) defined by (2.73), with k& = 1.

To go further than this requires a study of the nonlinear system (2.44). We see that
the transition at F' = 1 is associated with the ability of waves to propagate upstream.
The transition at F' = 2 is sometimes called Vedernikov instability, and is associated
with the formation of downstream propagating roll waves.

2.5 Nonlinear waves

When F' > 2, linear disturbances will grow, and nonlinear effects become important
in limiting their eventual amplitude. Because of the hyperbolic form of the equations,
we might then expect shocks to form. To examine this hyperbolic form, we put

v=1/F. (2.76)
The equations are then
ht + (hU)s = 0,
2 2 u?
ug + uug + Y hs =7y 1_Z : (2.77)

and they can be written in the form
0 (h u h\ 0 ([ h) 2
gl ) (2 u)a(n)- I A
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2.5.1 Characteristics

The eigenvalues of B = < u2 Z ) are given by

¥
A =u+yh'/2 (2.79)

and the matrix P of eigenvectors and its inverse P~! are given by

(S A) (k) e

The integral

du
f+—

[ () f(%5)-(47%)  ew

2v/h 27 2y

is well-defined, and determines the characteristic variables (the Riemann invariants,
so called because they are constant on the characteristics in the absence of the forcing
gravity and friction terms, as in shallow water theory). The equations can thus be
compactly written in the characteristic form

+ (utWh)Z ] [uim\/ﬁ] — 2 [1 _ “—2} . (2.82)

8t h

Nonlinear waves propagate downstream if u/yh'/? > 1, but one will propagate up-
stream if u/yh'/? < 1. This is consistent with the preceding linear theory (since
u/vh'/? is the local Froude number). Because the equations (2.82) are of second
order, simple shock wave formation analysis is not generally possible. The equations
(2.82) are very similar to those of gas dynamics, or the shallow water equations, and
we expect the equations will support the existence of propagating shocks in a similar
way.

2.5.2 Roll waves

There is a good deal of evidence that solutions of (2.77) do indeed form shocks, and
these are called roll waves. They are seen in steep flows with relatively smooth beds
(and thus low friction), but this combination is difficult to find in natural rivers. It is
found, however, in artificial spillways, such as that shown in figure 2.6, which shows
a famous photograph of roll waves propagating down a spillway in Switzerland. Roll
waves can be found forming on any steep incline. Film flow down steep slopes during
heavy rainfall will inevitably form a sequence of periodic waves, and these are roll
waves; | used to see them frequently at my daughter’s school, for example.

To describe roll waves, we seek travelling wave solutions to (2.77), in the form
h = h(€), u = u(f), where £ = s — ct is the travelling wave coordinate, ¢ being
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Figure 2.6: Roll waves propagating down a spillway at the Griinnbach, Switzerland.

the wave speed. Substitution of these into (2.77) yields the two ordinary differential
equations

—ch' + (uh)" = 0,

—od tud = 1- % — 2R (2.83)
The first equation has the integral
(u—c)h=—-K, (2.84)

where K is a positive constant. The reason that it must be positive is that the positive
characteristics (those with speed u +~h!/2) must run into (not away from) the shock,
that is,

uy + vhiﬂ <c<u_+ 'yhl_/z, (2.85)
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where h, and h_ are the values of h immediately in front of and immediately behind
the shock. Hence
¥ < K < yh®2, (2.86)

Substitution of (2.84) into the second equation yields a single first-order equation for

u, or h. We choose to write the equation for h, thus

h3 — (ch — K)?
2h3 — K2

h' = (2.87)
As indicated in figure 2.7, we aim to solve this equation in (0, L), with A = h, at
¢ =0and h =h_ at £ = L. The quantities involved in this equation and its boundary
conditions are L, ¢, h_, h, and K, and these have to be determined. Solution of the
differential equation (2.87) from 0 to L yields one condition,

h_ 273 _ 772
L= / LSS (2.88)
hy

h3 —(ch— K)? 7

which determines L in terms of the other quantities. Thus four extra conditions need
to be specified to determine these.

C
/LL,T_/I/
u+,h+ u_,h
L

Figure 2.7: Schematic form of roll waves.

There are two jump conditions to apply across the shock. These are conservation
of mass, which we omit, as it is automatically satisfied by (2.84), and conservation of
momentum, which has the form

[hu? + 1y2h?]

0= (2.89)
Simplification of this using (2.84) gives
K277
|:%’y2h2 + T:| =0. (290)

K2
Evidently, consideration of the graph of %’yzh2 + W shows that this determines h

in terms of h_, for given K, see figure 2.8.
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Figure 2.8: Supercritical and subcritical values of h across a shock: graph of %72h2 +
K?/h,y=K =1.

We denote the critical value of h at the minimum in figure 2.8 as h,,, thus
v*hd, = K*; (2.91)

clearly we must have h_ > h,, and hy < hy, (this is also implied by (2.86)), that
is to say, the flow is subcritical behind the shock and supercritical in front of it. In
particular, there is a value of £ € (0, L) with A = h,,, and in order that the derivative
in (2.87) remain finite, it is necessary that the numerator also vanish at this point.

Since K > 0, this implies
K
chy, — K = = (2.92)

We have added an extra quantity h,, to the other unknowns L, h_, h,, K and c.
To determine these six quantities, we have the four equations (2.88), (2.90), (2.91) and
(2.92). This appears to imply that the roll waves described here form a two parameter
family, with (for example) the wavelength and wave speed being arbitrary. This is at
odds with our expectation that a sensibly described physical problem will have just
the one solution. In order to understand this, we need to reconsider the hyperbolic
form of the describing equations (2.77). A natural domain on which to solve these
equations is the semi-infinite real axis s > 0, in which case appropriate boundary
conditions are to prescribe A and v on ¢ = 0 and s = 0. The initial conditions
are prescribed to represent the experimental start-up, and the boundary conditions
at s = 0 must represent the inlet conditions. The effect of the initial conditions is
washed out of the system as the characteristics progress down stream, and the roll
waves which are observed are determined by the boundary conditions at s = 0.

Of course, these inlet conditions are not generally consistent with a periodic trav-
elling wave solution, but we would expect that prescribed values of u and h at the
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inlet would provide the extra two parameters to fix the solution precisely. One such
parameter is easy to assess. Because mass is conserved, the mean volume flux

Q= %/OL(ch ~K)de (2.93)

must be equal to that at the inlet, and we can take @ in (2.93) to be prescribed, and
in fact we can choose the velocity and depth scales so that ) = 1.

It is not as obvious how to provide the other recipe, because the mean momentum
flux is not conserved downstream; its value at the inlet does not tell us its value
downstream. This is because of the gravity and friction terms. However, it is the
case that these terms must balance on average, that is to say,

/L(h —u?) d§ = 0; (2.94)

this actually follows by integrating the momentum equation (written in conservation
form) over a wavelength. The momentum advection and pressure gradient terms
vanish because of (2.90), leaving (2.94). This appears to give a final condition to
close the system: but it does not, as (2.94) actually reduces to (2.90) when the
integration is carried out. An appropriate final condition will be described after first
reducing the conditions above to simpler form.
We rewrite the relations (2.88), (2.90), (2.92) and (2.93) using h,,, as the defining
parameter, and putting
hy =hnor, h_ =hnp¢_; (2.95)

then we have K and c given by
K = B2, ¢ = h2(1+7), (2.96)

and L, ¢, and ¢ _ are determined, after some algebra, by

[Pt er1)ds
b= ”’"/¢+ 677 1%’

L /¢— (& + ¢+ ){dp+(¢— 1)} d¢
L Js, (¢ =)= ’
+
[%gfﬁ + %} = 0. (2.97)

The second of these can be written independently of L as

/¢ (2 + ¢+ 1){o+ (¢ —1)}do

_ Jo+ (9—7)?—7%¢
N / (Pro+dp (2.98)
o (=7 =7
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where
q=1/h32. (2.99)

The profile of ¢ is given by the scaled version of (2.87), which is

(0—7)° =7

O (@ 6+ 1)

(2.100)

The numerator must be positive, and since ¢ = 1 for some £, a necessary condition
for this to be true is that v < 1/2. In terms of the Froude number, this is F' > 2,
which is the condition under which the roll wave instability occurs in the first place.
This nicely suggests that the roll waves bifurcate as a non-uniform solution from the
steady state at F' = 2.

It is apparent from the above discussion that the crux of the determination of the
roll wave parameters is the solution of (2.97); and (2.98) for given positive ¢. If ¢
and ¢_ can be found for any such ¢, then they can be found for any h,,, after which
L, K and c follow directly from (2.96) and (2.97);.

To find the solutions of (2.97); and (2.98), we note that ¢, and ¢_ are uniquely
defined in terms of the ordinate of the graph in figure 2.8; in fact, for any ¢, € (0, 1),
(2.97)3 gives the explicit solution

-~

1/2
b+ {¢2+ n i} ] : (2.101)
b

then (2.98) gives ¢ = q(¢;7y). The other constants are then given explicitly by (2.96),
(2.97); and (2.98), and in particular, if we define

é— (42 _
N(#y) :/¢ (¢ + 6+ D{g+9(6 = D} do.

. (0 =7 —=7¢
- (¢? 1)d
D(¢+) = /¢ ) ((Z _Jr,:;;_ 2722 (2.102)
(thus ¢ = N/D), then using
D\ /3
B = (N) , (2.103)
we have D8 (1 47DV

The equations (2.101), (2.103) and (2.104) determine ¢_, h,,, L and ¢ in terms
of ¢,. The final relation which determines ¢, must arise from the prescription of
the boundary conditions at the inlet. In general, it is not obvious how this should
be done; we will therefore restrict ourselves to the particular case where the inlet
conditions are almost constant.

For the particular case of constant inlet conditions u = h = 1, the solution is
uniform, and no waves develop. Let us then suppose that the inlet conditions at
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s=0areu=1+4+U(t) and h = 1 + H(t), where the time average of U is zero, and
also the time-averaged flux uh = 1, and the perturbations H and U are very small.

In figures 2.9-2.11 we plot the wave height h,,(¢_ — ¢, wavelength L and speed
c (all dimensionless) as a function of the Froude number F'.

0.8

0.6 |

04

0.2

Figure 2.9: Graphs of ¢ as a function of ¢, for y = 0.4 (F =2.5), v =0.2 (F =5),
and 7 = 0.1 (F' = 10).

A feature of figure 2.9 is the termination of the curves at a finite value. The
integrals which define N and D in (2.102) can be explicitly evaluated. If we define
the two (positive) roots of (¢ — v)? — v2¢ = 0 to be

ar = 2 [2+7E {7+ 4}, (2.105)

thus oy > o > 0, then we restrict ¢, > a, so that ¢’ > 0 in (2.100). Consideration
of N and D then shows that

D=—Aln(¢, —a,)+0(1), N=-Cln(¢s —as)+O(1) (2.106)

as ¢ — ay. From this it follows that ¢ — ¢, as ¢ — «ay, where ¢, = C/A, and is
given explicitly by

g+ = (1+74)ar — - (2.107)
These termination points are marked by a cross at the end of the curves in figure

2.9. Because ¢ = ¢, + 0O (

1
) , the slope of the curves is infinite at these
—In(¢+ — ay)
points. (This also makes it hard to draw the figures. To get within 0.02 of ¢, for
example, we can expect to have to take ¢, — a ~ exp(—50) ~ 10~22!)
As ¢, — 1, then also ¢— — 1, and hence both N and D are O(1). Direct

consideration of (2.102) shows that ¢ — 1 as ¢, — 1. As a consequence of these
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Figure 2.10: Wavelength L in terms of ¢, with @ = 1.
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Figure 2.11: Wave speed c in terms of ¢, with Q) = 1.
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L

Figure 2.12: Wave speed c as a function of L, with @ = 1, for y = 0.1, v = 0.2 and
v = 0.4. The horizontal lines at the right indicate the corresponding asymptotes c
for vy = 0.1 and v = 0.2. That for v = 0.4 is not visible, since c; = 8.03 in that case.

limiting behaviours, L — 0 and c is finite as ¢, — 1, while L — oo as ¢, — 1,
but ¢ tends to a finite limit just as ¢ does. As shown in figures 2.9-2.11, all three
quantities vary monotonically between ¢, = a, and ¢, = 1, and consequently c is a
monotonically increasing function of L, which tends to a limit ¢, as L — co, where

1+7)Q"
ey = LEDLT (2.108)

9+
This is shown in figure 2.12. Analysis of the limit ¢, — a shows that ¢ = ¢, +0O(1/L)
as L — oo, but evidently the approach to the limit is extremely slow, particularly at
low ~ (high Froude number).

2.5.3 Tidal bores

A bore on a river is a shock-like wave which travels upstream, and it occurs because
of forcing at the mouth of the river due to tidal variation in sea level. In England the
best known example is the Severn bore, which occurs because of the very high tidal
range in the Severn estuary. Large crowds come to view the bore, which manifests
itself as a wall of water about a metre high advancing up river at a speed of some
four to five metres a second. Figure 2.13 shows a photograph of the Severn bore.
Bores occur on certain rivers due to a confluence of factors. The tidal range has to be
very large, and this can be caused by tidal resonance in an estuary; in addition, the
river must narrow dramatically upstream, so that the estuary acts like a funnel. The
wave then forms because the rapidly rising water level in the estuary causes a large
upstream water flux, and with a sufficiently large funnelling effect, a shock wave will
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Figure 2.13: The Severn bore.

be formed. Bores occur all over the world, for example in the Amazon, the Seine,
the Petitcodiac river which flows into the Bay of Fundy, and the Tsien Tang river in
China. Where they occur, they are spectacular, but relatively few rivers have them,
because of the severity of the necessary conditions for their formation.

Figure 2.14 shows the geometry of the Severn river and estuary. The bore forms
near Sharpness, and is best viewed at various places further upstream, notably Min-
sterworth and Stonebench, where public access is available. Figure 2.15 shows a
profile of the river during passage of a bore. There are certain features evident in this
figure which are relevant when we formulate a model. The river depth at low stage
is about a metre, whereas the tidal range is much greater than this. In the Severn
estuary, it can be 14.5 metres, and at Sharpness, it is 9 metres in the figure. The
other feature of importance is the apparent alteration in the bedslope as the estuary
is approached. As an idealisation of this, figure 2.16 shows the basic geometry of a
river—estuary system, which we can use to explain bore formation.

The river in figure 2.16 flows into a tidal basin, where the water level fluctuates
tidally with a period of slightly more than twelve hours. Such fluctuations cause the
river /estuary boundary point to migrate back and forth. In particular, approaching
high tide this point moves upstream. The idea behind bore formation is that if the
upstream velocity of this boundary is faster than the upstream characteristic wave
speed,? a smooth wave cannot occur, and a shock must form, as indicated in figure
2.16.

We want to study this phenomenon in the context of the St. Venant equations

2We assume the Froude number F is less than one at low stage, which is the realistic condition;
in that case, one wave travels upstream. If F' > 1, a standing wave would form at the boundary.
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Figure 2.14: A sketch map of the river Severn.
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Figure 2.15: Profile of the Severn during passage of a bore.
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Figure 2.16: Idealised river basin geometry.

(2.44), where for a wide channel, we choose
R=h, A=uh, (2.109)

where w is the width, and is taken to be a prescribed function of s. The phenomenon
of concern occurs over the length of the river, so that long wave theory is appropriate.
From figure 2.15, a suitable length scale is of the order of 45 km, where the length scale
used in writing (2.44) is d/ sin o, and is 2 km if we take d = 2 m and sina = 1073, If
we take a typical velocity upstream as 2 m s~1, then the corresponding time scale is
103 s, or 15 minutes, and the Froude number is about 0.3. The scale up in distance is
thus of order 22, while that in time to the half-period of tidal oscillations is similar.
This suggests that we rescale both time and space as

bt smt, (2.110)

€ €

where a plausible value of € may be of order 0.05. In this case (2.44) can be written
in the form

why + (wuh)s = 0,
|ufu

eF*(u; +uu,) = 1— =~ che, (2.111)

or equivalently in the form

|ulu - eFw'v/hu

2.112
h ” (2.112)

e iF%-l—(\/EiFu)%} [Qx/HiFu] —1-
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which shows explicitly that the characteristic wave speeds are

vh
+— : 2.113
ia +u ( )
Finally, we wish to study the situation shown in figure 2.16, where the tidal range is
significantly larger than the river depth. The simplest choice is to suppose the tidal

amplitude is also O(1/¢), so that appropriate boundary conditions for (2.111) are

wuh = 1 at s=0,
Hy(t
h = () at s=1, (2.114)
€
representing a constant upstream volume flux, and a prescribed tidal range.
The assumption that ¢ < 1 allows us to solve (2.111) asymptotically. The solution
has two parts, river and estuary, joined at a front which we denote by s = sy.
Upstream, for s < s¢, the flow is quasi-stationary, and we have, to leading order,

wuh=~1, 1-— % ~ 1, (2.115)
whence
uxw Y3 h=w %3 (2.116)

The steady solution of (2.111) is appropriate, because the sub-characteristic wave
propagates downstream, and after any initial transient, the upstream boundary con-
dition leads to a steady flow.

Downstream, for s > sy, we write

H
h=—, (2.117)
€
so that
wH; + (wuH), =~ 0,
1-H, ~ 0, (2.118)
whence
H~s—1+Hp, (2.119)
from which there follows .
—Hl/ wds
~—— 2.120
um (2.120)

where we choose the integration constant for matching purposes at s;. Also to match
the solution to that in s < sy, we need to take

s;=1—Hy. (2.121)
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Transition region

At the front, we define
s=sp+eX, $p=c, wr=wlss(t)]; (2.122)

then to leading order we have

—cwshx + (wrhu)x = 0,
Fflu—cux = 1-— # — hx, (2.123)
with boundary conditions
h — w;2/3, U — w;1/3 as X — —oo,
h~X, u~casX — oo, (2.124)

in order to match to the upstream and downstream solutions. Only the conditions
on h are necessary, those on u following automatically. A first integral of the mass
conservation equation (2.123); gives

(u—c)h =k = [w;”?’ - c] wy??, (2.125)
and from this we find W ( n
—|k+chl(k+c
hx = ey . (2.126)
This can be compared with (2.87). The difference in the present case is that x and ¢
are given, and the question is only whether a solution exists joining h = h_ = w;Q/ 3

upstream to the downstream solution A~ ~ X. Note that as X — —o0, k+ch — w;l,

so that h — w;2/ % can consistently be satisfied.
Let us suppose that the tide is coming in, thus ¢ < 0. From (2.113), we suspect
there may be trouble if

L (1
—c>w;'? (F - 1) (2.127)

(assuming F' < 1). If we suppose that the opposite inequality holds, i.e., —c <
-1/3 1

w, <f — 1), then a little algebra shows that this is precisely the criterion that

h_ = w;2/3 > (kF)?3, i.e., the denominator of (2.126) is positive. To see that there
is a solution of this problem in this case, we need to show that the numerator of
(2.126) is also positive, for then h will increase indefinitely as required.

The numerator, N, is given by

N = {r®— wJT?}—{‘wJTl +c (h - w;2/3> ’ [w;l +c (h - w;2/3)] —w;?p. (2.128)

Both expressions in curly brackets are zero when h = h_ at X = —oo; for h slightly
greater than h_, the left curly bracketed expression is positive, while the right curly
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Figure 2.17: Bore formation occurs for large tides and rapidly widening rivers with
reasonably sized Froude numbers.

bracketed expression decreases, since ¢ < 0. The numerator is thus positive for
h — h_ small and positive, and remains so. From this it follows that a solution of the

_ 1
transition problem exists if —c < w; 1/3 <F — 1).

It remains to be shown that no solution exists if the opposite inequality, (2.127),
holds. In this case the denominator is initially negative. As before, the numerator
is positive if h > h_, and equivalently negative if h < h_, thus implying hx < 0 if
h > h_,and hx > 0if h < h_. This means solutions of (2.126) can only approach h_
as X — 00, and no transition solution exists. This suggests another form of solution,
one in which a discontinuity forms at the critical condition

—5p = w(sy)”1/3 (% - 1) : (2.129)

and thereafter propagates upstream as a shock front. This is the bore. Figure 2.17
shows a schematic illustration of the criterion (2.129) for bore formation.

Propagation of the bore

The outer river and estuary solutions (2.116), (2.119) and (2.120) remain valid after
the formation of a shock, but the transition region is replaced by a shock at s¢, where
the values of h_ and u_ (given by (2.116) with w = wy) jump (up) to values h, and
u4, which have to be determined along with s;. Initially A, and u, are O(1), and
as long as this remains true (which we suspect is all the time), we require that s is
still given by

Sf =1-—- H1 -+ 0(5); (2130)
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the location of the bore is essentially determined by the tidal range. Jump conditions
of mass and momentum across the developing bore then imply that the bore speed
—5§5 = v satisfies

T g o
[t [ha] * ’

and these two relations serve to determine A, and u, since v = Hj.

—v

(2.131)

2.6 Notes and references

Books on hydrology tend to be geographical in nature, describing the processes im-
portant in the hydrological cycle. For example, Chorley (1969) or Ward and Robinson
(1990) are useful introductions. Books on hydraulics, on the other hand, concentrate
on the fluid dynamics of the river flow itself. An example is the book by French
(1984); an older classic is that by Ven te Chow (1959). A nice book which bridges the
gap, and also includes discussion of sediment transport and channel morphology and
pattern, is that by Richards (1982). A more detailed account of sediment transport
is given by Allen (1985). Flood waves and roll waves have been discussed from the
present perspective by Whitham (1974). The effect of tidal variations on river flow
is discussed by Pugh (1987); in particular, he describes the phenomenon of the river
bore.

Exercises

2.1 Find a relationship between the hydraulic radius R and the area A for triangular
(notch shaped) or rectangular (canal shaped) cross sections. Hence show that
Chezy’s and Manning’s laws both lead to a general relationship of the form

cAm—I—l
Q=""7
m+1

with 0 < m < 1, giving explicit prescriptions for ¢ and m. For a canal of depth
h, show that the flow is turbulent if

1/3
B> 102,23 / /
~ Sg Y

where v is the kinematic viscosity, f is the friction factor, S is the slope and g
is gravity. Taking v = 10® m? s7!, f = 0.01, S =1073, g = 10 m s72, find a
critical depth for turbulence. Is the Isis turbulent?

2.2 For flow in a pipe, the friction factor f in the formula 7 = fpu? is often taken
to depend on the Reynolds number, for example, Blasius’s law of friction has
f o« Re '7. By taking Re = UR/v, where R is the hydraulic radius, find
modifications to Chézy’s law if f o« Re . Comment on whether you can
obtain Manning’s flow law this way.
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2.3

24

2.5

2.6

The cross sectional area of a river A is assumed to satisfy the wave equation

9A 0A
W+CA g—

0,

where s is distance downstream. Explain how this equation can be derived from
the principle of conservation of mass. What assumptions does your derivation
use?

A river admits a steady discharge Q = Q.. At t = 0, a tributary at s = 0 is
blocked, causing a sudden drop in discharge to - < .. Solve the equation
for A using a characteristic diagram and show that an expansion fan branches
from s = 0, t = 0. What is the hydrograph record at a downstream station
s=s89>07

Later, the tributary is re-opened, causing a sudden rise from @)_ to (). Draw
the characteristic diagram, and show that a shock wave propagates forwards.
What is its speed?

Use the method of characteristics to find the general solution of the equation
describing slowly-varying flow of a river. Show also that in general shocks will
form, and describe in what situations they will not. What happens in the latter
case?

Either by consideration of an integral form of the conservation of mass equation,
or by consideration from first principles, derive a jump condition which describes
the shock speed. In terms of the local water speed, what is the speed of a shock
(a) when it first forms; (b) when it advances over a dry river bed?

A river of rectangular cross section with width w carries a steady discharge Qg
(m® s7'). At time ¢t = 0, a rainstorm causes a volume V of water to enter the
river at the upstream station s = 0. Assuming Chézy’s law, find the solution
for the resulting flood profile (sketch the corresponding characteristic diagram),
and derive a (cubic) equation for the position of the advancing front of the
flood. Without solving this equation, find an expression for the discharge @); at
the downstream station s = [.

Derive the St. Venant equations from first principles, indicating what assump-
tions you make concerning the channel cross section. Derive a non-dimensional
form of these equations assuming Manning’s roughness law and a triangular
cross section.

A sluice gate is opened at s = 0 so that the discharge there increases from ) _
to @+. The hydrograph is measured at s = [. Using [ as a length scale, and
with a corresponding time scale ~ [/u, derive an approximate expression for
the dimensionless discharge in terms of A, if the Froude number is small, and
also ¢ = [h]/SI < 1, where [h] is the scale for the mean depth and S is the
slope.
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Hence show that A satisfies the approximate equation

0A 0A 0

94 Laqp392 1 9

ot T3 9s T 1% [
What do you think the difference between the hydrographs for ¢ = 0 and
0 < ¢ < 1 might be?

2.7 Why should the equation

2.8

A+ cA"A, =M

represent a better model of slowly varying river flow than that with M = 07
Find the general solution of the equation, given that A = 0 at s = 0, and
A = Ay(s) at t =0, s > 0. Find also the steady state solution A.,(s). How
would you expect solutions representing disturbances to this steady profile to
behave?

Suppose Ag = Ae; + Ad(s), representing an initial flood concentrated at s = 0;
show that the resulting flood occurs in s_ < s < s, and show that the profile
of A between s_ and s, is given implicitly by

Am+1 _ (A . Mt)m+1 — (m+ l)MS,
C

and deduce that

B CMmtm—l—l
(m+1) "

What happens as M — 0?7

A dimensionless long wave model for slowly varying flow of a river of depth h
and mean velocity u is given in the form

h: + (uh)s = M(s),

u
0=1—— —¢h,,
h g

where ¢ < 1.
How would you physically interpret the positive source term M (s)?

Show that for small ¢, the model can be reduced to the approximate form

he + (B3/%), = M(s) + Le[h'/2h),.

Show that if h = 0 at s = 0, then an approximate steady state solution is given

by y
h:{AUﬂ@@}/.
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Find this approximate solution if M = 1, and show that it is in fact an exact
solution of the differential equation. Write down the general solution of the
differential equation in this case.

Explain why the condition of a horizontal water surface might be an appropriate
boundary condition to apply at s = 1, and show that in terms of the scaled
variables, this implies hy = 1/¢ at s = 1. Show that with this added boundary
condition, the approximate solution (when M = 1) is still appropriate, except
in a boundary layer near the outlet.

0.03

0.02 ¢

0.01 ¢

Figure 2.18: H(s,t) plotted at fixed s = 1 as a function of ¢, using values ¢ = 0.03,
I =0.005, 6 = 1.

o0

Next, suppose that M = 0 for large enough s, and that / M (s)ds = 1. Write

0
down the linear equation satisfied by small perturbations H to the steady state
h =1 when s is large.

By seeking solutions of the form exp[ot + iks], show that small wave-like dis-
turbances travel at speed 2 and decay on a time scale ¢ ~ O(1/e).

Show that if ¢ = s — 3¢, 7 = iet, then H, = He, and deduce that if H =
d exp[—s?/I%] at t = 0, then

B to 12 —(s = %t)2
H=0 <t0 T t) exp [ 2e(to + 1)

l2
for ¢t > 0, where tg = %" (A typical hydrograph described by this function is

shown in figure 2.18. It is asymmetric, but the steep shock-like rise is limited
by the linearity of the model.)
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2.9 Using Chézy’s law with a rectangular cross section, show how to non-dimensionalise
the St. Venant equations, and show how the model depends on the Froude num-
ber, which you should define. Choose or guess suitable values for the Thames
in London, the Isis/Cherwell in Oxford, an Alpine (or other) mountain stream,
and determine the corresponding natural length and time scales, and the Froude
number, for these flows. Show also that in the case of long wave and short wave
motions, the equations effectively become those of slowly varying flow and the
shallow water equations, respectively.

2.10 Derive the appropriate forms of the St. Venant equations assuming Manning’s
roughness law, and a triangular river cross section, and show in detail that small
disturbances to the steady state can propagate up and down stream if F' < F7,
but can only propagate downstream if F' > F}, and that they are unstable if
F > F5. What are the values of F; and Fy?

2.11 The hydraulic jump

Using the dimensionless form of the mass and momentum equations (for a
canal), show that discontinuities (shocks) in the channel depth travel at a (di-
mensionless) speed V given by

C [Au]t [FPAWR + 3 AT
AR [PPAlt

where + refer to the values on either side of the jump, and F' is the Froude
number. Show that a stationary jump at s = 0 is possible (this can be seen
when a tap is run into a basin) if Au =@ in s > 0 and s < 0, and

.
[F2Q2 " Az} —o.

V

A 2

Deduce that for prescribed @@ and A_, a unique choice of A, # A_ is possible.
Show also that the locally defined Froude number is

FQ

F'f’:m,

and deduce that the hydraulic jump connects a region of supercritical (Fr > 1)
flow to a subcritical (Fr < 1) one. (In practice, A_ < A, if @ > 0;if A_ > A,
the discontinuity cannot be maintained.)

2.12 Evaluate the integrals to find explicit expressions for N and D in (2.102), and
show that as ¢, — a,

D=—-Aln(¢y —ay)+Dy+o(l), N=-Cln(py —ai)+ Ny+o(1),

and find explicit expressions for A, C, Dy and Ny. Hence show that as ¢, — o,

In (ﬁ) ~b(L+ L) +0 <(L+71L)) ,
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where the constant b should be determined, and deduce that

~ Cy L+L* (L+L*)2 )

where k and L* should be found. By evaluating £ and L* for different values
of 7, show that both quantities increase rapidly as vy is reduced, and hence
explain why the convergence of ¢ to c; in figure 2.12 is so slow. Compare this
asymptotic result with a direct numerical evaluation of ¢(L). How good is the
asymptotic result?

2.13 Why does the numerator have to be positive in (2.100)?
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Chapter 3

Dunes

The muddy colour of many rivers and the milky colour of glacial melt streams are due
to the presence in the water of suspended sediments such as clay and silt. The ability
of rivers to transport sediments in this way, and also (for larger particles) by rolling
or saltation as bedload transport, forms an important constituent of the processes by
which the Earth’s topography is formed and evolved: the science of geomorphology.

Sediment transport occurs in a variety of different (and violent) natural scenarios.
Powder flow avalanches, sandstorms, lahars and pyroclastic flows are all examples of
violent sediment laden flows, and the kilometres long black sandur beaches of Iceland,
laid down by deposition of ash-bearing floods issuing from the front of glaciers, are
testimony to the ability of fluid flows to transport colossal quantities of sediment.
In this chapter we will consider some of the landforms which are built through the
interaction of a fluid flow with an erodible substrate; in particular we will focus on
the formation of dunes and anti-dunes in rivers, and Aeolian dunes in deserts.

3.1 Patterns in rivers

There are two principal types of patterns which are seen in rivers. The first is a
pattern of channel form, i.e. the shape taken by the channel as it winds through the
landscape. This pattern is known as a meander, and an example is shown in figure
3.1.

The second type of pattern consists of variations in channel profile, and there
are a number of variants which are observed. A distinction arises between profile
variations transverse to the stream flow and those which are in the direction of flow.
In the former category are bars; in the latter, dunes and anti-dunes. The formation
of lateral bars results in a number of different types of river, in particular the braided
and anastomosing river systems (described below).

All of these patterns are formed through an erosional instability of the uniform
state when water of uniform depth and width flows down a straight channel. The
instability mechanism is simply that the erosive power of the flowing water increases
with water speed, which itself increases with water depth. Thus a locally deeper
flow will scour its bed more rapidly, forming a positive feedback which generates
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Figure 3.1: A meandering river. Photograph courtesy Gary Parker.

the instability. The different patterns referred to above are associated with different
geometric ways in which this instability is manifested.

River meandering occurs when the instability acts on the banks. A small oscilla-
tory perturbation to the straightness of a river causes a small secondary flow to occur
transverse to the stream flow, purely for geometric reasons. This secondary flow is
directed outwards (away from the centre of curvature) at the surface and inwards
at the bed. As a consequence of this, and also because the stream flow is faster on
the outside of a bend, there is increased erosion there, and this causes the bank to
migrate away from the centre of curvature, thus causing a meander.

Figure 3.2: Cross section of a braided river with one lateral bar, which is exposed
when the river is at low stage (i. e., the river level is low). The instability which causes
the bar is operative in stormflow conditions, when the bar is submerged.

Braided rivers form because of a lateral instability which forms perturbations
called bars. This is indicated schematically in figure 3.2. A deeper flow at one side of
a river will cause excess erosion of the bed there, and promote the development of a
lateral bar in stormflow conditions. The counteracting (and thus stabilising) tendency
is for sediments to migrate down the lateral slope thus generated. Bars commonly
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form in gravel bed rivers, and usually interact with the meandering tendency to form
alternate bars, which form on alternate sides of the channel as the flow progresses
downstream. In wider channels, more than one bar may form across the channel, and
the resulting patterns are called multiple row bars. In this case the stream at low
stage is split up into many winding and connected braids, and the river is referred to
as a braided river.

It is fairly evident that the scouring conditions which produce lateral bars and
braiding only occur during bank full discharge, when the whole channel is submerged.
Such erosive events are associated with major floods, and are by their nature occa-
sional events. In between such floods, vegetation may begin to colonise the raised
bars, and if there is sufficient time, the vegetative root system can stabilise the sed-
iment against further erosion. A further stabilising effect of vegetation is that the
plants themselves increase the roughness of the bed, thus diminishing the stress trans-
mitted to the underlying sediment. If the bars become stably colonised by vegetation,
then the braided channels themselves become stabilised in position, and the resulting
set of channels is known as an anastomosing river system.

The final type of bedform is associated with waveforms in the direction of flow.
Depending on the speed of the flow, these are called dunes or anti-dunes. At high
values of the Froude number (Fr > 1), anti-dunes occur, and at low values (Fr < 1)
dunes occur. A related feature is the ripple, which also occurs at low Froude number.
Ripples are distinguished from dunes by their much smaller scale. Indeed, ripples
and dunes often co-exist, with ripples forming on the larger dunes. The rest of this
chapter focusses on models to describe the formation and evolution of dunes.

3.2 Dunes

Dunes are perhaps best known as the sand dunes of wind-blown deserts. They occur
in a variety of shapes, which reflect differences in prevailing wind directions. Where
wind is largely unidirectional, transverse dunes form. These are ridges which form at
right angles to the prevailing wind. They have a relatively shallow upslope, a sharp
crest, and a steep downslope which is at the limiting angle of friction for slip. The
air flow over the dune separates at the crest, forming a separation bubble behind the
dune. Transverse dunes move at speeds of metres per year in the wind direction.

Linear dunes, or seifs, form parallel to the mean prevailing wind, but are due to
two different prevailing wind directions, which alternatively blow from one or other
side of the dune. Such dunes propagate forward, often in a snakelike manner.

Other types of dunes are the very large star dunes (which resemble starfish), which
form when winds can blow from any direction, and the crescentic barchan dunes,
which occur when there is a limited supply of erodible fine sand. They take the shape
of a crab-like crescent, with the arms pointing in the wind direction. Barchan dunes
have been observed on Mars.

As already mentioned, dunes also occur extensively in river flow. At very low flow
rates, ripples form on the bed, and as the flow rate increases, these are replaced by the
longer wavelength and larger amplitude dunes. These are regular scarped features,
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whose steep face points downstream, and which migrate slowly downstream. They
form when the Froude number Fr < 1 (the lower régime), and are associated with
river surface perturbations which are out of phase, and of smaller amplitude. The
wavelength of dunes is typically comparable to the river depth, the amplitude is
somewhat smaller than the depth.

lower regime upper regime
Fr<1 Fr>1
~ v
: flat bed
ripples

P N
I v A B N N

anti-dunes
M Nj\
chute
dunes y ool
Fr
increasing

Figure 3.3: The succession of bedforms which are observed as the Froude number is
increased. In the lower régime, where F'r < 1, we see first ripples and then the larger
dune features. Surface perturbations are small. In the upper régime, F'r > 1; dunes
disappear, giving a flat bed, and then anti-dunes are formed, in phase with surface
waves. These are often transient features, occurring in flood conditions, and they are
likely to be time dependent also.

When the Froude number increases further, the plane bed re-forms at Fr =~ 1,
and then for F'r > 1, we obtain the upper régime, wherein anti-dunes occur. Whereas
dunes are analogous to shock waves, anti-dunes are typically sinusoidal, and are in
phase with the surface perturbations, which can be quite large. They may travel
either upstream or (more rarely) downstream. Indeed, for the more rapid flows,
backward breaking shocks occur at the surface, and chute and pool sequences form.
Anti-dunes can be found on rapid outlet streams on beaches; for example I have seen
them on beach streams on the West coast of Normandy, where the velocity is on
the order of a metre per second, and the flow depth may be several centimetres. A
common observed feature of such flows is their time dependence: anti-dunes form,
then migrate upstream as they steepen, leading to hydraulic jumps and collapse of
the pattern, only for it to re-form elsewhere The succession of bedforms as the Froude
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number increases is illustrated in figure 3.3. Anti-dunes do not form in deserts simply
because the Froude number is never high enough.!

Dunes and anti-dunes clearly form through the erosion of the underlying bed, and
thus mathematical models to explain them must couple the river flow mechanics with
those of sediment transport. Sediment transport models are described below. There
are two main classes of bedform models. The most simple and appealing is to combine
the St. Venant equations with an equation for bedform erosion. There are two ways
in which sediment transport occurs, as bedload or as suspended load. Each transport
mechanism gives a different model, and we shall find that a suspended load transport
model can predict the instability which forms anti-dunes, but not dunes, which indeed
may occur in the absence of suspended sediment transport.? On the other hand, the
St. Venant equations coupled with a simple model of bedload transport cannot predict
instability, although such a model can explain the shape and speed of dunes.

The other class of model which has been used describes the variation of stream
velocity with depth explicitly. One version employs potential theory, as is customarily
done in linearised surface wave theory. At first sight, this appears implausible insofar
as the flow is turbulent, and indeed the model can then only explain dunes when
the bed stress is artificially phase shifted. In order to deal with this properly, it is
necessary to include a more sophisticated description of turbulent flow, and this can
be done using an eddy viscosity model, which is then able to explain dune formation.
The issue of analysing the model beyond the linear instability régime is more difficult,
and some progress in this direction is described in this chapter.

3.2.1 Sediment transport

Transport of grains of a cohesionless bed occurs as bedload or in suspension. At a
given flow rate, the larger particles will roll along the bed, while the smaller ones are
lifted by turbulent eddies into the flow. Clearly there is a transition between the two
modes of transport: saltating grains essentially bounce along the bed.

Relations to describe sediment transport are ultimately empirical, though theory
suggests the use of appropriate dimensionless groups. The basic quantity is the Shields
stress (Shields 1936), defined as the dimensionless quantity

T

- _ 1
" T ApgD, (38-1)

Here 7 is the basal shear stress, Ap = p, — py, is the excess density of solid grains over
water (p, is the density of the solid grains, p,, is the density of water), g is gravity,
and Dy is the grain size. In general, grain sizes are distributed, and the Shields stress
depends on the particle size. The shear stress 7 at the bed is usually related to the
mean flow velocity u by the semi-empirical relation (2.13), i.e.,

7= fpuu’, (3.2)

!The Froude number corresponding to a wind of 20 m s~! = 45 miles per hour over a boundary
layer depth of 1 km is 0.2.
2This also seems to be true of anti-dunes.
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Figure 3.4: The critical Shields stress for the onset of sediment transport, weakly
dependent on the particle Reynolds number Re, = u.D;/v.

where f is a dimensionless friction factor, of typical value 0.01-0.1. (Larger values
correspong top rougher channels.)
Shields found that sediment transport occurred if 7% was greater than a critical
value 77, which itself depends on flow rate via the particle Reynolds number
U Dg
Re, = ; (3.3)

14

(The friction velocity is defined to be

w. = (7/pu) %) (3.4)

Figure 3.4 shows the variation of 7* with u.D;/v; except at low flow rates, 7% = 0.05.

3.2.2 Bedload

Various recipes have been given for bedload transport, that due to Meyer-Peter and
Miiller (1948) being popular:

¢ = K[ — 7137, (3.5)

where [z]; = max(z,0). Here K = 8, 7% = 0.047, and ¢* is the dimensionless bedload
transport rate (Einstein 1950), defined by

* )
T = (ApgD3/pn) 72 (3.6)

q» being the bedload measured as volume per unit stream width per unit time.
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3.2.3 Suspended sediment

Suspended sediment transport is effected through a balance between an erosion flux
vg and a deposition flux vp, each having units of velocity. The meaning of these is
that p;vg is the mass of sediment eroded from the bed per unit area per unit time,
while psvp is the mass deposited per unit area per unit time.

3.2.4 FErosion

It is convenient to define a dimensionless erosion rate E via
vg = v, F, (3.7)
where v, is the particle settling velocity, given by Stokes’s formula

ApgD?
Vs = )
18n

(3.8)

1 being the dynamic viscosity of water. Various expressions for E are due to Garcia
(1989), Van Rijn (1984) and Smith and McLean (1977). They share the feature that
FE is a concave increasing function of basal stress. Typical is Van Rijn’s relationship

E o (" — T:)3/2R611,/5; (3.9)

typical measured values of E are in the range 1072 — 1071

3.2.5 Deposition

The calculation of deposition flux vp is more complicated, as it is analogous to the
calculation of basal shear stress in terms of mean velocity via an eddy viscosity model.
We can write the dimensionless deposition flux D in the form

PsUp = vseD, (3.10)

where ¢ is the mean column concentration of suspended sediment, measured as mass
per unit volume of liquid, and D depends on a modified Rouse number R = v,/eru.
(Here er is related to the eddy viscosity; specifically e;' is the Reynolds number
based on the eddy viscosity, so the Rouse number is a Reynolds number based on
particle fall velocity and eddy viscosity.) D increases with R, with D(0) = 1, and a

typical form for D is
R

D=2
1—e R

(3.11)

3.3 The potential model

Kennedy (1963) introduced a model of fluid flow over an erodible bed, invoking po-
tential flow for the fluid. We restrict our attention to two dimensional motion in
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the (z,z) plane: z is distance downstream, z is vertically upwards. The bed is at
z = s(z,t), the free water surface is at z = n(z,t), so that the depth h is given by

h=n-—s; (3.12)

the geometry is shown in figure 3.5. In Kennedy’s potential flow model, the usual
equations for the fluid flow potential ¢ apply:

Vi = 0 in s<z<n,
¢ = M+ @M On 2z =1,
¢+ gn+3|Ve> = constant on z =7,
¢ = S+ PpS; on z=s. (3.13)

Figure 3.5: Geometry of the problem.

The extra equation required to describe the evolution of s is the Ezner equation:

Js Oqp
l—-n)—+—=0 3.14
(1-n+ 52 =0, (314
where n is the porosity of the bed; this assumes bedload transport only, and we may
take (see equations (3.5) and (3.2)) g, = g»(u), where g;(u) > 0. Implicitly, we suppose
a (turbulent) boundary layer at the bed, wherein the basal stress develops through
a shear layer; the basal shear stress will then depend on the outer flow velocity. We

define
@

1—n

q= (3.15)

and following Kennedy, we take
qa=q(ul,_s), (3.16)

that is to say, u is evaluated at x — § and z = s, where the phase lag § is included
to model the notion that in shear flow over a boundary, such a lag is indeed present
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(Benjamin 1959). Of course (3.16) is a crude and possibly dangerous way to model
this effect.
To examine the linear stability of a uniform steady state we write s =0, n = h,

p=uz+® g=q(u)+Q, n=h+(, (3.17)
and then linearise the equations and boundary conditions (which are applied at the

unperturbed boundaries z = 0 and z = h) to obtain

V@ = 0 in 0<z<h;

(I)z = Ct + U’Cm
S, +g(+ud, = 0 on z=h;
P, = s;4us,,
$s+Q, = 0 on z=0, (3.18)
where
For a mode of wavenumber k, we put
(C’ S’ Q) = (é_-’ g, Q) X 6zkz+o-t’ (3'20)
and write .
® = e+ A cosh kz + Bsinh k2], (3.21)

so that the boundary conditions together with (3.19) become

k[Asinh kh + B cosh kh] = (o + iku)(,

(0 + iku)[A cosh kh + Bsinh kh] 4+ gC = 0,
kB = (o + ik)3,
05+ ikQ = 0,
Q = q'ike ™ A, (3.22)

Some straightforward algebra leads to
ok[(o + iku)? + gk tanh kh] 4+ o + iku)k?q'e "*[(0 + iku)? tanh kh 4 gk] = 0, (3.23)

a cubic for o (k).

Solution of this is facilitated by the observation that we can expect two modes
to correspond to upstream and downstream water wave propagation, while the third
corresponding to erosion of the bed may be much smaller, basically if g, is sufficiently
small. Specifically, let us assume (realistically) that ¢ < hu. Then ¢’ < h, and for
small ¢, the roots of (3.23) are approximately the (stable) wave modes

_Lz,k ~ut (% tanh kh)!/2, (3.24)
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and the erosive mode

{ [ coth kh}
kh
~ —k*ug'[si ' h 2
o k“uq'[sin kd + i cos k] tanh kh o o EA T (3.25)
kh
where we define the Froude number by
2
F?= ;‘—h. (3.26)
For the erosive mode, the growth rate is
[ o coth kh}
kh
2 1
Reo = —k“uq sin kd tanh kh . b ER T (3.27)
kh
and the wave speed is
o coth kh
Imo , kR
kh

This gives us the typical instability diagram shown in figure 3.6. For § < 0 the regions

above and below the two curves are unstable, corresponding to dunes and anti-dunes.

The curves are given by F? = (coth kh)/kh and F? = (tanh kh)/kh, respectively.
The phase relation between surface and bed for the erosive bed is given by

= 2
gm F<sech kh ’ (3.29)
S 2 tanh kh

kh

and this defines wave forms below the lower curve in figure 3.6 as dunes, and those
above as antidunes.

Figure 3.6 is promising, at least if sinkd < 0, as it will predict both dunes and
anti-dunes. To get the wave speed positive, we need in fact to have cos ké > 0, thus
0> ké > —m/2 (we can take —7 < k§ < 7 without loss of generality), whereas we
would generally want k§ < —m/2 for anti-dunes to migrate backwards.

There is a serious problem with this model, beyond the fact that the phase shift
0 is arbitrarily included. The spatial delay is unlikely to provide a feasible model
for nonlinear studies; indeed, we see that Reo ~ k? at large k, and in the unstable
régime this is one of the hallmarks of ill-posedness.

Having said that, it will indeed turn out to be the case that a phase lead (§ < 0)
really is the cause of instability. A phase lead means that the stress, and thus the
bedload transport, takes its maximum value on the upstream face of a bump in the
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Figure 3.6: Instability diagram for the potential flow model. The regions marked
with a minus sign, above the upper curve and below the lower curve, are regions of
instability if § < 0, more specifically if sin kd < 0. The marked distinction between
dunes and anti-dunes is based on the surface/bed phase relation (see (3.29). Wave
motion is downstream if cos k§ > 0, upstream if cos ké < 0.

bed. A phase lead will occur because of the effect of the bump on the turbulent
velocity structure above, as we discuss further below. It can also occur through an
effect of bedload inertia (Parker 1975) (see also question 3.5).

The choice of wave speed in this theory is unclear, since cos kd can be positive or
negative. The possibly more likely choice of a positive value implies positive wave
speed.

3.4 St. Venant type models

Since river flow is typically modelled by the St. Venant equations, it is natural to try
using such a model together with a bed erosion equation to examine the possibility
of instability. This has the added advantage of being more naturally designed for
nonlinear studies. A St. Venant/Exner model was studied by Reynolds (1965). The
model can be written in the form

St+q:l::0,
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ht + (’U«h)z = 0,

2
Ug + Uty = gS — f% — gNe, (3.30)

where S is the downstream slope, ¢ = ¢(7) and 7 = fp,u®, and n —s = h. It is
convenient to take advantage of the limit ¢ < hu, just as we did before, and we do
so by first non-dimensionalising the equations. We choose scales as follows:

2

s,x,h,n~ hg, u~ugy, ¢~ qo, trvh%/qo, (3.31)

and we choose hy, up by balancing terms as follows: uh ~ Qq, gS ~ fu®/h; here Qy is
the (prescribed) volume flow per unit width. We choose g as the size of the bedload
transport equation in (3.5).

With these scales, the dimensionless equations corresponding to (3.30) are

8t + ¢, =0,
€ht + (’U,h)w = 0,
Fz(sut + uuy) = —n, + 6(1 — u—),

h=mn—s, (3.32)

where the parameters are

e=—, §=05. (3.33)

If we now suppose ¢ < 1 and § < 1, both of them realistic assumptions, then we
have approximately
uh =1,

sFPu> +n=3F +1, (3.34)

supposing that u,h — 1 at large distances. Eliminating h and 7, we have
1
s=1-——+43F*(1-u?), (3.35)
u

whose form is shown in figure 3.7. In particular, s'(1) = (1 — F?), so the basic state
u = 1 corresponds to the left hand or right hand root of s(u) depending on whether
F<lorF >1.
We also have
ds F?—h?
dn  F?2
so that small perturbations to h = 1 are out of phase (dunes) if F' < 1 and in phase
(anti-dunes) if F/ > 1. If we take the dimensionless bedload transport as q ~ 73/2 = v*
(the dimensionless basal stress having been scaled with fp,u?2), so that u = ¢'/3, then
we see from (3.35) that s = s(g), and s(g) has the same shape as s(u), as shown in
figure 3.7.

(3.36)
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Figure 3.7: s(u) as given by (3.35) for two typical cases of rapid and tranquil flow.

The whole model reduces to the single first order equation
§'(q)q: + g = 0. (3.37)

Disturbances to the uniform state ¢ = 1 will propagate at speed v(q) = 1/5'(q), where
v is shown in figure 3.8. For F' < 1, v(1) > 0 and v'(1) > 0, thus waves in ¢ (and thus
s) propagate downstream and form forward facing shocks; this is nicely consistent
with dunes. For F > 1, v < 0 and v'(q) is normally positive. Backward facing shocks
form, these are elevations in s if v’ > 0.

Unfortunately, the hyperbolic equation does not admit instability. It is straight-
forward to insert a lag as before, by writing ¢(z,t) = q[s(z — §,t)], or equivalently
s(z,t) = s[g(x + 0,t)]. Perturbation of

St + qz = Oa
q= Q[S(w - 57 t)]a (338)
via . »
s = sefetot g =14 getk=tot, (3.39)
leads to
05+ 1kq =0,
g=qe "3 (3.40)
and thus
o = kq'[—sin ké — i cos kd]. (3.41)
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Figure 3.8: The wave speed v(q) = 3¢*/®/(1 + F?) for the tranquil and rapid cases
F=0.5and F =1.5.

This requires § < 0 for instability if ¢'(s) > 0 (F' < 1) and § > 0if ¢'(s) < 0 (F > 1).
The long wavelength limit of (3.25) in which kh — 0 is precisely (3.41), bearing in
mind that (3.25) is dimensional and that ¢ = dg/du there, whereas ¢’ = dg/ds in
(3.41).

3.5 A suspended sediment model

The shortcoming of both the potential model and the St. Venant/Exner model is the
lack of a genuine instability mechanism. We now show that the inclusion of suspended
load can produce instability. Ideally, we would hope to predict anti-dunes, since dunes
certainly do not require suspended sediment transport. A St. Venant model including
both bedload and suspended sediment transport is

ht + (’U«h)m = 0,

2
u
up +uty = g(S —ng) — fT,

0 0
&(hc) + %(hcu) = ps(vg — vp),
s  Oqp

where c¢ is the column average concentration (mass per unit volume) of suspended
sediment (written as ¢ earlier). The distinction between suspended sediment transport
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and bedload lies in the source terms due to erosion and deposition, vy and vp, and
it is these which will enable instability to occur. We have n — s = h, and we suppose
@ = qo(7), T = fpuu?, whence ¢ = q(u). Additionally (see (3.7) and (3.10)), we write

vg =v,E, psvp =v.,cD, (3.43)

and expect that E = E(u) and D = D(u), with E' > 0, D' < 0; typically E < 1,
D> 1.

We scale (3.42) as before in (3.31), except that we choose the time scale g, down-
stream length scale zy, and concentration scale ¢y via

EO (1 — n)ho Qo
= 0, , to= — — , 3.44
C=p Dy 0= v.E To v.Dg ( )
where we write
E = EqE*(u/ug), D = DoD*(u/uy), (3.45)

and choose Fy and Dy so that E* and D* are O(1), and so that these are consistent
with typical observed suspended loads of 10 g 171. With this choice of scales, we
obtain the dimensionless set of equations

77_5:}1,

€ht + (’U/h)w = 0,

u2

F?(euy + uug) = 6(1 — f) — N,
h(ec; + uc,) = E* — cD*,
st + Bg. = —(E* — cD"), (3.46)
where the parameters ¢, ), ) and 8 are now given by
.l Eq . Co _ upS
 (1—n)Dy  ps(1—n)" = v,Dy’

Ug @woDo  psqeo
= N1 79 — = . 347
(gho)'/? QoEo Qo (3:47)

Here gy is the scale for g rather than ¢ = ¢,/(1 —n). The Froude number is the same
as before, but the parameters ¢ and ¢ are different: € is a measure of the suspended
sediment density relative to the bed density, and is always small; § is the ratio of the
(small) bed slope to the ratio of settling velocity to stream velocity. For more rapidly
flowing streams, we might expect § ~ 1. However, if we suppose that wavelengths of
anti-dunes are comparable to the depth (so g ~ hg), then (3.44) implies § ~ S < 1.
Thus 0 ~ 1 implies zg ~ hy/S > hg. The parameter [ is a direct measure of the
ratio of bedload (psgw) to suspended load (cyQop). For 5 > 1, we would revert to our
preceding bedload model and its scaling, and neglect the suspended load. If we adopt
the Meyer-Peter /Miiller relation in (3.5) and (3.6), then (noting that fu2 = gShy)

K
o = A—Z’(ghS)s/?, (3.48)
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and we can write

_ [ Kp S
A atm) (349

both small or large values are realistic.
To analyse (3.46), we ignore bedload (put S = 0) and take € — 0. Then

n=h+s, uh=1, (3.50)
so that
¢, = E*(u) — cD*(u) = —s4,
9 e L =0(1 - (3.51)
oz |2 u ' '

If, in addition, § < 1, then, taking s = 0 when h =1,
1

s=s(u)=3F*(1—u?)+1- " (3.52)
and the entire suspended load model is
ou Oc
"(u)—= = cD*(u) — E*(u) = ———. .
$(u) o = D" (w) = B(u) = —o (3.53)

The function s(u) is the same as we derived before in (3.35) and shown in figure
3.7. We can in fact write (3.53) as a single equation for u, by eliminating c; this gives
e E*(u) = §'(u) Ou

~ D*(u)  D*(u) ot’

ou 0 [E*(u) §'(u) Ou
") — + — —| =0 3.54
W oz | D) T Dy ]~V (3:54)
and the equation for u (or the pair for u, c) is of hyperbolic type. Note that natural
initial-boundary conditions for (3.53) are to prescribe u at ¢ = 0, x > 0, and ¢ at
x=0,t>0.
Let us examine the stability of the steady state u =1, ¢ = 1. We put

u=1+ Ukt ¢ =14 Cekotot, (3.55)

and linearise, to obtain (noting E*(1) = D*(1) = 1)

ikC =[E¥(1) — D¥(1)|JU — C = —0§'(1), (3.56)
and thus ) [E*’(l) B D*’(l)] (—k2 B zk> -
7= s'(1) 1+k2 ) (3.57)

If we suppose E* > 0, D* < 0 as previously suggested, then this model implies insta-
bility (Reo > 0) for s'(1) < 0, i.e. F' > 1, and that the wave speed is —Im (0)/k < 0;
thus this theory predicts upstream-migrating anti-dunes.
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Two features suggest that the model is not well posed if F > 1. The first is
the instability of arbitrarily small wavelength perturbations; the second is that the
unstable waves propagate upstream, although the natural boundary condition for c
is prescribed at x = 0.

Numerical solutions of (3.53) are consistent with these observations. In solving
the nonlinear model (3.53) in 0 < z < 0o, we note that

d * o0
G st e = g, (3.58)

which simply represents the net erosion of the bed downwards if the sediment flux
at infinity is greater than at zero. It thus makes sense to fix the initial boundary
conditions so that

c=1 on =0,

u—1 as x — o0, t=0. (3.59)

For F' < 1, numerical solutions are smooth and approach the stable solution u = ¢ =
1. However, the solutions are numerically unstable for F' > 1, and u rapidly blows
up, causing breakdown of the solution.

Some further insight into this is gained by consideration of the solution at z = 0.
If c = c¢o(t) on z = 0 and u = up(z) on ¢t = 0, then we can obtain u on z = 0 from
(3.54), by solving the ordinary differential equation

u _ E'(w) _ D'(w
ot s'(u) s'(u)

co(t) (3.60)

with u = ug(0) at t = 0. If we suppose that ¢ = 1 at z = 0, then it is easy to show
that if F' < 1 and u(0,0) < 1/F?3, then u(0,¢) — 1 as ¢t — oc. If on the other hand,
F > 1 and u(0,0) < 1, then u(0,t) — 1/F?/3 in finite time, and the solution breaks
down as Ou/0t — oo; if u(0,0) > 1, then u(0,t) — oo, again in finite time if, for
example, E* o< u3. More generally, breakdown of the solution when F > 1 occurs in
one of these ways at some positive value of z. Thus this suspended sediment model
shares the same weakness of the Kennedy phase shift model in not providing a well
posed nonlinear model.

3.6 Eddy viscosity model

The relative failure of the models above to explain dune and anti-dune formation led
Engelund (1970) and Smith (1970) to the consideration of a full fluid flow model, but
rather than suppose that the flow was shear free and that viscous effects were confined
to a turbulent boundary layer, as did Kennedy (1963), they considered a rotational
model of turbulent shear flow incorporating an eddy viscosity, together with the
Exner equation for bedload transport. This allows for a linear stability analysis of the
uniform flow over a flat bed via the solution of a suitable Orr-Sommerfeld equation,
and this is what Smith and Engelund did. We shall in fact proceed in somewhat
more generality. As an observation, fully-formed dunes have relatively small height
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to length ratios, and thus the fluid flow over them can be approximately linearised.
Although we use a linear approximation to derive the stress at the bed, we may retain
the nonlinear Exner equation for example. In this way we may derive a nonlinear
evolution equation for bed elevation.

3.6.1 Turbulent St. Venant equations

In this section, we rederive the St. Venant equations (2.38) and (2.41) of hydraulics
and sediment flow, but not from first principles, but by averaging the point forms of
the Navier-Stokes equations, in which we include an eddy viscosity, which is taken to
be constant.

We suppose that we have two-dimensional turbulent low down a slope of gradient
S, governed by the Reynolds equations

10
Up + UUy + WU, = - + v V2u + g8,
p Oz
10
Wy + uw, + ww, = 2P VR — g(1 = 8%)1/2,
p 0z
Uy +w, =0, (3.61)

where (u,w) are the velocity components and vr is an eddy viscosity associated with

the Reynolds stress terms. In the second equation, we can take g(1 —52)/2 ~ g since
S is small.
The suspended sediment concentration c is described by
¢t + uc, + (w —v,)c, = vpVe, (3.62)

where v, is the particle fall velocity, assuming the turbulent sediment diffusivity equals
the eddy (kinematic) viscosity.
Boundary conditions for these equations are

p=0, w=n + un,,

v Ou 0, vsc+ v Oc 0 at 2
w —%O'n = Vv, s —_— = = ’
P L t T3, Ui
0s  Oq Jc
s|(I=—n)o2+ 5| = Ao
p {( n)at—kax} vc—l—z/TaZ
u=0, w=s+us, at z=s. (3.63)

Here o, is the shear stress, approximately equal to p,vr0u/0dz for small surface
slopes.

Now let us formally suppose that bedforms and surface waves have small ampli-
tudes (or, particularly, small slopes). We should not expect this to invalidate the
derivation of a useful theory. In the spirit of lubrication theory, it then follows that
0/0z > 0/0zr, w < u, and therefore p is approximately hydrostatic:

PR pug(n — 2). (3.64)
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(This applies even with the viscous terms, which are of order vpV?u ~ vpu/d* ~
eru?/d, and thus < u?/d).
Integration of the £ momentum equation from s to n then yields

o [" o [7 ou K
a/s udz + %/S u?dz = gh(S —n,) — yT& s —i—/s VUplly, dZ. (3.65)
Furthermore, mass conservation is represented by
oh 0 ["
— 4+ — dz=10 3.66
m+mluz ’ (3.66)
and vertical integration of (3.62) yields
o [7 o [" oc K
a/s cdz + %/S ucdz = “Vrg- s — vgc|, —i—/s VpCyg dZ. (3.67)

The relation of these to the St. Venant equations is clear. Define the column
averages by an overbar, thus

1 /7 1 /7
ﬂ:E/s udz, ézﬁ/s cdz; (3.68)

hy + (ah), =0,

this leads to

n
(hu); + (Dyhu?)y = gh(S — 1g) — T + / Vpilgs dz,
0

w

n
mq+wm@fwwywm+/uwwa (3.69)
where, in the parlance of the literature of two-phase flow, the profile coefficients are
p,="“ p - (3.70)
a2 T e '
and 5 5
psvE = —VTa_z v psD = VsCly, T = pulr a—z s (3.71)
The reasonable choices D, = D, = 1 then lead to the St. Venant forms
hy + (uh), =0,
e+ 0, = g(S — ) T+1f d
U + UUy = M) — —F T T VrUze G2,
t g n puh 1), T
n
h(¢; + uc,) = ps(vg — vp) + / VpCyy A2, (3.72)
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together with the Exner equation, which from (3.63) and (3.71) is

0s  Oqp
1—n)— + 22 —9yp —vp. .
(L=n)5, + 5, =vp v (3.73)
It would be natural to suppose
1 [ 7
5 / Uy A2 & Upliy,, / UTCpe Az R hCyy, (3.74)

if inclusion of such terms were necessary. However, these are stabilising terms. In
seeking an improved expression for 7, we are motivated by the fact that with 7 =
fpwt? and in the absence of suspended sediment transport, the bed is neutrally stable:
even a small correction to 7 may render the bed unstable.

3.6.2 Orr-Sommerfeld equation

Suppose, therefore, that we consider perturbations to a basic shear flow u(z) in s <
z < n which satisfies (3.61) with vz taken as constant. (Later, we shall study a more
realistic eddy viscosity model.) It is convenient first of all to non-dimensionalise the
equations (3.61). In the basic uniform state, with s = 0 and n = hyg, the shear flow
satisfies

g ho — )
whence g
u=92 (hoz — 327), (3.76)
vr
and the column mean flow is
1 [ho 95 o
Taking vr = erughg, we find that
ou
T = pwVT& . - waU37 (378)

where f = 3er. This gives the relationship between the empirical f and the semi-
analytic er. It may in fact be more appropriate to think of 7 as being constant,
and if the bed and hence the flow is perturbed, we would only retain constant vy if
the volume flux (more precisely, the volume flux scale) is the same; this we therefore
assume.

We now non-dimensionalise the variables by writing

(Ua w) ~ U, (xv Z) ~ hg, t~ ho/uo, b—- Pg(ho - Z) ~ Pwug- (3-79)

The dimensionless equations are

Up + UUy + WU, = +1V2u+s
t T z = Dz R F27
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1
wy + UW, + ww, = —p, + Evzw,

uz +w, =0, (3.80)

and the parameters are a turbulent Reynolds number and the Froude number squared:

2
_ Uoho e %

R = , = . 3.81
vr gho ( )
The dimensionless basic velocity profile is then
gShy 1,2
= -3 3.82
Ut (== 32%), (3.82)
and the dimensionless mean velocity is
. 9Sh}
== 3.83
3VT’LLO ( )

We have vy = erpughg, e7 constant; for consistency with our previous definition of v,
we choose the mean steady velocity to be ug, i.e., we choose @* = 1 in (3.83), and
thus ug = (gSho/f)"/2. In particular, the dimensionless basic velocity profile is
u=U(z) =3 (2 —127). (3.84)
We now suppose that s and n are perturbed by small amounts; we may thus
linearise (3.80). We put

(w, w) = (U(2) + ¥z ), (3.85)

whence it follows for small ¢/ that 1 satisfies the steady state Orr-Sommerfeld equation
UV, — U"p, = R™'V*4Y, (3.86)

where we assume stationary solutions in view of the anticipated fact that s evolves
on a slower time scale.
The condition of zero pressure at z = n is linearised to be

n=1+F|,_,. (3.87)

If F? is small, then we may take 1 to be constant, and we do so as we are primarily
interested in dunes. However, the dimensionless pressure p is only determined up to
addition of an arbitrary constant, which implies that the value of the constant 7 is
unconstrained. This represents the vertical translation invariance of the system. If a
uniform perturbation to s is made, then the response of the (uniform) stream is to
raise the surface by the same amount. We can remove the ambiguity by prescribing
n = 1, with the implication that the mean value of s is required to be zero.

The other boundary conditions on z = s and z = 1 are no slip at the base, no
shear stress at the top, and the perturbed volume flux is zero. These imply

Yv=0, ¥,,=0 on z=1,
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/U(z)dz+1/):0, U+¢Y,=0 on z=s. (3.88)
0
Linearisation of this second pair about z = 0 gives

=0, ¢,=-Uss on z=0, (3.89)

where U} = U’(0). Our aim is now to solve (3.86) with (3.88) and (3.89) to calculate
the perturbed shear stress. The dimensional basal shear stress is then
vl 1
T = pueruilU)} |:1 + 372 + Uéd}nh)} , (3.90)
and since f = 3er = epU|), up = 4, we may write this as

B sUY 1
T = waU2 |:]- + U(l:) + ié¢zz|0:| .

(3.91)

The problem to solve for % is linear and inhomogeneous, and so we suppose that

5= / s(k)e*® dk, o = / P(k)e™® dk. (3.92)
(Note § will evolve slowly in time.) For each wave number k, we obtain
. o 2.9 " 1 v 291 4,7
zk[U(¢ —k@b)—U@b]:}—z[gb — k%) +kw], (3.93)

with boundary conditions

Yp=1¢"=0 on z=1,
=0, ¢ =-Ujs on z=0, (3.94)
and thus we finally define R
= —UydY(z, k), (3.95)

where U satisfies the canonical problem
1 )
1k [U(\Il” — kK*0) — U”\Il] =7 [\I/“’ — 2K*0" 4 k4\11} ,

U=U"=0 on z=1,
U=0, V=1 on z=0. (3.96)

In terms of ¥, the basal (dimensional) shear stress is

= Fpui® {1 s / " ek 5 (k)W (0, k) dk} | (3.97)

[e.e]

Using the convolution theorem, this is
T = fpuu’ [1 —s+ / K(z —£)s' () df} , (3.98)
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where s’ = 0s/0z, and

1% U0,k) ik
K(z) = o | ik e dk. (3.99)
Depending on K, we can see how 7 may depend on displaced values of s. The form
of (3.98) illustrates our previous discussion of the vertical translation invariance of
the system. For a possible uniform perturbation s = constant, we would obtain a
modification to the basic friction law, 7 = fp,u%. This is excluded by enforcing the
condition that s has zero mean in z,

/ " s(@)dz =0, (3.100)

which corresponds to prescribing
5(0) = 0. (3.101)

Note that this excludes, for example, the flow over an isolated bump. In that case,
if we have s — 0 as x — 400, then n — 1 there, and there is no restraint on s.
The assumption of zero mean is really designed for the case of a general, or periodic,
perturbation.

To determine K, we need to know the solution of (3.96) for all k. In general, the
problem requires numerical solution. However, note that R = 1/e7, and is reasonably
large (R = 30 if er = 0.034). This suggests that a useful means of solving (3.96) may
be asymptotically, in the limit of large R. The fact that we can obtain analytic
expressions for ¥”(0, k) means this is useful even when R is not dramatically large,
as here.

The solution of the Orr-Sommerfeld equation at large R has a long pedigree, and
it is a complicated but mathematically interesting problem. It can be shown that, for
k>0,

U"(0,k) ~ —3(ikRU})Y3Ai(0) + O(1), (3.102)

where Ai is the Airy function. For k < 0, ¥"(0, k) = ¥”(0, —k), and this leads to

9"(0, k) —ce Bk 2, k>0
ik { —ce™B|k| 723, k<0, (3.103)
where
c = 3(RU})Y3Ai(0), (3.104)

and ¢ ~ 1.54R/3 for U} = 3, as Ai(0) = 1/3%/°T'(2/3) ~ 0.355. From (3.99), we find

¢ [ coslkr — Z]dk
K(z) = —/0 =IE .

™

(3.105)

Evaluating the integral,® we obtain the simple formula

K
173

3How do we do that? The blunt approach is to consult Gradshteyn and Ryzhik (1980), where the
relevant formulae are on page 420 and 421 (items 4 and 9 of section 3.761). The quicker way, using
complex analysis, is to evaluate fooo 6"~ 1e? df (after a simple rescaling of k, k|z| = 6) by rotating
the contour by 7/2 and using Jordan’s lemma. Thus [;° 6"~ 'e® df = I'(v)e"™/2.

K(z) = z >0,
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K(z) = 0, =<0, (3.106)

where 2/8 p1/3
3*°R
p= —%— ~ 1.98RY3 (3.107)
{r3)y
For stability purposes, note that
K = / K (k) e dk, (3.108)

where

X _i_7r nk
vk UPTEE

K = =
2mik 27| k|?/3

(3.109)

3.6.3 Orr-Sommerfeld-Exner-St. Venant model

We return to (3.72), or equivalently we can go right back to (3.32). Since the scales
used there are the same as above, it is clear that the modified model* based on (3.98)
is

st+q¢. = 0,
ehy + (uh), = 0,

2

FP(euy +uug) = —n,+06 [1— % (1—3+/ZK(w—§)g—§(§,t)d§>} ,
h = n—s. (3.110)

If § < 1, then, since K ~ 2RY3 ~ 6 for R = 30, it is still reasonable to neglect the
term in K in (3.110)3. Put € and 6 to zero; then, as before,

uh = 1,
PP+ = jFP 41,
h = n—s, (3.111)

1
and s = so(u) = 3F?(1 —u®) + 1 — —, as in (3.52). We suppose g = ¢(7), where the
u

dimensionless basal stress (7 scaled with fp,u?) is

= [1-s [T Kle- 05 €] (3.112)

4There is a subtle point here concerning the modified stress, since in (3.110) we allow the basic
(dimensional) bed stress fp,, 4> to vary with mean velocity, whereas in the derivation of (3.103),
we specifically kept the mean flow constant. The two differing views can be reconciled if one views
(3.103) as providing a local correction to the stress on short length scales, whereas the variation of
w in (3.110) is supposed, formally, to be over a longer length scale.
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The Exner equation is thus

— "(7)=— = 0. 3.113
5 T4 5 (3-113)
For small F', we have
1
= 3.114
wm (3.114)
so that . . - 3
s
R K(r—&)—(&,t) d€. 3.115
R e el RGOS (3115)
We linearise by writing s = §e?**+9¢ 7 =1 + 7eih*+9t 50 that
08 + ikg'(1)7 = 0,
? =8+ Kiks, (3.116)
and thus A
o=q()[k’K — ik]. (3.117)

When Re K > 0, as for (3.109), the steady state is unstable, with Reo ~ k*/3 as
k — oo. Specifically, the growth rate is (taking k positive)
q(1)c 4/3
Reo = ——k 3.118

while the wave speed is

——— =4 (3.119)

47

1/3
1+ V32 ] :

Thus waves move downstream.

3.6.4 Well-posedness

The effect of (3.115) is to cause increased 7 where s, is positive, on the upstream
slopes of bumps. Since u is in phase with s, this implies 7 leads u (i.e., 7 is a
maximum before s is); it is this phase lead which causes instability. However, the
unbounded growth rate at large wave numbers is a sign of ill-posedness. Without some
stabilising mechanism, arbitrarily small disturbances can grow arbitrarily rapidly. In
reality, another effect of bed slope is important, and that is the fact that sediment
wants to roll downslope: in describing the Meyer-Peter/Miiller result, no attention
was paid to the variations of bed slope itself.

For a particle of diameter D, at the bed, the streamflow exerts a force of approx-
imately 7D? on it, and it is this force which causes motion. On a slope, there is an
additonal force due to gravity, approximately —ApgD?3s,. Thus the net stress causing
motion is actually

T — ApgDss,. (3.120)
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In dimensionless terms, we therefore modify the bedload transport formula by writing

q=gq[re], Te=T—Bss,, (3.121)
where AuD
pD;

= . 3.122

puhioS (3.122)

Typical values are Ap/p, ~ 2, D, ~ 1073 m, hg ~ 2 m, S ~ 103, whence 3 ~ 1.
Larger particles or steeper slopes cause larger values, but generally we will suppose
that 8 ~ O(1).

The effect of this is to replace the definition of 7 in (3.115) by

e 11 1—8 / Kz (5 t) d€ — Bsa, (3.123)

(together with (3.113)) and in the stability analysis, 7 = 8[1 + ikK — ik(3], whence

oc=q(1) l—z’k {1 " V3ck!/3 } n ik“/?’ - ﬁk2] . (3.124)

47

This exhibits the classical behaviour of a well-posed model. The system is stable at
high wavenumber, and the maximum growth rate is at k = (c/m3)%2. This would be
the expected preferred wavenumber of the instability.

One can try and push the study of this instability slightly further, into the non-
linear régime. (3.123) is valid if s < 1. If we expand beyond the linear term, we

have
ds(z — &)
ox

while also we can take ¢’ as constant, if 7 &~ 1. Then if we write

Te%1+8+82+,u/ ||~1/3 dé — By, (3.125)
z—¢d(t=X (3.126)

(so X is the spatial coordinate relative to the moving dune frame), and rescale the
variables as

5)3/2 8 (u)w g2
X=1- , s=—1|3 , t=——=T, 3.127
<u : 2\5) ¢ q'(1)p? (3.127)
we derive an appealing canonical form of the Exner equation:
_1399(§ =1, 7)
3220 D 2 dn — ¢e| =0, 3.128
¢r + a§[¢+/ 7] o€ n— P (3.128)

Consulting the sizes of the various corrective terms in (3.125), we find that they are
3

small if 5—/3 < 1. Since p = 6, this requires that [ should be large. This can be

achieved for large sediment size and/or steep slopes, but is likely to be uncommon.
Thus (3.128) serves more as a pedagogical example than as a practical predictive
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tool. Even were it accurate, its application is limited by the inevitable development
of separated flow in the lee of the developing dune.

The equation (3.128) is very similar to the Kuramoto-Sivashinsky equation, where
the destabilising integral term is replaced by ¢, and the stabilising diffusive term
is replaced by ¢4¢. Numerical solutions obtained using a pseudo-spectral numerical
method show that random initial data evolves into travelling waves with steep fronts.
Eventually the waves merge, until one wave occupies the computational domain. An
example of this is shown in figure 3.9.

(p 4

Figure 3.9: The eventual travelling dune which arises from solving (3.128) on a domain
of length 20.

This wave has a steep front and a more gentle rear slope. It is easy to understand
how this can arise from (3.128). When the length scale is large, both the integral
term and the diffusive term are small. Thus the waves generated by the instability
form shocks, and these are smoothed by the diffusive term. At large time, the integral
term is irrelevant, and the equation is essentially Burgers’ equation. The wave speed
of a shock front is thus the mean of the values of ¢ either side of the front, and so
larger shocks overtake smaller ones. What eventually limits the wave growth is the
domain size, and so this model lacks any mechanism to determine the length scale of
fully evolved dunes on an infinite domain.

3.7 Mixing-length model for aeolian dunes
Measurements of turbulent fluid flow in pipes, as well as air flow in the atmosphere

(and also in wind tunnels), show that the assumption of constant eddy viscosity is
not a good one, and the basic shear velocity profile is not as simple as assumed in the
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preceding section. In actual fact, the concept of eddy viscosity introduced by Prandtl
was based on the idea of momentum transport by eddies of different sizes, with the
transport rate (eddy viscosity) being proportional to eddy size. Evidently, this must
go to zero at a solid boundary, and the simplest description of this is Prandtl’s mixing
length theory. In this section, we generalise the previous approach a little to allow
for such a spatially varying eddy viscosity, and we specifically consider the case of
aeolian dunes, in which a kilometre deep turbulent boundary layer flow is driven by
an atmospheric shear flow.

3.7.1 Mixing-length theory

The various forms of sand dunes in deserts were discussed earlier; the variety of shapes
can be ascribed to varying wind directions, a feature generally absent in rivers. An-
other difference from the modelling point of view is that the fluid atmosphere is about
ten kilometres in depth, and the flow in this is essentially unaffected by the under-
lying surface, except in the atmospheric boundary layer, of depth about a kilometre,
wherein most of the turbulent mixing takes place. Within this boundary layer, there
is a region adjoining the surface in which the velocity profile is approximately loga-
rithmic, and this region spans a range of height from about forty metres above the
surface to the ‘roughness height’ of just a few centimetres or millimetres above the
surface.

Consider the case of a uni-directional mean shear flow u(z) past a rough surface
z = 0, where z measures distance away from the surface. If the shear stress is constant,
equal to 7, then we define the friction velocity u, by

u, = (7/p)"2, (3.129)

where p is density. Observations support the existence near the surface of a logarith-
mic velocity profile of the form

u=21n (3) : (3.130)

K 20

where the Von Kéarmén constant x ~ 0.4, and zg is known as the roughness length: it
represents the effect of surface roughness in bringing the average velocity to zero at
some small height above the actual surface. Since z( is a measure of actual roughness,
a typical value for a sandy surface might be 2z = 1072 m.

Prandtl’s mixing length theory provides a motivation for (3.130). If we suppose
the motion can be represented by an eddy viscosity 7, so that

ou
- p— 3.131
T naz7 ( )
then Prandtl proposed
n = pl? g—z , 1 =kz, (3.132)
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from which, indeed, (3.130) follows. The quantity [ = kz is called the mixing length.
Prandtl’s theory works well in explaining the logarithmic layer, and in extension
it explains pipe flow characteristics very well; but it has certain drawbacks. The
two obvious ones are that it is not frame-invariant; however, this would be easily
rectified by replacing |0u/dz| by the second invariant 2¢, where 2¢? = ¢;;¢;;, and &;;
is the strain rate tensor. Also not satisfactory is the rather loosely defined mixing
length, which becomes less appropriate far from the boundary, or in a closed container.
Despite such misgivings, we will use a version of the mixing length theory to see how
it deviates from the constant eddy viscosity assumption.

We want to see how to solve a shear flow problem in dimensionless form. To
this end, suppose for the moment that we fix u = Uy, on z = d. Then U, =

(u*/k)In(d/z) determines u, (and thus 7), and we can define a parameter® ¢ by
Us K

c= U = @) (3.133)

For d =10®m, zp = 103 m, x = 0.4, € =~ 0.03. Writing u in terms of U, rather than
u, yields

€ z
—Us [1 “m (2] 3.134
u +—In(~ (3.134)
Note also that the basic eddy viscosity is then
n = epUsed (%Z) : (3.135)
and the shear stress is
T =¢e?pU2. (3.136)

We shall use these observations in scaling the equations. Note that in reality, one
prescribes the shear stress delivered by the far field flow, and thus U, is determined,
given d.

3.7.2 Turbulent low model

Again we assume a mean two-dimensional flow (u,0,w) with horizontal coordinate
x and vertical coordinate z over a surface topography given by z = s. The basic
equations are

Uy +w, = 0,
pluu, +wu,) = —pg+ Tig + T3z,
pluw, + ww,) = —p,+ T3z — T1z, (3.137)

where 71 = 71 and 73 = T3 are the deviatoric Reynolds stresses, and are defined, we
suppose, by

TI = 2NUg,

T3 = n(us + ws). (3.138)

SNote that this definition of ¢ is unrelated to its previous definition and use, as for example in
(3.110).
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Our choice of the eddy viscosity n will be motivated by the Prandtl mixing length
theory (3.132), but we postpone a precise specification for the moment.
The basic flow then dictates how we should non-dimensionalise the variables. We
choose scales
u=Ux(l4+eu"), w~ely, z,2z~d,

1,73 ~ e2pU2, n~epdUs, p~ epU2, (3.139)
and then the dimensionless equations are (dropping the asterisk on u*)
Uy +w, = 0,
U +Ds = €[T1e + 73, — {uu, + wu,}],
Wy +p, = €[T3p — 11, — {uw, + ww,},
3 = n(u, +w,),
T = 2Nug. (3.140)

3.7.3 Boundary conditions

The depth scale of the flow d is, we suppose, the depth of the atmospheric boundary
layer, of the order of hundreds of metres to a kilometre. Above the boundary layer,
there is an atmospheric shear flow, and we suppose that u — ug(z), w — 0, p — 0 as
2z — 00.% The choice of ug is determined for us by the choice of 7, as is most easily
seen from the case of a uniform flow where du/0z = 7/n. The correct boundary
condition to pose at large z is to prescribe the shear stress delivered by the main
atmospheric flow, and this can be taken to be 73 = 1 by our choice of stress scale.
Thus we prescribe

=1, w—0, p—0 as z — oco. (3.141)

Next we need to prescribe conditions at the surface. This involves two further
length scales, the length L and amplitude H of the surface topography. Since we
observe dunes often to have lengths in the range 100-1000m, and heights in the
range 2-100m, we can see that there are two obvious distinguished limits, L = d,
H = ed, and it is most natural to use these in scaling the surface s. In fact since
dunes are self-evolving it seems most likely that they will select length scales already
present in the system. Thus, we suppose that in dimensionless terms the surface is
z = es(z), and longer, shorter, taller or smaller dunes can always be introduced as
necessary later, by rescaling s. The surface boundary conditions are then taken to be
(recalling the definition of the roughness length)

1
u=--, w=0 on z=-es+z, (3.142)
where .
2= EO — e /e, (3.143)

For completeness, we need to specify horizontal boundary conditions, for example
at £ = £oo. We keep these fiarly vague, beyond requiring that the variables remain
bounded. In particular, we do not allow unbounded growth of velocity or pressure.

6The modelling alternative is to specify velocity conditions on a lid at z = 1.
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3.7.4 Eddy viscosity
Prandtl’s mixing length theory in scaled units would imply

ou

5| (3.144)

n = k(2 — es)?

and we assume this, although other choices are possible. In particular, (3.144) is not
frame indifferent, but this is hardly of significance since the eddy viscosity itself is
unreliable away from the surface. (We comment further on this in the notes at the
end of the chapter.)

To convert to the constant eddy viscosity model of the preceding section, equation
(3.80), we would rescale u, w,p ~ 1/¢, and choose n = &: thus €* = 1/R.

3.7.5 Surface roughness layer

The basic shear flow near a flat surface z = 0 is given by (3.134), and in dimensionless
terms is 1
u=—lInz; (3.145)
K
we will require similar behaviour when the flow is perturbed. Suppose, more generally,
that as z — €s,

u~a+bln(z—es)+ O0(z —e€s), (3.146)
which we shall find describes the solution away from the boundary. We put
z=es+vZ, (3.147)
where
v=e"", (3.148)
Additionally, we write
1
u:—g+U, w=-¢es,U+vW, 1n=¢Ty, n=vN. (3.149)
Then we find that
U,+Wz =0,
87’3 2 6T1 (9p
8—Z_8 Sma—Z‘l‘Sza—Z NO,
Op o | Om 0Ty
97~ °F [a_z T oz)
oUu
N~ k?Z%>—
S y4
T3~ N(1-— 523926)2—(;,
A%
Ty = —2x%8, 7% | = 3.150
=22 (5 (3.150)
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where we have neglected transcendentally small terms proportional to v.
Correct to O(g?), 73 is constant through the roughness layer, and equal to its

surface value 7, and
oU\?
2 72
K| — 3.151

ez () (3.151)
again correct to O(g?). The boundary conditions on Z =1 (i.e., z —es = 2, = v) are
U=W =0, thus

N

K
and this must be matched to the outer solution (3.146). Rewriting (3.152) in terms

of u and z, we have
T—1 T
U~ \/_T + VT In(z —es), (3.153)
K
and this is in fact the matching condition that we require from the outer solution.
We see immediately that variations of O(1) in u yield small corrections of O(g) in 7.

Solving for W, we have

U=Y"Inz, (3.152)

W=— (\f)l [ZInZ — Z), (3.154)

where (/7)" = 04/7/0z, and in terms of w and z, this is written

(V1)

K

W= Sz + S, U — In(z —es) —1+ g] (z —e€s). (3.155)

Hence the outer solution must satisfy (correct to O(g?))

W R Sy + ES;u as z —> €S. (3.156)

3.7.6 Outer solution

We turn now to the solution away from the roughness layer, in the presence of surface
topography of amplitude O(¢) and length scale O(1). The topography has two effects.
The O(1) variation in length scale causes a perturbation on a height scale of O(1),
but the vertical displacement of the logarithmic layer by O(e) causes a shear layer
of this thickness to occur. Thus the flow away from the surface consists of an outer
layer of thickness O(1), and an inner shear layer of thickness O(g). We begin with
the outer layer.
We expand the variables as

u=u"+eu® ... (3.157)
etc., so that to leading order, from (3.140),

u® +w® = 0,
w40 = o
w® +p® = 0. (3.158)
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Notice that, at this leading order, the precise form of 7 in (3.144) is irrelevant, as this
outer problem is inviscid. We have

u® + pl0 = yy(2), (3.159)

and

which are the Cauchy-Riemann equations for p(® +iw(® | which is therefore an analytic
function, and p(® and w® both satisfy Laplace’s equation. The matching conditions
as z — €s can be linearised about z = 0, and if w(® = wy and p® = py on z = ¢s,
then from (3.156) we have

w® =5, on z=0. (3.161)

Assuming also that w(©®,p(® — 0 as z — 0o, we can write the solutions in the form

0) _ l o0 ZS& dg ) _ _l 0o (m o S)SE d£
w —n/_oo [(z— &2+ 22 p = 7T/_m (=82 + 27’ (3.162)

and in particular, p(») on z = es is given to leading order by po, where

=t f 2% ) (3.163)

T) oé—=

the integral takes the principal value, and H denotes the Hilbert transform.

The shear velocity profile ug(z) is undetermined at this stage, although we would
like it to be the basic shear flow profile; but to justify this, we need to go to the O(¢)
terms. At O(e), we have

uld +wl = 0,
w430 = D4 70— O DU,
w450 =AY 70— O 1 0 OuO),
A CIVC R
KO = 2,

Ou©
n® = k22? % . (3.164)
We can use the zero-th order solution to write (3.164)s in the form
(1) (1) 373(0) 97 (0 1 (0)2 (0)2 / (0)
u® +p) = 4 [0 — L2 4+ w2) + ()8 (3.165)
where 1(© is the stream function such that w© = —) and specifically, we have
1 o0
w0 =~ [l - €7+ Plm(6) e, (3.160)
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which can be found (as can the formulae in (3.162)) by using a suitable Green’s
function; (this is explained further below when we find p™).

On integrating (3.165), we have to avoid secular terms which grow linearly in z,
and we therefore require the integral of the right hand side of (3.165) with respect to
z, from —oo to oo, to be bounded. The integral (&f the derivative term is certainly

bounded; thus the secularity condition requires / r§2) dz to be bounded, and it is

this condition that determines the function of inte_gration up(2) in (3.159).
For the particular choice of (¥) in (3.164), we have

N0 = k%22 (up + w?) (3.167)
(assumed positive), so that
70 = k222 (up +w®) (up + 2w?). (3.168)

The condition that 87'?50) /0z have zero mean is then

/ 2 4 2w9%)] dz = 0, (3.169)
and thus 8@/8z = 0, where the overbar denotes the horizontal mean. Thus (with
T?EO) = 1 from the condition at z = c0), ug is determined via

02 1
0)2
w? + 2w = peset (3.170)

The non-zero quantity 2u0? represents the form drag due to the surface topography.

Note that the logarithmic behaviour of uy near z = 0 is unaffected by this extra term,
and we can take

1
Uy = —lnz +0(2%) as z— 0. (3.171)
In particular, since p© = po+ p’ )| J(z—es)as z — es, and p’ | = —wg(co)|6S = —Suz,
we have 1
u©® ~ —pg + p Inz + 850(2 — es) + O(2%) as z — es. (3.172)
From (3.168), we now have
0P
7_?50) =1+ 3&222u6w(0) + P (3.173)

where we define

o = / 2/4;222{ 02 _ (0)2} dz. (3.174)

—00

Hence from (3.165),
u®4pM) = 9 (36222 ugw® + ]+ -1 (u®? + w?) g (2)p O+ (2), (3.175)
P =%, 2 0 R
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where u; must be determined at O(e?).
1
Now up ~ —Inz + O(z%), ® = 0(22), 7V = 0(2), w® = s, + O(z), ¥ =
K
—s — zpo + O(2?) (this last follows from manipulation of (3.166)). Therefore, as

z =0,
1 2
L]s? +{—p0+ lnz}

1
ulV = —p1o+3KSz — 3 +—(=s—2po) +u1+O(2), (3.176)

RZ

where pyg = pM|,_,.

3.7.7 Determination of p

Define the Green’s function

K(2,2€,() = —— - 0@ =+ -0 +In{z -*+ =+ %] . (3177)

We then have, for example,

p® = / [KV?p® — pOVK] ded¢
¢>0

_ %( x? p<0)3_K) ds
o0 K
/ 02K d¢,  (3.178)
0

ap(O)
= K
/ 23

whence we derive (3.162) for example; the integrals with respect to £ are taken along

¢=0.
Next, expanding (3.156) about z = 0, we find

w® ~ (su®), as z— 0. (3.179)
Putting
w = sug + W, (3.180)
we deduce the condition
W = —(spg), on z=0, (3.181)
and from (3.164)
p:(cl) W, = R,
V+ew, = 8,
where
R = 79470 _ 40y 4 3@y 0 — g 01,
S = 7'3(2) le —{uOw® + w OO 4 5,0}
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Also
vipM =R, + 8., (3.182)

and it follows from using the Green’s function as in (3.178) that, after some manip-
ulation involving Green’s theorem,

(1) _ RK. + SK)dedc — | Kwd 3.183
p //C< e+ <>5</0 W dt, (3.183)

and therefore

TR0 ~CSE0] g 1 [ ()t
Po = — //>o —rt o d§ d¢ W][oo f—2 (3.184)

3.7.8 Matching

Overall, then, the outer solution can be written, as z — 0, in the form (using (3.172))

1.2 @1

ool N N 1210
u o~ —po+— lnz+3m( €s) + € | —pio + 3K5; — 55, 2p0+l{nz

L. S Po
If we define
VT=1+¢eA +%4r+..., (3.186)
then (3.153) takes the form
1 A
u~A+—lnz+e —i—i——llnz—f-AQ]-i-..., (3.187)
K Kz K

and the leading order term can be matched directly to that of (3.185) by choosing
Using (3.188), (3.186) and (3.163), we have

2_8 * 85d€

Tr1+ ,
T J o —E&

(3.189)

and this can be compared with (3.115). Whereas in (3.115) K(z) = 0 for z < 0, the
kernel K (z) in (3.189) is proportional to 1/z for all z, and thus non-zero for z < 0.
Consequently, there is no instability, and to find this we need to progress to the next
order term.

Unfortunately, the O(e) terms do not match because the terms +P 11 2 in the

two expansions are not equal, and also because of the linear term in (3.185). In order
to match the expansions to O(¢), we have to consider a further, intermediate layer:
this is the shear layer we alluded to earlier.
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3.7.9 Shear layer

A distinguished limit exists when z = O(¢), and thus we put

es+e, w=s;+elus, + W,
n = eN, n=¢€Th,

1
u = —po+ —In(z —es) + ev, (3.190)

K

and from (3.185) and (3.153) (using (3.186) and (3.188)), we require
1
v o~ Sp{ —Pro+ 3KS, — 352 — 1pd — Po +‘@lne§—|— u — —=In*e( | as ¢ — oo,
K K 2k?2
v o~ Ag—@1n6§ as ¢ — 0. (3.191)
K

It follows from (3.190) that

Ou
¢’
Ty = 2Nu, — Spucl,

N = /{2C2

T3 = Nlu¢ + €840 + O(€%)],
ug +We = 0,
(U4 D)z — 82Pc = Ta¢c — eluug + Wue] + O(2),
D = —E84p + O(e?). (3.192)

Since we have p = pg + ep1p and W =0 on { = 0, then

p = po+e(pro— seal) + O(e?),
W = py¢+0(e), (3.193)

and thus v satisfies

/

0 1
Vg + Do — SzaxC + SeSzx = —=[26CV¢ + KCSpa] — {—pg (—po + p In SC) + %} + O(e),

¢
(3.194)
together with (3.191).
The solution of (3.194) is
VR —p1o — %si — ;0 — %pg + % IneC + $42C + 3ks, +V, (3.195)
where oV 8. v
— = — |2k(— 3.196

and (3.191) implies
V-0 as ¢ — oo,
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2
Vo~ AL — %mgg as ¢ =0, (3.197)

where

Ay = A —pro— 182 — % — 1p? 4 3ks,. (3.198)

The solution of (3.196) which tends to zero as { — oo is
V= / V (¢, k)e™*® dk, (3.199)

where the Fourier transform V (as thus defined) is given by

(2“':(5) 1/2] , (3.200)

the square root is chosen so that Re (ik)!/2 > 0, and K is a modified Bessel function
of order zero. Evidently we require

V = BK,

N N 29,
Vo~ AL — % In(e¢) as ¢ — 0, (3.201)

where the overhat defines the Fourier transform, in analogy to (3.199). Now Ky(§) ~
—1In %5 — v as £ — 0, where v ~ 0.5772 is the Euler-Mascheroni constant. Also

2%kC\ Y2 [2klc\ "2 '
(Z—<> = (ﬂ) exp {E sgnk} ; (3.202)
K K 4
therefore (3.200) implies
V~-B ’y+§ln|k|—iln2/€+§ln<+zm y (3203)
and matching this to (3.201) implies
45
B="2 (3.204)
K
whence o5 15 -
A Po Po &
We have §, = ik§, I—T(s\m) = —|k[3, and Txs, = |k|$1n |k|, where J x s, is the
convolution of J with s,, and J = —(i/27)In|k|sgnk. (The convolution theorem
here takes the form f x g = 27 f g.) It follows from this that
1
J(z)=—— | . 3.206
() = — [y +Infa] (3.200
Thus
. 2 7 1
Ay =—(In2ek — 27) po + —8, + —J * g, (3.207)
K K K
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and, from (3.198),
2 1
Ay = =(In2ek—2y—3)po+ (E+3/<c) Sz + —J * 5,
K K ®
—P10 — %p% - %392“ (3-208)

where J is given by (3.206), po = H(s;) ((3.163)), and pyg is given by (3.184).

3.7.10 Linear stability

The Exner equation is, in appropriate dimensionless form,’
est+ ¢, =0, (3.209)
and since ¢ = ¢(7),
q=q — 2eqipo + & [(2A2 + p3)a + 2p3a] + - - -, (3.210)

where 1 = ¢(1), s = ¢'(1), ¢ = ¢"(1).
Thus s satisfies the nonlinear evolution equation

0s Opo 0 2 2
S~ 20 + e (24 + )i + 2pbat] ~ 0. (3:211)
This is
0s Opo 0
S — a2+ oo [ (2w, + 20T * 5, — 2pro — s2) +24]p] = 0,
Do = H(Sz), (3.212)
where

2
a = 2q 1——6(ln25/£—2”y—%) ,
K

w = E—{-?m,
K
A= (3.213)
Tk '

2
T

We linearise (3.212) for small s by neglecting the terms in s? and p3. Taking the

Fourier transform (as defined here in (3.199)), we have
4 = ikapy — ikeq), (2wik§ + dr ik Js — 2;51‘0) . (3.214)

From (3.184), -
po= [ (ax Rt b )dC— H{(smo).), (3.215)

"Note that the definition of ¢ here is that pertaining to the mixing length theory, i.e., (3.133)
and not (3.47).
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where

z ¢
g A (3 . N— 3.216
.0 =~ W0 = (3.216)
Hence, neglecting the quadratic Hilbert transform term,
Pro =27 / (aR + bS)dc. (3.217)
0
Calculation of & and b gives
a= —ie_“dcsgnk b= —ie_le (3.218)
27 ’ 27 ’
so that -
Pro = —/ [iRsgnk + Sle ¢ dc. (3.219)
0
Now
7'3(0) = 1+ 3/£zw9(50) + 2m2z2w£0)2,
Tl(o) = —2k20% — 2k222WO W),
u® = ug(z) - p),
ua(EO) = _wEO)a
u® = uf+w?, (3.220)
thus, retaining only the perturbed linear (in s) terms, we have from (3.182)
R =~ ikty +ts, + ugth, — uphb — ik3],
S =~ ikty — ty, — ikuo[w + ik3), (3.221)
where w = 55), and
t1 = —2ikkzp, t3 = 3ikkzw, (3.222)
where p = p/@.
Finally, from (3.162),
w® = —b(z, 2) x 55, PO = —a(z,2) * sq, (3.223)
whence using (3.218),
W o= ikse M=,
P —|k|se ¥z, (3.224)

and we eventually obtain

pro = —3 / [Kuo(L + 2¢79) — [kfup(1 — e ¥¢) — 5ink|kle <] € d. (3.225)
0
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Simplification of this, using the fact that / e 'Intdt = —v, where v ~ 0.5772 is
0

the Euler-Mascheroni constant, yields

2|k
P1o =8 {% (In2|k| +v) + gmk} : (3.226)
Solutions of (3.214) are § = e*, where o = r — ikc, and after some simplification, we
find that the growth rate p is

r = 2k%q) (% + %n) , (3.227)

and the wave speed c is

2 1
c = 2q|k| [1 + ;6 {— (1 - 2—) In|k| —Indek +v + %H . (3.228)
m

Thus dunes grow, as r > 0, on a time scale of O(1/¢), while the wave forms move
downstream at a speed ¢ ~ 2q;|k| = O(1).

This more realistic theory for dune-forming instability is less satisfactory than the
constant eddy viscosity theory, because the growth rate r oc k2, and the basic model
is again ill posed. As before, we can stabilise the model by including the downslope
force, thus replacing the stress by the effective stress defined using (3.120). The effect
of this is to add a term to the stress definition in (3.186), which can then be written
as

Te=1—2epo + 262 (Ay + ...) — fsa, (3.229)

where the definition of 3 differs from that in (3.122) because of the different scaling
used in the aeolian model. Using (3.136), z ~ d and s ~ &d, we find

ApD, 1

where the Froude number is -
F? = —‘3. (3.231)
g

Using values Ap/p = 103, D,/d = 10°, ¢ ~ 0.1, we find 3 ~ £2/F2.
If we consult (3.208), we see that the destabilising term arises from that propor-
tional to s, in A,. Effectively we can write

2 N
Te:1+...+|:€2<—7r+l€>—5:|—8+..., (3.232)
K Oox
where the modification of the coefficient w reflects the effect of the terms in J and
P10, as indicated by (3.227). We see that the downslope term stabilises the system if

B > O(g?), and thus practically if F2 < 1. On the Earth, a typical value is F? = 0.04,
so that the instability is removed, at all wave numbers. This is distinct from the
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constant eddy viscosity case, because the stabilising term has the same wave number
dependence as the destabilising one.

This situation is somewhat reminiscent of the rill-forming instability of chapter
2. There the instability is regularised at long wavelength by inclusion of singularly
perturbed terms. The most obvious modification to make here in a similar direction
is to allow for a finite thickness of the moving sand layer. It seems likely that this will
make a substantial difference, because the detail of the mixing length model relies
ultimately on the existence of an exponentially small roughness layer through which
the wind speed drops to zero. It is noteworthy that the constant eddy viscosity model
does not share this facet of the problem.

3.8 Separation at the wave crest

The constant eddy viscosity model can produce a genuine instability, with decay at
large wave numbers. If pushed to a nonlinear régime, it allows shock formation, al-
though it also allows unlimited wavelength growth. The presumably more accurate
mixing length theory actually fares somewhat worse. It can produce a very slow in-
stability via an effective negative diffusivity, but this is easily stabilised by downslope
drift. It is possibly the case that specific consideration of the mobile sand layer will
alleviate this result.

A complication arises at this point. Aeolian sand dunes inevitably form slip faces.
There is a jump in slope at the top of the slip face, and the wind flow separates,
forming a wake (or cavity, or bubble). One authority is of the opinion that no model
can be realistic unless it includes a consideration of separation. In this section we
will consider a model which is able to do this. Before doing so, it is instructive to
consider how such separation arises.

If the constant eddy viscosity model has any validity, it suggests that the uniform
flat bed is unstable, and that travelling waves grow to form shocks. If the slope within
the shocks is steep enough to exceed the angle of repose of sand grains (some 34°),
then a slip face will occur, with the sand resting on the slip face at this angle. The
turbulent flow over the dune inevitably separates at the cusp of the dune, forming a
separation bubble, as indicated in figure 3.10. The formation of a separation bubble
makes the model fundamentally nonlinear, and it provides a possible mechanism for
length scale selection. It is thus an attractive way out of the conundrums concerning
instability alluded to above.

It is simplest to treat the separation bubble in the context of the mixing length
theory, and this we now do, despite our misgivings about its applicability for small
amplitude perturbations. We suppose that there is a periodic sequence of dunes, with
period chosen to be 2. We suppose that there is a slip face, as shown in figure 3.10,
and we suppose the corresponding separation bubble occupies the interval (a,b). We
denote the bubble interval as B, and the corresponding attached flow region as B’.

Because our method will use complex variables, it is convenient to rechristen the
space coordinates as x and y, and the corresponding velocity components as v and v.
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Figure 3.10: Separation behind a dune.

At leading order, the inviscid flow is described by the outer equations (3.158):

Uy + vy = 0,
Uz + by = 0,
Vg +py =0, (3.233)

and these are valid in y > €s. From these it follows that p and v satisfy the Cauchy-
Riemann equations, and thus
p+iv= f(z) (3.234)

is an analytic function, where z = x + 7y.

The boundary conditions for p and v are that both tend to zero as y — oo, and
v satisfies the no flow through condition (3.156), v = s, + €us, on y = €s. These
completely specify the problem in the absence of a separation bubble.

If we suppose that a separation bubble occurs, as shown in figure 3.10, then its
upper boundary is unknown, and must be determined by an extra boundary condition.
We let y = es(x) denote this unknown upper boundary, and define the ground surface
to be y = eso(z); thus s(z) = so(z) for z € B'.

There are various ways to provide the extra condition. Two such are that the
pressure, or alternatively the vorticity, are constant in the bubble. We shall suppose
the former, and therefore we prescribe

p=pp for y=es, ze€B. (3.235)

The bubble pressure pp is an unknown constant, and must be prescribed as part of
the solution.

Separation occurs because the viscous boundary layer (here, the roughness layer)
detaches from the surface, forming a free shear layer at the top of the bubble, which
rapidly thickens to form a more diffuse upper boundary. The assumption of constant
pressure in the bubble is essentially a consequence of this shear layer, implying that
mean fluid velocities in the bubble are small.

For small €, we can expand the boundary conditions at y = s about y = 0,
so that to leading order, the problem becomes that of finding an analytic function
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f(2) = p+iv in the upper half plane Im z > 0, satisfying

f—=0 as z— oo,
v=358, on y=0_0,

p=pg on y=0, xz€B. (3.236)

The extra pressure condition should help determine s in B, but the endpoint
locations are not necessarily known. Specification of the behaviour of the solution at
the endpoints is necessary to determine these. Firstly, we expect s to be continuous
at the end points:

s(a) = so(a), s(b) = so(b). (3.237)
A difference now arises depending on whether a slip face occurs or not. If not, then
the bed slope is continuous, and at the upstream end point z = a, we might surmise
that boundary layer separation is associated with the skin friction dropping to zero.
Now from (3.186) and (3.188), we have the surface stress defined by

VT =1—¢py, (3.238)

where pq is the surface pressure. The only apparent interpretation of this which we
can make in our simplified model is to require that

p— 400 on y=0 as z—a— € B’; (3.239)

more detailed consideration of the boundary layer structure near the separation point
would be necessary to be more precise than this. We do not pursue this possibility
here, mainly because the more relevant situation is when a slip face is present.

If we suppose a slip face is present, then we can presume that separation occurs
at its top, and this determines the point x = a. In addition, it is natural to suppose
that boundary layer detachment occurs smoothly, in the sense that we suppose the
slope of s is continuous at a:

s'(a+) = sp(a—); (3.240)
this implies that v is continuous at x = a. If possible, we would like to have smooth
reattachment at b, and in addition (and in fact, because of this) continuity of pressure
also:

[plsE = [plet =0, s'(b—) = s;(b+). (3.241)

We shall in fact find that all these conditions can be satisfied. This is not always
the case in such problems, and sometimes (worse) singularities have to be tolerated.
The choice of the behaviour of the solution at the end points actually constitutes the
most subtle part of solving Hilbert problems.

3.8.1 Formulation of Hilbert problem

The first thing we do is to analytically continue f(z) into the lower half plane. Specif-

ically, we define

E[f(z)_pB]a IIIlZ>0,

G(z) = - (3.242)
-3 [f(Z)—pB], Imz < 0.
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G is analytic in both the upper and lower half planes, and if G, and G_ denote the
limiting values of G' as z — z from above and below, then

G_|_ + G, = ’l'SI,

G, —G_=p—pg, (3.243)

everywhere on the real axis.
Because of the assumed periodicity in z, we make the following transformations:

(=¢€% £=¢€7, G(z)=H(C). (3.244)

The geometry of the problem is then illustrated in figure 3.11. The problem to solve
is identical to (3.243), replacing G by H, and thus we have the standard Hilbert
problem

H,—-H =0 on B,
H,+H =ioy on B, (3.245)

where 0((§) = sj(z). We have to solve this subject to the supplementary conditions
H(0) = —gpp, H(c0)= 3pB; (3.246)

the first of these in fact implies the second automatically. We seek to apply the
conditions that both 1(p — pg) = ReH and v = Im H are continuous (thus H is
continuous) at both endpoints £ = £, = €@ and ¢ = & = €. Given H satisfying
(3.245), then the separation bubble boundary is given by the solution of

§=—-2iH on B, s(a)=sy(a), (3.247)
and the pressure on B’ is given by

p=pp+H,—H on B. (3.248)

Solution

The solution to (3.245), given the location of a and b, is as follows. Define a function
X(¢) such that
X+ +x-=0 on B (3.249)

(and x is analytic away from B'); then

(). () = 5250

and by the discontinuity theorem, we have

. X(g) ’iO’o(t) dt
"= 2mi /B, x+ ()t =) +xP, (3.251)
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Bl

Figure 3.11: B and B’ on the unit circle in the complex ¢ plane. B’ is a branch cut
for the solution of the Hilbert problem (3.245).

where P is an as yet undetermined polynomial. To find P, we must specify yx, and
this in turn depends on the required singularity structure of the solution.
The smoothness of H is essentially that of y, and so we will choose the function

x=[¢—-&)(C—&)N", (3.252)

The most general choice is x = (¢ — gb)mb+%(g — fa)m“*%, where m, and m,; are in-
tegers, but most of these possibilities can in general be eliminated by requirements
either of continuity or at least integrability of the solution.

We consider the behaviour of the Cauchy integral

1 o(t) dt
()=— | —— 3.253
=55 ). 525 (3259)
near the end points of integration. Note that in the present case,
iUo(t)

o(t) = : 3.254
) X+(t) ( )

First suppose that ¢(t) is continuous at an end point.® Then we have
o(() = :l:@ In(¢ — c) + O(1), (3.255)

271

where ¢ denotes either end point of B’, and the upper and lower signs apply at the
right (&,) and left (&) hand ends of B’, respectively. (3.255) applies as ( — ¢, with

(¢ B

8More precisely, ¢ should be Hélder continuous, that is |p(t1) — @(t2)| < K|t1 — t2|7, for some
positive 7.
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Similarly, for £ € B,

o(¢) = igg(—ﬂci) In(¢ — ¢) + O(1), (3.256)
where ®(£) denotes the principal value of the integral (and ®(£) = 1 [®.(£) + ®_(€))).
Bearing in mind (3.254), we see that if y is unbounded at ¢, and specifically goes
algebraically to infinity, then the corresponding Cauchy integral is bounded, and thus
H will be unbounded (unless the choice of P can be chosen to remove the singularity).
Using the definition

H = x(¢)[®(¢) + P, (3.257)

we have from (3.247) and (3.248) that

§' = ~2iH(€) = —2ix(§) [8(§) + P] on B,
p—pn =2x:(6)[8(€) + P] on B (3.258)

The implication of this is that if x is unbounded at an end point, then in general
both p and s’ will also be unbounded, unless the choice of P removes the singularity.
The worst singularity we can tolerate is an integrable one, thus y ~ (¢ —¢)~'/2,

Now suppose that y is bounded at an end point, and specifically x ~ (¢ — ¢)
(Any higher power causes the Cauchy integral to be undefined, because then ¢ is not
integrable.) If we define ¢ via

/2.

o(t) ~ % as t—ec, (3.259)
then
9(c) 1
20 = gt o(gogm) <o
B(¢) = o <ﬁ> . teB. (3.260)

It then follows from (3.258) that s’ is bounded (and in fact continuous) and p is
continuous at c. It is because of this that we choose x as defined in (3.252), in order
to satisfy the smoothness conditions (3.240) and (3.241).

In this case, the polynomial P must be zero in order to satisfy the condition at

¢ = o0, and we have © @
~ x(¢ 109(t) dt
o o) (3261

We define the integrals
Loo(t) dt 1 oo(t) dt
S Xo [ioo()dt o 1 [ iog(t)dt (3.262)
271 B tX+(t) 271 B X+(t)

we thus have H(0) = Iy, H(oc0) = —I, and the conditions In (3.246) correspond to
prescribing

Ip= I, = —lpg. (3.263)
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It is a straightforward exercise in contour integration to show that Iy = I, where the
overbar denotes the complex conjugate, therefore (3.263) is tantamount to the single
condition Iy = —%pB. Because this is a complex-valued integral, (3.263) actually
comprises two conditions for the two unknown quantities pg and b.

It remains to be seen whether s is continuous at b. Since (3.263) determines b,
and s is fully determined by (3.247), it is not obvious that this will be the case. (If
it were not, we would have to allow for a singularity in the solution at one of the end
points.)

In fact, it is easy to show that (3.263) automatically implies that s is continuous at
b. To show this, it is sufficient to show that s is continuous over the periodic domain
[0, 27]. Equivalently, we need to show that

2r d
I= / o dz = / _i(H, + H) % o, (3.264)
0 BUB' i€

using (3.247) and (3.245). Denoting contours just inside and outside the unit circle
as C, and C_ (see figure 3.12), we see that

1:—{/0 Hngqu/cHTdf] (3.265)

H is analytic inside and outside the unit circle. The integral over C, is thus just
2miH (0) using the residue theorem, while the integral over C_ can be extended by
deforming the contour out to infinity, whence we obtain the integral 2wi H(cc). Thus

I =—2mi[lo— Io] = 0, (3.266)

and continuity of s at b is assured. We have thus obtained a solution in which the
separated streamline leaves and rejoins the surface smoothly, and the pressure is
continuous at the end points.

3.8.2 Calculation of the free boundary

In order to solve (3.247) for s, we need to evaluate H on B’. There are various ways
to do this. One simple one, which may be convenient for subsequent evolution of the
bed using spectral methods, is to use a Fourier series representation.? Let us suppose
that

s(z) = Z ape™, (3.267)

k=—o00

so that

ioo(§) = Y det”, (3.268)

k=—00

90ne would suppose that a bed with discontinuous derivative at the slip face would make this an
inefficient method. However, since evaluation of s in B only requires the evaluation of an integral
over B’, it is possible to eliminate this problem by artificially smoothing sq near z = a.
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Figure 3.12: The contours C'; and C_ lie just inside and outside the unit circle,
respectively.

where
dk = —kak. (3269)

We suppose that the Laurent expansion for ioq extends to the complex plane as an
analytic function with singularities only at 0 and oo. (This is automatically true for
any finite such series.) Then we can write the solution for H as

H = 1fioo(¢) — a(O)x({)], (3.270)

where ¢ has a Laurent expansion

g= Y " (3.271)
k=—oc0
Then we obtain s by solving
s’ = sy +igx (3.272)

on [a, b], with s(a) = sg(a). In practice, we obtain b by shooting.
Suppose that

1 > f
Ol ; <{+1’ I¢| > 1 (3.273)

(see question 3.8 for one way to calculate the coefficients); then we can write

H S dnl™) C’Jil =) L. (3.274)

o0
T =
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As ( — oo, x ~ ¢ and H — 3pp; equating coefficients of ¢? in (3.274 for j > 0 yields

= diyrafr, G20,

(3.275)
and for 5 = 0 we have
p =Y dnfr—11. (3.276)
r=0
For || < 1, we find
1 1 «
e Z (3.277)
X)) xo &
and thus

mlr—*‘ m

= —Z 7 Z dnl™ = D L (3.278)
m=—00 j=—00
As ( — 0, H — —3pp; equating powers of ¢/ for j < —1, we find

< -1, (3.279)
r=0
and for j = 0 we have

pp _ 1 = -
5 = =N Fd ., — 1. 3.280
v ; f 0 (3.280)

Putting these results together, we find that (3.276) and (3.280) together give
(bearing in mind that d_, = —dj,)

PB = Z drfr + 3_(0 Z frJH-la (3281)
r= r=0
with the added constraint that pg is real
We can now use the definitions of /; in (3.275) and (3.279) to evaluate igx in
(3.272). Being careful with the arguments, we find that on B
= 2612\’ R (3.282)
where

Xo=exp [i(a+b)], R= [Sin (w

T“) sin (b 5 x)} v , (3.283)

and after some algebra, we have the differential equation for s on B

s =4

! —4RIm

I/QZ Zfr djirirexp {i(j+3) o}

7=0 r=0

(3.284)
with initial condition s(a) = so(a). To solve this, guess b; we can then calculate the

right hand side. Solving for s, we adjust b by decreasing it if s reaches sq for x < b
and increase it if s remains > sg for all x < b

152



3.9 Notes and references

3.9.1 Patterns in rivers

Bars

Braiding

Meanders

3.9.2 Linear stability

3.9.3 Flow over a hill

Separation

Vosper et al. (2002) O’Malley et al. (1991) Parsons et al. (2004)

3.9.4 Computational dune theory

The Herrmann model

CFD results

Exercises

3.1
3.2

3.3

Generation of secondary flow by small perturbation of a straight river.

Write down the Exner equation for bedload transport, and show how it can
be used to study the onset of bedform instability, assuming a suitable bedload
transport law. Show that in conditions of slow flow, the resultant equation for
the bed profile s(z,t) is a first order hyperbolic equation, and deduce that the
profile is neutrally stable. Show also that bed waves will form shocks which
propagate downstream.

Now suppose that the bedload transport gy(z,t) is a function of the basal stress
7 evaluated at z — §. Show that instability can occur if § < 0, i.e.the stress
leads the bed profile.

Can you think of a physical reason why such a lead should occur?

Do you think such a model would be a good nonlinear model?

Parker (J. Fluid Mech. 89, p. 109 (1978)) suggests the following expressions for
the erosion and deposition rates in a stream:

2
vp = Bulfo?, vp= T2,
Pl
where c is the sediment concentration (mass per unit volume), v; is the settling
velocity, u, is the ‘“friction’ velocity (7/p,)Y/?, and B and +y are constants (=
0.007 and 13, respectively).
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3.4

3.5

Find appropriate scales for z, t and c if h ~ hg and ¢ is the fluid flux per unit
width. Hence derive the dimensionless model for slow flow

0 Oc c oh
~(h ——_p32 - 2
1)+ 5, ne =
where
e=—2
ps(1—n)

By analysing the stability of the basic state h = ¢ = 1, show that, for ¢ small,
an erosional instability will occur.

More generally, derive a stability criterion (when ¢ is small) if vy = E(h),
vp = cV'(h). How is the result affected if € is not small?

A simple model of bed erosion based on the St. Venant equations can be written
in dimensionless form as

€ht + (’LL}'L)_,/U = 0,

2 u’
F(eus +uug) = —ny + 6 l_f ;
h(ec; +ucy) = E*(u) — c = —sy,

where h = 1 — s. Explain a plausible basis for the derivation of this model.
By considering the stability of the steady state u = h = ¢ = 1 on a time scale
t of O(1), and assuming that § < 1, ¢ < 1, show that instability can occur
depending on the size of E*(1). Show also that n and s are out of phase if
F < 1, and in phase if F' > 1; interpret this in terms of dune and anti-dune
formation.

The Exner equation for bed evolution is written in the form
(1-n)s;+q, =0,
and the bedload transport is given by

¢z = K [qo(7) — q,
where 7 is the bed shear stress.

Explain in physical terms why such an equation should be appropriate to de-
scribe bedload transport.

Show that if the bed stress is 7 = fpu?, then the momentum equation of St.
Venant can be written in the approximate form

h
ﬁTz + 7 = pgh(Sp — Sz).

Supposing that the depth h is approximately constant, show how to non-
dimensionalise these equations to obtain the set

3t+‘]11::0a
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3.6

3.7

3.8

0gz = qo(T) — q,
Te+7=1—5,
and identify the parameter 4.

Write down a suitable steady state solution, and show that if go(7) is a mono-
tonically increasing function of 7, then the steady state is linearly unstable if
K > 0. Show also that the corresponding waves move upstream. Show that the
growth rate remains positive as the wavenumber k — oo. [This is an indication
of ill-posedness.]

Suppose that
s=s(u)=3F*(1-u?)+1- -,
U
and that 5 9
U c
= cD* E* = ——.
$() 5 = eD"(w) — B*(u) = — -
Assume D* = 1 and E* = u3. Simplify the equations to the form
ou oc
E_f(u,c)a 8_1:_9(”,0),

giving expressions for f and g.

Suppose that ¢ = 1 at = 0 and u = ug(z) at t = 0, and that up(co) = 1. Derive
au

an ordinary differential equation for U(t) = u(0,t) in the form o= h(U), and

by consideration of the graphical form of A(U) in the two cases FF < 1 and
F > 1, determine the behaviour of U for ¢ > 0, explaining in particular how it
depends on U(0).

Why is it inadvisable to prescribe ¢ — 1 as x — oo instead of the boundary
condition at x = 07

Large 7 behaviour of (3.128), maybe outline of pseudo-spectral method, and a
simpler example with algebraic instability rather than integral.

Suppose that
=) ftT = (1= &t) (1 - &t) 7V
r=0

and it is desired to calculate the coefficients f, numerically. By consideration
of the power series for 9? (or otherwise!) show that an iterative recipe for f, is

fOZ]-a

n+l __ n+1
2fn - <5 f > Zfsfn S*
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Chapter 4

(Glaciers and ice sheets

Glaciers are huge and slow moving rivers of ice which exist in various parts of the
world: Alaska, the Rockies, the Alps, Spitzbergen, China, for example. They drain
areas in which snow accumulates, much as rivers drain catchment areas where rain
falls. Glaciers also flow in the same basic way that rivers do. Although glacier ice is
solid, it can deform by the slow creep of dislocations within the lattice of ice crystals
which form the fabric of the ice. Thus, glacier ice effectively behaves like a viscous
material, with, however, a very large viscosity: a typical value of ice viscosity is 5 bar
year (in the metre-bar-year system of units!). Since 1 bar = 105 Pa, 1 year ~ 3 x 107 s,
this is a viscosity of some 10'® Pa s, about 10'® times that of water. As a consequence
of their enormous viscosity, glaciers move slowly — a typical velocity would be in
the range 10-100 m y ! (metres per year), certainly measurable but hardly dramatic.
More awesome are the dimensions of glaciers. Depths of hundreds of metres are
typical, widths of kilometres, lengths of tens of kilometres. Thus glaciers can have an
important effect on the human environment in their vicinity. They are also indirect
monitors of climate; for example, many lithographs of Swiss glaciers show that they
have been receding since the nineteenth century, a phenomenon thought to be due to
the termination of the ‘Little Ice Age’ which lasted from about 1500 to about 1900.

Where glaciers are the glacial equivalent of rivers, i.e. channelled flow, ice sheets
are the equivalent of droplets, but altogether on a grander scale. When an entire
continent, or at least a substantial portion thereof, has a polar climate, then snow
accumulates on the uplands, is compressed to form ice, and flows out to cover the
continent, much as a drop of fluid on a table will spread under the action of gravity.
However, whereas droplets can reach a steady state through the contractile effect of
surface tension, this is not relevant to large ice sheets. In them, equilibrium can be
maintained through a balance between accumulation in the centre and ablation at the
margins. This can occur either through melting of the ice in the warmer climate at the
ice margin, or through calving of icebergs. (Indeed, the same balance of accumulation
at higher elevations with ablation at lower elevations is responsible for the normal
quasi-steady profile of valley glaciers.)

There are two major ice sheets on the Earth, namely those in Antarctica and
Greenland (the Arctic is an ocean, and its ice is sea ice, rarely more than three metres
thick). They are on the order of thousands of kilometres in extent, and kilometres
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deep (up to four for Antarctica). They are thus, in fact, shallow flows, a fact which
greatly facilitates the solution of mathematical models for their flow. Possibly more
famous are the ice sheets which covered much of North America (the Laurentide ice
sheet) and northern Europe (the Fennoscandian ice sheet) during the last ice age.
Throughout the Pleistocene era (that is, the last two million years), there have been
a succession of ice ages, each lasting a typical period of around 90,000 years, during
which global ice sheet volume gradually increases, interspersed with shorter (10,000
year) interglacials, when the ice sheets rapidly retreat. The last ice age finished some
ten thousand years ago, so that we are about due for another now. Perhaps the Little
Ice Age was indeed the start of ice sheet build-up, only to be interrupted by the
Industrial Revolution and the resultant global warming: nobody knows.

Further back in Earth’s geologic history, there is evidence for dramatic, large
scale glaciation in Carboniferous (c. 300 My (million years) ago) and Permian (c. 600
My ago) times. In the Permian glaciation, it seems that the whole landmass of the
Earth was glaciated, leading to the concept of ‘snowball Earth’. It was following the
shrinkage of the global ice sheet that the explosion of life on Earth started.!

Drainage and sliding

While the motion of ice sheets and glaciers can be understood by means of viscous
theory, there are some notable complications which can occur. Chief among these is
that ice can reach the melting point at the glacier bed, due to frictional heating or
geothermal heat input, in which case water is produced, and the ice can slide. Thus,
unlike an ordinary viscous fluid, slip can occur at the base, and this is determined by a
sliding law which relates basal shear stress 7 to sliding velocity u; and also, normally,
the effective pressure N = p; — p,,, where p; and p,, are ice and water pressures. The
determination of p,, further requires a description of the subglacial hydrology, and
thus the dynamics of ice is intricately coupled to other physical processes: as we shall
see, this complexity leads to some exotic phenomena.

4.1 Dynamic phenomena

4.1.1 Waves on glaciers

Just as on rivers, gravity waves will propagate on glaciers. Because the flow is very
slow, they only propagate one way (downstream), and at speeds comparable to the
surface speed (but slightly faster). These waves are known as surface waves, as they
are evidenced by undulations of the surface: an example is shown in figure 4.1. They
are examples of kinematic waves, driven by the dependence of ice flux on glacier
depth.

A more exotic kind of wave is the ‘seasonal wave’. This has no obvious counterpart
in other fluid flows. It consists of (sizeable) perturbations in the surface velocity field
which propagate down glacier at speeds in the order of 20-150 times the surface

1Snowball Earth was discussed in chapter 1.
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Figure 4.1: Changes of mean surface elevation of Mer de Glace, France, along four
cross-profiles over a period of 9 years. The broken line corresponds to a wave velocity
of 800 m/a. Reproduced from L. Lliboutry, IASH publ. 47, 125-138.
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Figure 4.2: The measured surface speed of Nisqually Glacier, Mt.Rainier, as a func-
tion of time and distance. The contour interval is 25 mm d~!. The maximum and
minimum speeds occur progressively later with distance down-glacier; this represents
a “seasonal wave” in the ice flow. Reproduced from Hodge (1974).
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Figure 4.3: Variegated Glacier at the beginning of a surge, 29 August, 1964. Photo-
graph by Austin Post, U.S. Geological Survey.

speed. There is no significant surface perturbation, and these waves must in fact be
caused by variations of the basal sliding speed due to annual fluctuations in the basal
water pressure. Although well-known and reported at the turn of the century, little
attention has been paid to these waves in recent years. Figure 4.2 shows measurements
of Hodge on Nisqually Glacier which indicates the rapid passage of a velocity wave
downstream.

Mention should also be made of wave ogives, although we will not deal with them
here. They are bands (also known as Forbes bands) which propagate below ice-falls,
and are due to the annual ablation cycle.

4.1.2 Surges

Perhaps the most spectacular form of wave motion is the glacier surge. Surges are
large scale relaxation oscillations of the whole length of a glacier. They are roughly
periodic, with periods of the order of 20-100 years. During a long quiescent phase,
the glacier is over-extended and thin. Ice accumulation causes the glacier to thicken
upstream, while the over-extended snout thins and retreats. Eventually, a critical
thickness is reached, and the glacier slumps rapidly downslope again. These surges
will typically last only a year or two, during which time the velocity may increase a
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Figure 4.4: Variegated Glacier at the end of a surge, 22 August, 1965. Photograph
by Austin Post, U.S. Geological Survey.

hundred-fold. The glacier snout will then advance by several kilometres.

A typical (and much studied) example is the Variegated Glacier in Alaska. Its
surge periodicity is about twenty years, while its surges last about two years. The
glacier, of length twenty kilometres and depth four hundred metres, advances some
six kilometres during its surge, at measured speeds of up to 65 metres per day. Such
large velocities can only occur by basal sliding, and detailed observations during
the 1982-3 surge showed that the surge was mediated by an alteration in the basal
drainage system, which had the effect of raising water pressure dramatically. A
dynamic model suggests, in fact, that the oscillations are caused by the competitive
interaction between the basal sliding law and the hydraulics of the subglacial drainage
system. When the ice is relatively thin (hence the driving shear stress is low) the
drainage occurs through a network of channels incised into the ice at the glacier bed
— called Rothlisberger channels. These allow effective drainage at quite low water
pressures (hence high effective pressures) and thus also low ice velocities. At higher
driving stresses, however, an instability forces the channel system to close down,
and the basal water is forced into cavities which exist between the ice and bedrock
protuberances (such cavities are well-known to exist). The water flow is reduced,
and the sudden increase in water pressure causes a sudden increase in ice velocity —
the surge. The transition front between the linked cavity drainage system and the
channel system is nucleated near the maximum depth, and propagates rapidly both
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upstream and downstream, at (measured) speeds on the order of hundreds of metres
per hour. At the end of the surge, the channel drainage system is re-established.
Figures 4.3 and 4.4 show an aerial view of Variegated Glacier in pre- and post-surge
states.

Our understanding of the Variegated surges relies on the concept of drainage
switch between channelised flow and linked cavities, implicitly for ice flowing over
(hard) bedrock. A rather different situation appears to operate in Trapridge Glacier,
another well-studied surging glacier, in the Yukon. Here the glacier is cold in its in-
terior (unlike the temperate (at the melting point) Variegated Glacier); and rests on
a thick (~ 6 metres) layer of till, sometimes more graphically called boulder clay — a
non-uniform mixture of angular rock fragments in a finer-grained, clay-rich ground-
mass (see figure 4.5). Till has a bimodal grain size distribution, and is produced by
the erosion of brittle underlying bedrock, and is evacuated by the slow motion of the
ice downstream.

The sequence of events which appears to be occurring as Trapridge thickens is that,
firstly, the basal ice reaches melting point (and the till thaws). When this happens,
the till becomes deformable, and the basal ice can slide over the bed by riding on
the deforming till. The rate at which this occurs depends on the till rheology, where
opinion is currently divided as to whether a viscous or plastic rheology is the more
appropriate. 2 What does seem to be clear is that the water pressure will have a
major effect. Increasing saturation causes increasing water pressure, which pushes the
sediment grains apart and allows them to move more freely, so that in effect enhanced
water production causes enhanced sliding. In turn, increased sliding causes increased
frictional heating, so that there is a positive feedback which potentially can cause
runaway and consequent surging behaviour. Whether the effect is strong enough is
not obvious, but we shall examine a simple model which suggests that it may be.

4.1.3 Ice streams

Although ice sheets also flow under the horizontal pressure gradients induced by the
glaciostatic pressures beneath their sloping surfaces, they rest on essentially unsloping
bases, and therefore have no advective component in their dynamics. Thus ice sheets
do not, at least on the large scale, exhibit wave motion: the governing equations
are essentially diffusive in character. On a more local scale, however, ice sheets have
interesting phenomena of their own.

Principal among these may be ice streams. Ice sheets do not tend to drain uni-
formly to the margin from their central accumulation zones, but rather the outflows
from catchment areas are concentrated into fast-moving ice streams. Examples are
the Lambert Glacier in Antarctica and Jakobshavn in Greenland, a fast-moving (8
metres per day) outlet glacier. These ice streams gain their speed by carving out
deep channels through which they flow. Indeed, there is an obvious positive feedback

2Note the use of the word ‘appropriate’. As a saturated, granular material, somewhat like soil,
there is little argument that a plastic rheology accommodating a yield surface is the most apposite
description; such a description does not in itself provide an answer to such questions as to whether
till deforms with depth (i. e., shears), or whether discrete slip occurs at the ice-till interface.
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Figure 4.5: Subglacial till in a coastally exposed drumlin at Scordaun, Killough, Co.
Down, Northern Ireland.

here. The deeper an ice flow, the larger the driving basal stress, and the warmer the
basal ice (due to increased frictional heat and decreased conductive heat loss), and
hence the softer the ice. Both of these effects contribute to enhanced ice flow, which
explains the formation of such channels, since the erosive power of ice flow increases
with the basal velocity and the basal shear stress. Indeed, flow of ice over a plane bed
is subject to a lateral instability (much as overland flow of surface water is unstable
to the formation of rills and gullies).

A similar kind of mechanism may operate when ice flows over deforming sediments,
as in the Siple Coast of West Antarctica. Here, it is found that the flow is concentrated
into five ice streams, A, B3, C, D, and E, which are characterised by their heavily
crevassed appearance. The flow in these ice streams is very rapid and is due to

3Ice stream B is now known as the Whillans ice stream, in memory of the glaciologist lan Whillans.
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basal sliding over the underlying sediment (except for ice stream C, which appears
to have ‘switched off’ several hundred years ago). Measurements on the Whillans ice
stream indicate that the basal water pressure is high (within 0.4 bar of the overburden
pressure), and that it is underlain by some eight metres of saturated till. A similar
instability to that concerning ice flow over hard bedrock can explain the streaming
nature of the flow. Where ice flow is larger, there is increased water production. If
the drainage system is such that increased water production leads to increased water
pressure (as one might expect, e.g. for a Darcy flow), then the higher water pressure
decreases the viscosity of the till, and hence enhances the ice flow further. This is an
instability mechanism, and the limiting factor is that when ice flow increases, there
is increased heat loss from the base, which acts to limit the increase of melt rate.
Although this mechanism is viable, it has not yet been shown that it works.

4.1.4 Ice shelf instability

Where continental ice sheets are not diminished by ablation, the ice will flow to the
continental margin, where it will spill into the ocean. This, for example, is the case
in Antarctica, where it is so cold that ordinary mass wastage of the ice is virtually
absent. As a result, ice shelves are formed, which are tongues of floating ice connected
to the grounded ice at the grounding line. The grounding line is a dynamical free
boundary, whose location determines the hold up of land ice, and its determination
is therefore of some interest as regards sea level changes.

Over the past several decades, various arguments, none of them altogether con-
vincing, have been put forward to suggest that ice shelves are inherently unstable and
liable to collapse. This idea was originally put forward in consideration of the West
Antarctic Ice Sheet (WAIS), much of the grounded part of which lies on a submarine
bed. If the WAIS were to collapse completely, global sea level would rise by some six
metres, inundating many coastal cities.

The basic physical mechanism for this putative catastrophic collapse is a positive
feedback between grounding line retreat and ice flow rate. Since ice shelves are
not resisted at their base, they can plausibly flow more rapidly, and the consequent
drawdown effect will lower ice elevation, thus allowing further grounding line retreat.
The debate has been fuelled by the remarkable collapse of the Larsen B Ice Shelf on
the Antarctic Peninsula in 2002, which is thought to be due a climatic warming trend
over recent decades. However, as we shall see below, it is by no means trivial to pose
a theoretically coherent model for grounding line motion, and the issue of stability
remians unresolved.

4.1.5 Tidewater glaciers

If the position of the grounding line indicates a balance between inland ice flow and ice
shelf evacuation, the actual mechanism of break up involves mass wastage by calving
icebergs. Indeed, in the absence of ablation, calving is the way in which marine ice
sheets (i.e., those terminating in the sea) satisfy mass balance.
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Glaciers which terminate in the sea are called tidewater glaciers, and are suscep-
tible to a similar kind of catastrophic retreat to that which may be important for ice
shelves. They also lose mass by calving, but are distinguished from ice shelves by the
fact that the ice is grounded right to the margin. Instability is promoted by the fact
that the calving rate increases with depth of water. If a tidewater glacier advances
(in a cold climate), it will push a ridge of moraine ahead of it, snowplough style. In a
stationary state, the water depth at the calving front will then be less than it is away
from the margin, because of this moraine. Then, if the glacier snout retreats due, for
example, to a warming trend, the snout will suddenly find itself in deeper water. The
resultant increased calving can then lead to a catastrophic retreat. Just such a rapid
retreat was observed in the Columbia Glacier in Alaska, which retreated some 12 km
in twenty years from 1982, and it seems such rapid retreat is a common behavioural
feature of tidewater glaciers in conditions of warmer climates.

4.1.6 Jokulhlaups

It will be clear by now that basal water is tremendously important in determining the
nature of ice flow. Equally, the basal water system can fluctuate independently of the
overlying ice dynamics, most notably in the outburst floods called jokulhlaups. In
Iceland, in particular, these are associated with volcanoes under ice caps, where high
rates of geothermal heat flux in the confines of a caldera cause a growing subglacial
lake to occur, Eventually this overflows, causing a subglacial flood which propagates
downglacier, and whose subsequent emergence at the glacier terminus releases enor-
mous quantities of water over the southern coastal outwash plains. These floods carry
enormous amounts of volcanic ash and sediments, which create vast beaches of black
ash. Despite their violence, the ice flow is hardly disturbed. Jokulhlaups are essen-
tially internal oscillations of the basal drainage system. They are initiated when the
rising subglacial lake level causes leakage over a topographic rim, and the resultant
water flow leads to an amplifying water flow by the following mechanism. Water flow
through a channel in ice enlarges it by meltback of the walls due to frictional heating.
The increased channel size allows increased flow, and thus further enlargement. The
process is limited by the fact that the ice tends to close up the channel due to the
excess overburden pressure over the channel water pressure, and this is accentuated
when the channel is larger. In effect, the opening of the valve by the excess lake pres-
sure is closed by the excess ice pressure. These floods occur more or less periodically,
every five to ten years in the case of one of the best known, that of Grimsvotn under
Vatnajokull in South-east Iceland.

4.2 The shallow ice approximation

4.2.1 Glaciers

We consider first the motion of a glacier in a (linear) valley. We take the z axis in the
direction of the valley axis, z upwards and transverse to the mean valley slope, and y
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across stream. The basic equations are those of mass and momentum conservation,
which for an incompressible ice flow (neglecting inertial terms) are

Vau = 0,
0 = —Vp+ V.T+pg, (4.1)

where g is the gravity vector, p is the pressure, and 7 is the deviatoric part of the
stress tensor. The stress and strain rate are related by

Tij = 21 €4, (4.2)

where 7 is the effective viscosity, and ¢;; is the strain rate

. 1 (9’&1 an
A <8xj * 8:1:2) ' (43)

The most common choice of flow law is known as Glen’s law, that is

5ij = A(T)Tnil’rij, (44)

where the second stress invariant is given by 272 = 7,;7; (using the summation
convention)* and A(T) is a temperature dependent rate factor which causes A to
vary by about three orders of magnitude over a temperature range of 50 K: variation
of A is thus significant for ice sheets (which may be subject to such a temperature
range), but less so for glaciers. If we adopt the configuration shown in figure 4.6, then
g = (gsina, 0, —g cos ), where « is the mean valley slope downhill.

Boundary conditions for the flow are conditions of no stress at the top surface
z = s(z,y,t):

(—=p+ T11)8s + Ti2sy — i3 = 0,
T12S¢ —+ (—p + TQQ)Sy — Tog = 0,
T13Sz + 7'238y — (—p + ’7'33) = 0. (45)

At the base z = b(z,y,t), we prescribe the velocity:
U=1up, V=1 W= ub,+vby; (4.6)

(up, vp) is the (horizontal) sliding velocity, whose form is discussed later. Finally, the
kinematic condition on the free surface z = s is

w = 8; + us, + vsy — a, (4.7)

where a is the prescribed surface accumulation: positive for ice accumulation from
snowfall, negative for ice ablation by melting.

4The summation convention is essentially a device for omitting summation signs; it asserts that
summation is implied over repeated suffixes; thus 7;;7;; means E TijTij-
%,J
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Figure 4.6: Typical profile of a valley glacier

A major simplification ensues by adopting what has been called the shallow ice
approzimation. It is the lubrication theory idea that the depth d < the glacier length
[, and is adopted as follows. We scale the variables by putting

u~U; vyw~eU;

z~1; y,z,bs~d; t~I1/U;

713, 712 ~ [7]; A~ [A]; a ~ [a];

P — Pa — (pgcosa)(s — 2z) ~ e[r];

T11, Tog, T33, T2z ~ €|[T], (4.8)

where
e=dJl (4.9)

is the aspect ratio and we anticipate ¢ < 1. The choice of d and [7] has to be
determined self-consistently; we choose [ from the given spatial variation of accu-
mulation rate, and we choose U via eU = [a], which balances vertical velocity with
accumulation rate. If we choose [7] = pgdsin «, and define

= ecota, (4.10)

then the scaled momentum equations are

67'12 (9’7'13 88 9 8p 87’11
T A | htid gr Y
dy T THos e <8:1; or )’
0s e[ Op Oma Ompm O3
oy E[_@“L or by 8z]’
Op Otz | Oma3 | OTs3
— = . 4.11
0z oz + Oy + 0z (4.11)



The boundary conditions (4.6) and (4.7) are unchanged in form, and the stress con-
ditions at the top surface z = s(z,y,t) (4.5) become

52(—p+7'11)8z + T128y — 713 = 0,
Ti12Sz + (—p + T2)$y — 723 = 0,
T13Sy + To3Sy — (—p + 733) = 0. (4.12)

To get some idea of typical magnitudes, use values d ~ 100 m, [ ~ 10 km,
tana ~ 0.1; then € ~ 1072, u ~ 107}, so that to leading order s = s(z,t) and

or 12 or 13 Os
—+ —=-1 —; 4.13
Oy * 0z * K ow (4.13)
we retain the y term for the moment.
The final relation to choose d (and hence also [7]) is determined by effecting a
balance in the flow law. If the viscosity scale is [n], then we choose

[7] = [n|U/d. (4.14)

For example, for Glen’s law, we can choose [] = 1/{2[A][r]*"}, from which we find
[a]l 1/(n+2)

= 4.15

e P R (4.15)

which leads, with sensible choices of [A], [, [a] and n, to values of d comparable to
those observed (d ~ 100 m).
The two important shear stresses are given by

ou  ,0w ou  ,0v
_ (9% 290 4.1
13 n<8z+€ (99:)’ T12 n(ay+€ax>, (4.16)

and the second stress invariant 7 is given by
TP =T+ T+ e [% (71 + 73 + 733) + 7223] ; (4.17)
for Glen’s flow law, the dimensionless viscosity is
n=[AT)™" '], (4.18)

where A(T') is the scaled (with [A]) temperature dependent rate factor. If we now
put € = 0 (the shallow ice approximation) we see that

T & n|Vul, (4.19)
where V = (0/0y,0/0z), and for Glen’s law,

n=Aln|wy| (- D/m (4.20)
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(note n = 1 for a Newtonian flow; Glen’s law usually assumes n = 3); the determi-
nation of velocity distribution in a cross section S of a glacier then reduces to the
elliptic equation for u in S (putting 4 =0 and € = 0 in (4.11);):

V.n{A4,|Vu|}Vu]=—-1 in S, (4.21)

with appropriate boundary conditions for no slip at the base being © = 0 on z = b,
and the no stress condition at z = s is, from (4.12); and (4.16) with s, ~ 0 and € = 0,
Ou/0z = 0. The scalar s (independent of y) is determined through prescription of

the downslope ice volume flux, [ udydz = ), which will depend on z and ¢, but

can be presumed to be known. In general, this problem requires numerical solution.
Analytic solutions are available for constant A and a semi-circular cross section, but
the free boundary choice of s cannot then be made.

Most studies of wave motion and other dynamic phenomena ignore lateral varia-
tion with y, and in this case (with 793 = 0 on z = s) (4.13) gives

T3 = (1 — psz)(s — 2), (4.22)

and Glen’s law is, approximately,

O ATy = AL — s (s — )" (4.23)

If A =1 is constant, then two integrations of (4.23) give the ice flux Q = / udz as
b

Hn+2

- H 1- zn—a
Q=wH +( NS)n+2

(4.24)

where H = s — b is the depth, and wu; is the sliding velocity. Integration of the
mass conservation equation, together with the basal velocity condition (4.6) and the
kinematic surface boundary condition (4.7), then leads to the integral conservation

law
OH 0Q
N _|_ _— = a,
ot ox
where a is the dimensionless accumulation rate. (4.25) is an equation of convective
diffusion type, with the diffusive term being that proportional to u.
Note that if transverse variations were to be included, we should solve

s  9Q
E+%—a,

(4.25)

(4.26)

where S is the cross sectional area, and () would be given by Q) = / udS, where u

s
solves (4.21) in the cross section S, together with appropriate boundary conditions.
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4.2.2 Ice sheets

A model for ice sheets can be derived in much the same way — typical aspect ratios
are 10 — but there is no ‘downslope’ gravity term pgsin a (effectively a = 0), and
the appropriate balance determines the driving shear stress at the base in terms of the
surface slope. Effectively, the advection term is lost and p = 1. Another difference is
that  ~ y ~ [ (~ 3000 km) while z ~ 3 km is the only small position variable.

We will illustrate the scaling in two dimensions; the three dimensional version is
relegated to the exercises (question 4.4). In two dimensions, we write the deviatoric

stresses as
Ti1 = —T733 = T1, Ti13 = T3.

Then the governing equations are

Uy +w, = 0,
0 = —pe+ T1e + T3,
0 = —D: + T3z — T1z — PY,
& = At 'r,.

The surface stress boundary conditions are, on z = s,

(=p+T1)ss — 73 0,
T38p — (—p—11) = 0;
at the base z = b(z,y,t), we prescribe the velocity:

U =1up, W= uby;
and on z = s, the kinematic condition is

W = 8¢ + USy — a.

We scale the variables by putting

u~U; w~ a;
x~1loz,bys~dy t~1)U;
T3~ [1]; A~ [A]; a~a];
P —Pa— pig(s — z) ~ g[7];
T ~ e[t],

where

E = .

l

An appropriate balance of terms is effected by choosing U = 2[A][7]"d =

[7] = pgde, and this leads to
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(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

(4.33)
[a]/e,

(4.34)



and thus

(4.35)

and typical values of the constants do lead to depths of the correct order of magnitude,

kilometres, so that € ~ 1073.
The corresponding dimensionless equations are

Uy +w, = 0,
0 = —Sp + T3, + 52 [_pz + Tl:l:] )
0 = —Dz + T3z — Tz,
( 2 _ n—1
U, + € wm) = A" 13,
u, = AT"7'm,
= 7'9? + &7,

and the boundary conditions are, on z = s:

s+el(p—1)s. = 0,
T3Sz +p+T1 = 0,
W = S +US; —a;
at the base z = b(z, y, t):
U =1up w=ub,.

The shallow ice approximation puts € = 0, and then we successively find
T3 = —8z(8 —2), T=]|s:](s—2),

whence

p+ 71 =[s8], (s — 2) + 2(22 — %) Sua

and, if we assume that A = 1 is constant, the ice flux is

n—+2

/ udz = ubH + |5m|n_1 (_Sz) )
b

n+2

so that conservation of mass leads to
OH B 0 {H n+2

At 9z [n+2

54" sy — Hub} + a,

a nonlinear diffusion equation for the depth H, since s = H + b.

(4.36)

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

(4.42)

The three-dimensional version of this equation is (with V = (9/0z, 9/0y))

n—lHn+2
H =V. [{Lvs} — Hub} ta.
n-+ 2

(4.43)

The sliding velocity u, is apparently a convective term, but in fact the sliding law
usually has u, in the direction of shear stress, whence u, o —V's, and this term also

is diffusive.
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Boundary conditions

Normally one would expect a boundary condition to be applied for (4.43) at the
margin of the ice sheet, whose location itself may not be known. For an ice sheet
that terminates on land, this condition would be H = 0 at the margin, but since
the diffusion equation (4.43) is degenerate, in the sense that the diffusion coefficient
vanishes where H = 0, no extra condition to specify the margin location is necessary,
other than requiring that the ice flux also vanish where H = 0.

A different situation pertains for a marine ice sheet which terminates (and is
grounded), let us suppose, at the edge of the continental shelf. Then the margin
position is known, and the ice thickness and flux are finite. In this case, a calving
boundary condition must be applied. The typical form of such conditions relates calv-
ing ice velocity to water depth, and this would provide a mixed boundary condition
for H at the margin of the general form

OH

~5 = 9(H). (4.44)

A more representative condition for marine ice sheets occurs when the grounded
ice extends into an ice shelf, so that the ice is floating. Extended ice shelves occur in
the Antarctic ice sheet, two notable examples being the Ronne-Filchner ice shelf and
the Ross ice shelf. The grounding line where the ice changes from grounded ice to
floating ice is a free boundary whose location must be determined. The appropriate
boundary condition for the ice sheet at the grounding line is bound up with the
mechanics of the ice shelf, whose behaviour is altogether different; the mechanics of
ice shelves is studied in section 4.2.5.

4.2.3 Temperature equation

Although the isothermal models are mathematically nice, they are not quantitatively
very realistic. For a glacier, probably the neglect of variation of the rate parameter
A(T) in the flow law is as important as the assumption of a two-dimensional flow,
although the possible coupling of temperature to water production and basal sliding
is also significant. For ice sheets, temperature variation is unquestionably significant,
and cannot in practice be neglected.

With variables scaled as in the previous section for a shallow shear flow, the
temperature equation for an ice sheet may be written approximately as

‘fl—:tp = ar’/n+ BT, (4.45)

where T — T, is scaled with AT (a typical surface temperature below melting point).
The derivative dT'/dt is a material derivative. The stress invariant 7 is related to the
horizontal velocity u = (u,v) by

Ou
T%nlg‘:(s—zﬂv,ﬂ, (4.46)
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since the horizontal stress vector T = (73, To3) satisfies

T = ng—z = —(s—2)Vs. (4.47)

(For an ice sheet, this relation is derived as for (4.22), but the downslope term 1 is
absent, scales are chosen so that e = 1, and (4.47) represents the two (horizontal)
dimensional version.)

The parameters o and 3 are given by

o= 3 5 = i1 (448)

where d is the depth scale, ¢, is specific heat, g is gravity, x is thermal diffusivity,
[a] is accumulation rate. Typical sorts of value for Antarctica are o ~ 0.3, 5 ~ 0.12.
We see that viscous heating (the a term) is liable to be significant, while thermal
conduction is small or moderate. In addition, a scaled geothermal heat flux condition
at the base (cf. T < 0 there) is dT/0z ~ —TI', where ' ~ 1.5 is a typical value.
Temperature variation is likely to be significant, while the rate factor in the flow law
can be modelled as A ~ exp(yT), with v ~ 11 for a temperature range of 50 K.

The temperature equation for a valley glacier is the same as (4.47), although
with the previous scalings, (4.46) is corrected by simply replacing |Vs| in the last
expression by (1 — es,). Although the scales are different, typical values of o and 3
are a ~ 0.25, 8 ~ 0.33, and thus of significance. On the other hand, geothermal heat
is of less importance.

4.2.4 Using the equations
Nonlinear diffusion

For flow over a flat base, h = 0, with no sliding, the isothermal ice sheet equation

(4.43) is just

Hn+2|V Hln—l
n+2

which for Glen’s flow law would have n = 3. This is a degenerate nonlinear diffusion
equation, and has singularities at ice margins (H = 0) or divides (where VH/|V H|
is discontinuous). In one space dimension, we have near a margin z = z,,(t) where
a < 0 (ablation),

Ht:V.

VH| +a, (4.49)

H ~ (a/|Zm|)(@m — ) if T, < 0 (retreat),

2 1 ?r;nﬁ 1 n
0o~ ( n—+ ) [(n 4+ 1)Z) 22+ (2, — )2+ if 2,,, > 0 (advance).
n

(4.50)

This is the common pattern for such equations: margin retreat occurs with finite slope,
while for an advance, the slope must be infinite. Consequently, there is a waiting time
between a retreat and a subsequent advance, while the front slope grows.

172



Near a divide z = x4, where H, = 0 and a > 0, H is given by

H ~ Ho(t) - (nj—l)

and thus the curvature is infinite. Singularities of these types need to be taken into
account in devising numerical methods.

(n+2)(a— H,
Hpt?

1/n
)] |z — zq|" T/, (4.51)

Thermal runaway

One of the interesting possibilities of the thermomechanical coupling between flow
and temperature fields is the possibility of thermal runaway, and it has even been
suggested that this may provide an explanation for the surges of certain thermally
regulated glaciers. The simplest model is that for a glacier, with exponential rate
factor, thus

dT n+1 _~T

— =ar""e" + T, (4.52)

dt
where the stress is given by

T=8—2. (4.53)

The simplest configuration is the parallel sided slab in which s = constant, u =
(u(2),0,0), so that

Fr a(s—z)"eY —l—ﬁﬁ, (4.54)
with (say)
T=-1lonz=s, T,=-Tonz=0. (4.55)

For given s, (4.54) will exhibit thermal runaway for large enough o, and T — oo in
finite time. As the story goes, this leads to massive melting and enhanced sliding,
thus ‘explaining’ surges. The matter is rather more complicated than this, however.
For one thing, s would actually be determined by the criterion that the flux fos udz
is prescribed, = s say, where s would be the integrated ice accumulation rate from
upstream (= [ adz).

Thus even if we accept the unrealistic parallel slab ‘approximation’, it would be
appropriate to supplement (4.54) and (4.55) by requiring s to satisfy

/ udz = s. (4.56)
0

Since the flow law gives

ou _
0z
we find, if u = 0 on z = 0, that (4.56) reduces to

(s — z)"e"T, (4.57)

/ (s — 2)"teTdzy = s. (4.58)
0
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Thermal runaway is associated with multiple steady states of (4.54), in which case
we wish to solve

0 = a(s—2)""e + BT,
T = —lonz=s,
T, = —T'onz=0,
T, = —[+ (as/B)] on z=s. (4.59)

Putting £ = s — 2z, we solve

Tee = —(a/B)E"e,
T = -1, T=T+ (as/B) on £ =0, (4.60)

as an initial value problem. T is monotone decreasing with increasing &, and thus
there is a unique value of s such that 7; = I' there. It follows that there is a unique
solution to the free boundary problem, and in fact it is linearly stable. It then seems
that thermal runaway is unlikely to occur in practice.

A slightly different perspective may allow runaway, if we admit non-steady ice
fluxes. Formally, we can derive a suitable model if A = a/8 = O(1), f — oo. In
this case, we can expect T' to tend rapidly to equilibrium of (4.54), and then s reacts
more slowly via mass conservation, thus

St + ¢ = a,
1
qg= X[TZ]S (4.61)

An z-independent version of (4.61), consistent with the previous discussion, is

0s

— =5 —4q(s), 4.62

5 q(s) (4.62)
and this will allow relaxation oscillations if g(s) is multivalued as a function of s —
which will be the case. Surging in this sense is conceivable, but the limit § — oo
is clearly unrealistic, and unlikely to be attained. The earlier conclusion is the more
likely.

4.2.5 Ice shelves

When an ice sheet flows to the sea, as mostly occurs in Antarctica, it starts to float
at the grounding line, and continues to flow outwards as an ice shelf. The dynamics
of ice shelves can be described by an approximate theory, but this is very different
from appropriate to ice sheets.

We begin with the equations in the form (4.36) and (4.37), as scaled for the ice
sheet. These must be supplemented by conditions on the floating base z = b. To be
specific, we take the level z = 0 to be sea level. The water depth at z = b is thus
—b, and the resulting hydrostatic pressure must balance the normal stress in the ice.
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In addition, there is no shear stress. The general form of the (vector) stress balance
condition at an interface of this type which supports only a pressure p; is

o.n = —p;n, (4.63)

and in addition to this there is a kinematic boundary condition. When written in
terms of the ice sheet scales, these boundary conditions become

—134+eX(—p+T1)by = (5+ 0b)b,,
s = —6b—e’[mb, +p+ml,
w = b+ ub, —m, (4.64)

where m is bottom melting rate, and the parameter ¢ is given by

5:pw_pz
Pi

, (4.65)

and p; and p,, are ice and water densities. The second of these conditions, the flotation
condition, essentially says that 90% of the ice is below the surface, as in Archimedes’
principle.

Whereas the dominant force balance in the ice sheet is between shear stress and
horizontal pressure gradient, and longitudinal stresses are negligible, this is not true
in the ice shelf, where the opposite is true: shear stress is small, and the primary
balance is between longitudinal stress and horizontal pressure gradient. Therefore the
equations must be rescaled in order to highlight this fact. The issue is complicated
by the presence of two small parameters § ~ 0.1 and € ~ 1073.

We suppose that the length scale for the ice shelf is z ~ A (relative to the horizontal
ice sheet scale), and that the depth scale is z ~ v, and we anticipate that v < 1. We
then find that a suitable balance of terms reflecting the dominance of longitudinal
stresses is given by writing

r~A zZ,b~uy, uwl, w e~ A,
v
p,lei—Z, 7'3~57V2, TN%, s~ . (4.66)
The governing equations become
Uy +w, = 0,
0 = =85+ T3 — P+ Tia,
0 = —p.— 71z + Wi,
(v, + ww,) = W,
Qu, = 777,
= W+ 1, (4.67)

175



and the appropriate boundary conditions are, on the top surface z = ds:

3+ d(p—"11)s, = 0,
p+ 7+ dwlrns, = 0,
w = AOvs; + dus, — Aa; (4.68)

and on the base z = b:

T3 + (p — ’7'1)()m = (8 + b)bm,

s+b = — (p+7_1+w27_3bz))
w = vAb + ub, — Am; (4.69)
in these equations,
Ve

The length scale is essentially arbitrary; observations suggest A < 1. The parameter
v is defined by the constraint that longitudinal stress balances longitudinal strain

rate, and this determines
e [ § \ Yt

where, if A varies with temperature, it is the surface (lowest) value that should be
used.

We let w — 0 in these equations; it follows that v ~ u(z,t), 7 ~ ||, whence
71 & 11(z,t); p+ 11 =0, so that 73, ~ s, — 271, and thus

T3 & (85 — 27T15) (2 — 88) + 2071 8. (4.72)
Applying the boundary conditions at z = b, we have
s=—b, 2mby = (8; —2715) (b—ds) + 207184, (4.73)

whence, integrating, we find

and the integration constant (for (4.73)s) is taken to be zero on applying an averaged
force balance at the ice shelf front (see question 4.6). Thus we finally obtain the
stretching equations, noting that the ice thickness H ~ —b to O(J),

u, =32 (3H)", vAH,+ (uH), = Ma — m); (4.75)

the second equation is that of mass conservation, and is derived by integrating the
mass continuity equation. Note that the time scale for mass adjustment is O(v\) < 1,
so that the ice shelf responds rapidly to changes in supply.

Suitable initial conditions for H and u would follow from continuity of ice flux
and depth across the grounding line, but the position of the grounding line z = z,
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is not apparently determined. Let us anticipate that suitable conditions on H and
are that
u—0, Hu—q as z— xg; (4.76)

assuming steady conditions, it follows from (4.75) that
Hu=gq;+ / (@ —m)dz. (4.77)
e

The solution for u follows by quadrature. In the particular case that a = m (and in
any case as £ — %), we have Hu = ¢z, and thus

In order to find a condition for g; and for the position of z, we need to consider
the region near the grounding line in more detail, and this is done in the following
subsection.

4.2.6 The grounding line

In the transition region, we need to retain terms which are of importance in both ice
sheet and ice shelf approximations. This requires us to rescale the ice sheet scaled
variables in the following way:

1 1
L—=Tg~7, vaNﬁa SN(sﬁa U~ —, W~ —,
g~ 3 ~
op 6p° op
L~ 57 D, T1,~ 6'_2’ T3 ~ v ) T~ ?7 (479)

where z, is the grounding line position; the parameters 5 and 7 are defined by
g ni2 ]-
= (= — = Be. 4.80
p=(5)" 1 1=p (4:80)

This rescaling reintroduces the full Stokes equations. Denoting the rescaled variables
(except time) by capitals, and writing

T —zg(t) =X, t=pt, (4.81)
we derive the model
Ux+Wz; = 0,
0 = —Sx+Ts5z— Px+Tx,
0 = —Pz;—Tiz+Tsx,

Us+Wx = T T,
2 = T 'T,
T? = T2+TE (4.82)
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The boundary conditions are the following. On the surface Z = §.5,

Ty+6(P—-T))Sx = 0,
P+Ty+0T35x = 0,

W = §(ySi — 2eSx) + 0USx — va, (4.83)
drg
dt*

-T5+(-P+T))Bx = (S+ B)Bx,

where g = On the base Z = B, when X > 0,

S+B = —[P+T,+T;Bx],
W = 4By —2sBx +UBx —ym, (4.84)
and when X < 0,
W=0, U=0, (4.85)

where we assume that the sliding velocity is zero for grounded ice.
To leading order, we can approximate the top surface boundary conditions as
v — 0 and also § — 0 as

T3=P+T1=W=0 on Z=0. (4.86)
The kinematic condition at the shelf base is approximately
W=—-2;Bx+UBx on Z=B. (4.87)

In addition, the solution must be matched to the outer (sheet and shelf) solutions.
We consider first the ice sheet behaviour as ¢ — z,. We suppose that the ice sheet
is described in one dimension by (4.43), thus

hi = —q, + a, (4.88)
where the ice flux is (in ice sheet scaled variables)

g= = bzlnfg_sﬁ)n. (4.89)

We can carry out a local analysis near z, similar to those in section 4.2.4. As x — z,
s—b— 0 (since s —b ~ 3 < 1), but the ice flux is non-zero; in this case we find that
always

(4.90)

. n O2n+2
H=s—-b~C(zg —x)2D, quG:< n )

2(n+1)) n+2

When the surface slope is computed from this, we find that the requisite matching
condition for the slope written in terms of the transition zone scalings is that

nC 1
2(n+1) (=5x)5tn

Sx ~ — as X — —oo. (4.91)
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Clearly the presence of the small parameter § does not allow direct matching of the
transition zone to the ice sheet.

The problem is easily resolved, however. There is a ‘joining’ region in which
X = X/6, S = §/5, and then also P,T;,W ~ §; the resultant set of equations is
easily solved (it is a shear layer like the ice sheet), and we find

2(n + 1) n/(2n+2)

§ = Bg + |(~Ba) " — {(n+2)ae}/"X L (92)

where B = B, at & = z,. Expanding this as X — 0, we find that the matching
condition for S in the transition zone as X — —oo is

S~ —AX, (4.93)

where « ) }1/
_iln+ 2)qq "
A= (—BG)("+2)/" . (4.94)

A final simplification to the transition zone problem results from defining

I=P+S; (4.95)

to leading order in v and ¢, the transition problem is then

Ux+Wz; = 0,
IIx = T3z +Tix,
I, = -Tiz+Tsx,

Uz +Wx = T Ty,
2Ux = T ',
™ = T?+T} (4.96)

together with the boundary conditions

T3=W=0 on Z=0, (4.97)
B = —(I+T,+T3Bx),
T3(1 — B%) = 2T\Bx,
W = (-z¢+U)Bx on Z=B, X >0, (4.98)
and
W=U=0 on Z=Bg X<O0. (4.99)

The matching conditions to the ice sheet may be summarised as

Iy - —-A, W—=0, T3~-AZ as X — —o0, (4.100)
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with the flow becoming the resultant pressure gradient driven shear flow at —oo.
Towards the ice shelf, a comparison of orders of magnitude shows firstly that

5=

and that in the ice shelf, the transition scaled variables are

1 4.101
)\ ? ( )

v (7)1/("+1) <

2
14 Y 14 14 Y
B~— W~-= PTi~—, T3~|—=] = 4.102
Sa B, )\a y 41 5a 3 (/8) )\a ( )

note also that the ice shelf time scale v is much less than the transition zone time
scale (3, so that it is appropriate in the transition zone to assume that the far field
ice shelf is at equilibrium, and thus described by (4.77) and (4.78). Bearing in mind
(4.101), it follows from this that suitable matching conditions for the transition region
are

Ty~—-1B, U~ MX/CD,
W =0, ~ —q—UI as X — oo, (4.103)

where

(n+1) (ary") /"
M= (—) : 4.104
{ed (4 (4.10)
and the flow becomes an extensional flow as X — oo. It follows from integration of
the continuity equation between B and S that the ice flux to the ice shelf, ¢, is given
by

The top surface is defined by
S=0+T)|,, (4.106)

and uncouples from the rest of the problem. The extra condition on Z = B, X > 0,
should determine B providing % is known. This is the basic conundrum of the
grounding line determination, since there appears to be no extra condition to deter-
mine Z.

The determination of the location of the grounding line is a matter of practi-
cal concern, because it is a necessary ingredient of any theory of marine ice sheet
instability, as discussed previously.

4.3 Sliding and drainage
The sliding law relates the basal shear stress 7, to the basal sliding velocity u,. The

classical theory, enunciated by Lliboutry, Weertman, Nye, Kamb, and others, con-
siders ice flowing at the base of a glacier over an irregular, bumpy bedrock. The
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ice is lubricated at the actual interface by the mechanism of regelation, or melting-
refreezing, which allows a thin film (microns thick) to exist at the ice-rock interface,
and allows the ice to slip. The drag is then due to two processes; regelation itself,
and the viscous flow of the ice over the bedrock. Regelation is dominant for small
wavelength roughness, while viscous drag is dominant for large wavelengths, and early
work emphasised the importance of a controlling (intermediate) wavelength (of sev-
eral centimetres). More recently, the emphasis has been away from regelation and
has been put on consideration of the viscous flow.

A suitable model for discussion is that of a Newtonian fluid over a rough bedrock of
‘wavelength’ [x] and amplitude [y], given, in coordinates scaled with [z], by y = vh(x),
where y is now the vertical coordinate, and

v =[yl/lz] (4.107)

is a measure of corrugation. The governing equation for slow, two-dimensional flow
is the biharmonic equation
Vi =0 (4.108)

for a suitably scaled stream function. Appropriate boundary conditions for no flow
through the bed, and no shear stress there, are

Y =0,

(1 — V2R?) (Yhyy — Vuz) — VR gy = 0, (4.109)

on y = vh. As y — oo, the local basal flow must match to a far field flow with ‘basal’
velocity u, and ‘basal’ stress 73; thus the main body of the ice flow sees the bedrock
flow as a boundary layer, and u; and 7, are then the appropriate basal limits of the
‘outer’ ice flow. Specifically, we find that the correct matching condition is (in terms
of correctly scaled ‘outer’ velocities and stresses)

Y~ wy + s my? as y — oo. (4.110)

A convenient solution method can be presented if v is small. In this case, we
subtract upy from v and divide by v (so ¥ — (¥» — upy)/v); then to leading order in
v, the new 9 satisfies (4.108), with

Y —0asy— oo,

Y = —uph(x), Yyy — Y2z =0 0n y =0. (4.111)

The shear stress is uncoupled from the determination of ¢, but can be determined by
an integrated force balance, whence (e.g. if h is periodic with period 27)

1 2T .
=g | (0 26 otda (4112)
™ Jo
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more generally a spatial average would be used. Notice that the expression in brackets
in (4.112) is simply (minus) the normal stress, and therefore is equal to the water
pressure p,, in the lubricating film. We come back to this below.

A nice way to solve this problem is via complex variable theory. We define the
complex variable z = x 41y, and then the general solution of the biharmonic equation
is

v =(Z—2)f(2) — B(z) + (cc), (4.113)
where f and B are analytic functions and (cc) denotes the complex conjugate. The
zero stress condition (4.111) requires f = —1B’, and also B — 0 as z — oo (with

Im z > 0), and the last condition is then

B+ B =uyh on Imz = 0. (4.114)

If h is periodic, with a Fourier series

h=> are™, (4.115)
then B is simply given by
B = Z ape™* (4.116)
1

(we can assume ag = 0, i.e. the mean of h is zero). However, it is also convenient
to formulate this problem as a Hilbert problem. We define L(z) = B"(z), which is
analytic in Im z > 0, and then L(z) = B"(Z) is analytic in Im z < 0. It then turns
out that, with the usual notation for the values on either side of the real axis,

L+ + L_ — Ubh”,
Li—L_ = Llip, (4.117)
relate the values either side of Im z = 0; here p is ice pressure (p = —2i(B"” — B") on

y = 0, since p + V24 is analytic), and in fact p = p,, on y = 0, since 1, is found to
be zero there. The drag (i.e. the sliding law) is then computed as (for a 27-periodic
h)
1 2w .
Ty = — (Ly — L_)hdz, (4.118)
T Jo

and turns out to be

Tb:4ub2k3|ak|2. (4119)
1

For a linear model such as this, 7, is necessarily proportional to u,. For Glen’s flow
law, variational principles can be used to estimate
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7, ~ Ru,’™. (4.120)

Weertman’s original sliding law drew a balance between (4.120) and the linear de-
pendence due to regelation, and the heuristic ‘Weertman’s law’ 7, o u;/ ™ with
m =~ (n + 1)/2 was often used.

Simplistic sliding laws such as the above have been superceded by the inclusion
of cavitation. When the film pressure behind a bump decreases to a value lower than
the local subglacial water pressure, a cavity must form, and indeed, such cavities are
plentifully observed. An appropriate generalisation of (4.117) is then

L+ + L_ = Ubh” n C’,

L, —-L_ = —%ipc in C, (4.121)

where the bed is divided into cavities (C') where p is known (= —p,), and attached
regions where h is known. One can solve this problem to find the unknown cavity
shapes, and for a bed consisting of isolated bumps, 7(up) increases monotonically for
small u;, reaches a maximum, and then decreases for large u;, as shown in figure 4.7.
The decreasing portion of the curve is unstable (increasing velocity decreases drag)
and is caused by the roofs of the cavities from one bump reaching the next bump.

0.5

Up/Pe

Figure 4.7: Stress versus velocity for a bed of isolated bumps
Since p in the scaled ice flow model is measured relative to ice overburden pressure,
it follows that p. in (4.121) is proportional to the effective pressure N, and in fact

the sliding law has the specific form 7, = N f(up/N). For a nonlinear Glen’s law, the
suggested generalisation is

o = N f(up/N™). (4.122)
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The multivaluedness of uy(7,) is very suggestive of surging — but is it realistic?
Consideration of more realistic beds suggests that in fact f(-) in (4.122) will be an
increasing function of its argument, since when smaller bumps start to be drowned,
larger ones will take up the slack. A plausible sliding law then has f(£) increasing as
a power of &, or (for example)

Ty = cup N, (4.123)

where we would expect r, s > 0. More specifically, (4.122) would suggest s =1 — rn,
and also that r &~ 1/n would be appropriate at low wu,, where cavitation is absent.
When cavitation occurs, one would then expect lower stresses, so that r < 1/n. There
is in fact some experimental and field evidence consistent with laws of this type, with
r~ s~ 1/3, for example.

An apparently altogether different situation occurs when ice slides over wet, de-
forming till. If the till is of thickness hy and has (effective) viscosity 77, then an
appropriate sliding law would be

To = Nrup/ hr. (4.124)

In fact, till is likely to have a nonlinear rheology, and also in accordance with Terza-
ghi’s principle of soil mechanics, one would expect nr to depend on effective pressure
N. One (measured) rheology for till gives the strain rate as

¢ = Apt® N7, (4.125)

in which case the sliding law would be again of the form (4.123), with ¢ = (Aphy)~V/¢,

r = 1/a, s = b/a. Thus there are some good reasons to choose (4.123) as an all
purpose sliding law, and this points up the necessity of a subglacial hydraulic theory
to determine N.

4.3.1 Drainage

Subglacial water is generated both by basal melt (of significance in ice sheets) and
from run-off of surface melt or rainfall through crevasses and moulins, which access
the glacier bed. Generally the basal water pressure p,, is measured to be below the
overburden ice pressure p;, and the resulting positive effective pressure N = p; — p,,
tends to cause any channels in the ice to close up (by creep of the ice). In fact,
water is often seen to emerge from outlet streams which flow through large tunnels in
the ice, and the theory which is thought to explain how such channels remain open
asserts that the channel closure rate is balanced by melt back of the channel walls by
frictional heating due to the water flow.

The classical theory of subglacial drainage is due to Rothlisberger, and is described
below. We willdiscuss only the determination of effective pressure in steady state
conditions. We consider a single channel of cross sectional area S, through which
there is a water flux (). We take () as being determined by external factors such as
surface meltwater runoff; this is appropriate for glaciers, but not for ice sheets, where
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@ must be determined by subglacial melting (we come back to this later). If the flow
is turbulent, then the Manning law for flow in a straight conduit is

Pwgsina — % = f1Q*/S%/3, (4.126)

where p,, is water density, g is gravity, s is distance down channel, « is the local bed
slope, p is water pressure, and f; is a roughness coefficient related to the Manning
friction factor. If we suppose that the frictional heat dissipated by the turbulent flow
is all used to melt the walls, then

0

. D
L=0|py _ 412
m Q {p gsina 83} ( 7)

where L is the latent heat, and m is the mass of ice melted per unit length per unit
time.

The last equation to relate the four variables S, @), p and m stems from a kinematic
boundary condition for the ice, and represents a balance between the rate at the which
the ice closes down the channel, and the rate at which melting opens it up:

= K8 o) (4.128)
here m/p; is the rate of enlargement due to melt back, while the term on the right
hand side represents ice closure due to Glen’s flow law for ice; the parameter K is
proportional to the flow law parameter A.

Elimination of m and S yields a second order ordinary differential equation for
the effective pressure N = p; — p, which can be solved numerically. However, it is also
found that typically dp/0s < p,gsina (in fact, we expect dp/ds ~ p,gd/l, so that
in the notation of (4.10), the ratio of these terms is of O(¢)); the neglect of the dp/ds
term in (4.126) and (4.127) is singular, and causes a boundary layer of size O(¢) to
exist near the terminus in order that p decrease to atmospheric pressure. Away from
the snout, then

2 3/8 .
S~ [%} , KSN™ ~ Q”Lzmo‘, (4.129)
Pwg SIN O Pi

thus

N =~ QY4 (4.130)

where (3 is a material parameter which depends (inversely) on roughness. Typical
values give N = 30 bars when Q = 10 m3 s~1. Since p; = 9 bars for a 100 metre
deep glacier, it is clear that the computed N may exceed p;. In this case, p must be
atmospheric and there will be open channel flow. It is likely that seasonal variations
are important in adjusting the hydraulic régime.
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4.4 Waves, surges and mega-surges

4.4.1 Waves on glaciers

Waves on glaciers are mostly easily understood by considering an isothermal, two-
dimensional model. We suppose the base is flat (h = 0), so that equations (4.24) and
(4.25) give

n+2

H
Ht + {]_ — €Hz}n

na T wH| =3d(z), (4.131)

T

where s'(x) is the accumulation rate, and € ~ 0.1. If we firstly put ¢ = 0 and also
up = 0, then

H,+ H""'H, = §'(z), (4.132)
which has the steady state
Hn+2
ngr 5 = (). (4.133)

With ' >0in 2z <0 (say) and s’ < 0 in z > 0 (z = 0 is then the firn line) (4.133)
defines a concave profile like that in figure 4.6. (4.132) is clearly hyperbolic, and
admits wave like disturbances which travel at a speed H™*!, which is in fact (n + 1)
(~ 4) times the surface speed. For an arbitrary initial condition H = H(z) at t = 0,
the solution by characteristics is

Hn+2
i = @ —slo)
w dx
= 4.134
t = | o - s (134
where s; is defined by
ﬁIn+2 o
7(2) = s(o) — s1(0). (4.135)

Thus, for small perturbations, s; is small.

The characteristics of (4.132) propagate downstream and reach the snout (where
H = 0) in finite time. If we wish to approximate the characteristic solution where s;
is small, straightforward linearisation is invalid near the snout where Hy = 0; rather,
a uniformly valid approximation can be obtained by linearising the characteristics:

H,+ H}"'"H, ~ s'(z) (4.136)

for H ~ H,, where the general solution is

H = Hy(z) + ¢(€ — 1), (4.137)
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where

§= / H”“ (4.138)

is a characteristic spatial coordinate (note ¢ is ﬁmte at the snout). (4.137) clearly
reveals the travelling wave characterlstlc of the solution.

Margin response

If H is increased locally (e.g. due to the surge of a tributary glacier) then a shock
travels forward. The role of the term in ¢ is then to diffuse such shocks. A shock at
r = z, will propagate at a rate

[Hn+2]+
Ts = 71_,
(n+2)[H]|E
where [ |T denotes the jump across z,. When the shock reaches the snout, it then

propagates at a speed H™™/(n + 2), which is slower than the surface speed.
In the neighbourhood of a shock (with u, = 0), we put

(4.139)

r=2xs+vX, (4.140)
so that
OH #,0H 1 2
g1 _ 207 1——H} — §(z, + vX); 4.141
5t vox {{ X n+2L sz + vX) (4.141)

if v is small, the profile rapidly relaxes to the steady travelling wave described by

(4.142)

Hn+2
ToHx = [{1 — Hx}" ] :
X

n+2

providing we choose v = €, which thus gives the width of the shock structure. (4.142)
can be solved by quadrature.

Seasonal waves

There is no explanation of seasonal waves available. On the face of it, we might seek
waves of amplitude of velocity of O(1) propagating at a speed O(1/u), where p is the
ratio of one year to the convective time scale, so 4 < 0.05. Apparently we should
associate the variations in u with variations in water supply, so that a natural model
would involve only sliding, so

H,+ (Hw), = §'(z), (4.143)

and if u, = ¢(t/pu)H™/(m + 1), where ¢(t/p) represents the seasonal variation of
water supply and hence of N, then

H,+ ¢(t/u)H™H, = §'(z). (4.144)
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Unfortunately, while the surface speed will indeed oscillate seasonally in this model,
the kinematic wave equation propagates waves at (m + 1) times the surface speed, so
there seems to be no mechanism for the rapid propagation which has been observed.
Another possibility is then that the variations in N force a wave passage in the
hydraulic system itself, but this has not been explored.

4.4.2 Surges

It has long been suggested that the fast velocities during surges could only be caused
by rapid sliding. Therefore it is sufficient to analyse the mass conservation equation
in the form

H; + (Hu), = §'(z), (4.145)

where u is the sliding velocity. Also, it has been thought that if the sliding velocity
were a multi-valued function of basal stress 7, (i.e. 7,(u) has a decreasing portion))
then since 7, = H(1 — es,) ~ H, this would cause the ice flux @ = uH to be
multi-valued as shown in figure 4.8, in which case we might expect relaxation oscil-
lations to occur for values of s intermediate between the two noses of Q(H). Two
fundamental questions arise. Firstly, is there any genuine reason why 7(up) should
be non-monotone, and secondly, how would such a relaxation oscillator work in the
spatially dependent case?

QA

H

Figure 4.8: A multi-valued flux-depth relation can cause oscillatory surges.

The discussion in section 4.2 suggested the possibility of non-monotone 7,(u) for
flow over a periodic bedrock. However, more realistic bedrocks probably do not have
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this feature, and 7 increases with both v and N. What observations of the 1982-3
surge of Variegated Glacier showed, however, was that there is a switch in drainage
pattern during a surge. There are two possible modes of drainage: the Rothlisberger
channel described in section 4.2 with the value of V determined by the water flow, Ng,
say; however, if no channels are present, then water will fill cavities at the bed and leak
from one to another. This is called the linked cavity régime and operates at a higher
water pressure and thus lower effective pressure, N, than in the channel drainage.
The crucial factor which enables surges to take place is the switch mechanism, and
this depends on the ice flow over the cavities. If the sliding law is, as discussed in
section 4.2, of the form 7, = N f(u/N™), then in fact the stresses in the ice are actually
determined by u/N™, and in particular the water stored by cavities depends on this
parameter.

It turns out that a simple model of combined water flow through both cavities and
a channel system exhibits instability (the channels close down) if the cavity storage
volume is large enough, and thus the instability occurs at a critical value of A = u/N™,
denoted A.. It follows from this that a combined model of the drainage system is

N = Ng, u/N"™<Ag;
N=N, u/N"> A, (4.146)

and if this is written as a function N(u), it is multi-valued, as shown in figure 4.9.
As a consequence of this, the sliding law is indeed multi-valued, and hence Q(H) has
the form shown in figure 4.10.

There are two critical values of @) in figure 4.10, denoted Q;, @ : these are the
values at the noses of the curve (where also H = H,H ). If s(z) < @, then an
equilibrium glacier profile exists in which @ = s(z). However, if the maximum value
of s, Smax, is greater than (), then such a stable equilibrium cannot occur, and the
glacier surges.

The sequence of events in a surge is then as follows. The glacier grows from a
quiescent state in which @ < @, on the lower (slow) branch everywhere. When the
maximum depth reaches H, there is a reservoir zone where H > H_. The ice flux at
H, jumps to the upper (fast) branch by switching drainage pattern, and this switch
propagates upstream and downstream to where H = H_. These activation waves
propagate at rates of hundreds of metres per hour (and in effect have been observed).
Once the activation waves have propagated to the boundaries of the reservoir zone, the
ice flow is described by the fast mode on the upper branch, and the activated reservoir
zone propagates rapidly downstream, overriding the stagnant snout and propagating
forwards as a front. In terms of figure 4.10, the surge terminates when H reaches
H_ everywhere, and deactivation waves propagate inwards from the boundaries of
the exhausted reservoir zone to re-establish the channel drainage system. There then
follows another quiescent phase where the maximum value of H increases from H_
to H, before the next surge is initiated.
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Figure 4.9: N is a multi-valued function of wu.

4.4.3 Sliding and ice streams

It is not known why the ice flow on the Siple Coast of Antarctica, which flows out
to the floating Ross ice shelf, segregates itself into the five distinct ice streams A to
E. The picture which one has of this region is of a gently sloping (slope o ~ 1073)
kilometer thick ice sheet which flows in the ice streams at typical rates of 500 m
y~!. Such rapid velocity can only be due to basal sliding, and the seismic evidence
indicates that the ice is underlain by several metres of wet till. One can expect that
a sliding law of the form advocated previously is appropriate, that is

Ty = cup N°, (4.147)

with r and s positive. The issue then arises as to how to prescribe N. Recall from
section 4.2 that for drainage through Rothlisberger channels, an appropriate law is
N = ﬁQllu/ 4", where @), is water flux. When ice flows over till, an alternative flow route
is possible, that is, that water excavates ‘canals’ in the subglacial till. A theoretical
description of this drainage system suggests that it is more likely for gently sloping
ice flow, and also that the relation between N and @), is of the opposite sense, that
is, that ON/0Q,, < 0.

In this case an interesting feedback exists. In Antarctic ice streams, there is little,
if any, surface melt reaching the bed, and the basal water flow is due to melting there.
The quantity of meltwater produced per unit area per unit time is given by the melt
velocity

o G+nu,—g
m — pr
where p,, is water density, L is latent heat, G is geothermal heat flux, and g is the

basal heat flux into the ice. This assumes the base is at the melting point. Thus we
expect the basal water flux Q,, ~ G + Tup — g, and so @, increases with w;, (the

, (4.148)
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Figure 4.10: @ is a multi-valued function of H

dependence of g on wu is likely to be weaker — boundary layer theory would suggest
g~ ull,/ 2). If also N decreases with (),,, then N decreases as u; increases. But this
causes further increase of u;, via the sliding law. This positive feedback can lead to a
runaway phenomenon which we may call hydraulic runaway.

To get a crude idea of how this works, we denote the ice thickness as h and slope
sin . If the velocity is u, then the ice flux is

Q = hu, (4.149)
the basal shear stress is
T = pghsina = cu"N?, (4.150)
we suppose
N =1Q;7, (4.151)
and that
Quw = b[G + Tu — g], (4.152)
with
g = au'/?. (4.153)
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Consequently

fu’
B = , 4.154
[G + (pgsin a)hu — aul/2]™ ( )
where
cy?®
m=ps, f=—+ . 4.155
ps, | (pg sin a)b™ ( )
10°]
10°}
104
Q = Qc
10“ e
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Figure 4.11: Thermal feedback causes a multi-valued ice flux.

It is not difficult to see from (4.154) if f is low enough (equivalently, the friction
coefficient ¢ is low enough), that u and hence the ice flux @ will be a multivalued
function of A, as shown in figure 4.11. In fact, application of realistic parameter values
suggests that such multi-valued flux laws are normal.

What then happens in a region such as the Ross ice shelf area? We suppose that
the ice flux is determined by conditions upstream, so that if the ice flux per unit
width is g, and the width of the discharge region is W, then

Wq=s, (4.156)

where s is the volume flux of ice discharged. Now if s/W < Q. (see figure 4.15), then
a uniform slow moving ice flow is possible. Similarly, if s/W > @Q,,, a uniform fast
moving ice stream is possible. What if Q,, < s/W < Q.? A uniform stream is now
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unstable, and we may expect an instability to occur, whereby ice streams sponta-
neously occur, as observed. Such an instability would be mediated by transitions in
water pressure, since basal water will flow from fast streams at high water pressure
to slower ice at low water pressure. This generates a lateral enthalpy flux, and in a
steady state this can be balanced by a heat flux in the ice in the opposite direction,
since cooling (g) is less effective at lower u, therefore the slow ice is warmer near the
base than the ice streams. No analysis of this idea has yet been done, though it is an
intriguing mathematical problem.

4.4.4 Heinrich events and the Hudson strait mega-surge

What if the drainage channel of an ice sheet over deforming till is relatively narrow?
By analogy of the pattern formation mechanism in reaction diffusion equations, one
would expect that a multivalued flux-depth relation would not allow separate streams
to form if the channel width is too small, and in this case we would expect periodic
surges to occur down the channel, if the prescribed mass flux lies on the unstable
position of figure 4.15.

A situation of this type appears to have occurred during the last ice age. The Lau-
rentide ice sheet which existed in North America drained the ice dome which lay over
Hudson Bay out through the Hudson Strait, a 200 km wide trough which discharged
the ice (as icebergs) into the Labrador sea and thence to the North Atlantic.

Hudson Bay is underlain by soft carbonate rocks, mudstones, which can be mo-
bilised when wet. It is suggested that the presence of these deformable sediments,
together with the confined drainage channel, led to the occurrence of semi-periodic
surges of the Hudson Strait ice stream. The evolution of events is then as follows.
When ice is thin over Hudson Bay, the mudstones are frozen at the base, there is
no sliding and very little ice flow. Consequently, the ice thickens and eventually the
basal ice warms. The basal muds thaw, and sliding is initiated. If the friction is
sufficiently low, then the multi-valued sliding law of figure 4.15 is appropriate, and if
the accumulation rate is large enough, cyclic surging will occur. During a surge, the
flow velocity increases dramatically (calculations suggest a velocity of 2 centimetres
a second!), and there results a massive iceberg flux into the North Atlantic. On the
lower branch of figure 4.15, water production is virtually absent, @,, is low in (4.152)
since the flow is slow and the geothermal and viscous heat at the base can be con-
ducted away by the ice. The low value of ()., gives high N, consistent with low wu.
On the upper branch, however, viscous heat dominates, and @),, is large, NV is small,
also consistent with a high wu.

At the end of a surge, the rapid ice drawdown causes the water production to
drop, and the rapid velocities switch off. This may or may not also be associated
with re-freezing of the basal mudstones.

When water saturated soils freeze, frost heave occurs by sucking up water to the
freezing front via capillary action, and this excess water freezes (at least for fine
grained clays and silts) in a sequence of discrete ice lenses. Heaving can occur at a
typical rate of perhaps a metre per year, though less for fine grained soils, and the
rate of heave is suppressed by large surface loads. Calculations suggest a surge period
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of perhaps a hundred years, with a drawdown of a thousand metres, and a recovery
period on the order of 5,000—10,000 years. During the surge, the rapidly deforming
basal muds will dilate (in the deforming horizon, likely to be only a metre or so thick).
At the termination of a surge, this layer re-consolidates, and we can expect the total
heave to be a certain (small) fraction of the frost penetration depth. In effect, the
ice lenses freeze the muds into the ice stream, so that when the next surge phase is
initiated, some of this frozen-in basal sediment will be transported downstream, and
thence rafted out into the North Atlantic in iceberg discharge.

In fact, there is evidence that this rather glamorous sequence of events actually
occurs. Heinrich events are layers of ice-rafted debris in deep-sea sediment cores from
the North Atlantic which indicate (or are consistent with) massive iceberg discharges
every 7000 years or so. In addition, oxygen isotope concentrations in ice cores from
Greenland indicate that severe cooling cycles occurred during the last ice age. One
theory has it that such cooling events can be caused by a switch-off of North At-
lantic deep water (NADW) circulation — effectively switching off the convective heat
transport from equatorial latitudes and thus cooling the atmosphere. It seems that
bunches of these cooling cycles are terminated by Heinrich events, in the sense that
following Heinrich events the climate warms suddenly. There are two reasons why
this should be so. On the one hand, the sudden reduction in ice thickness should
warm the air above, and also it can be expected that a massive iceberg flux to the
North Atlantic acts as a source of negative thermal buoyancy, which can re-initiate
an otherwise stagnant circulation. Rather than being lumbering beasts, glaciers and
ice sheets show every sign of being dynamically active agents in shaping the climate
and the earth’s topography.

4.5 Notes and references

The best source for general information about glaciers and ice sheets is the book by
Paterson (1994).

4.5.1 Waves on glaciers

An early discussion of surface waves is by Finsterwalder (1907). The modern theory
is largely due to Nye (1960), who analyses linear waves; a nonlinear analysis is given
by Fowler and Larson (1980b). Seasonal waves are discussed by Deeley and Parr
(1914) and more recently by Hodge (1974). Wave ogives are lucidly discussed by
Waddington (1986).

4.5.2 Surges

Surging glaciers are located in various places round the world, including Alaska and
Svalbard. Famously, there are no surging glaciers in the European Alps, but it is
thought that there used to be at least one, Vernagtferner, in the Austrian Alps,
which last surged in about 1900. Early paintings, documented by Nicolussi (1990)
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indicate surges occurring in about 1600 and 1680, to judge from the jagged surface
of the glacier in the images.

The surge on Variegated Glacier is discussed by Kamb et al. (1985), and theo-
retical descriptions are given by Kamb (1987) and Fowler (1987a). Observations of
Trapridge Glacier are described by Clarke et al. (1984). The issue of the Journal
of Geophysical Research in which Fowler’s (1987a) article appears is a collection of
articles on fast glacier flow, including both ice streams, surging glaciers, and tide-
water glaciers. For a discussion of the dynamics of ice stream B in Antarctica, see
Engelhardt et al. (1990). The basic theory of jokulhlaups is due to Nye (1976).

The theory of surface waves on glaciers was really worked out by several early
authors, and is discussed by Lliboutry (1965) in his voluminous treatise. The modern
linear theory is worked out by Nye (1960), and is expanded on by Fowler and Larson
(1980b). Fowler (1982) obtained a theory of seasonal waves on the rather dubious
basis of a sliding law with Qu,/97, > 1, but this is unlikely to be correct.

Surges are discussed by Kamb et al. (1985) and Clarke et al. (1984). The present
discussion is based on work by Fowler (1987a), the mathematical details of which are
worked out in Fowler (1989).

4.5.3 Streams, shelves, sheets, grounding line

The dynamics of ice streams are reviewed by Bentley (1987), while the theory of
Hudson Strait mega-surges is due to MacAyeal (1993). Heinrich events are discussed
by Bond et al. (1992), while the present discussion is based on a paper by Fowler and
Johnson (1995).

The basic scaling in the shallow ice approximation is due to Fowler and Larson
(1978): it is elaborated in the book by Hutter (1983). For ice sheets, similar deriva-
tions have been done by Morland (1984), Hutter et al. (1986) and Fowler (1992), of
whom we follow the latter. The concept of thermally induced instability was enunci-
ated by Robin (1955) and taken up by Clarke et al. (1977) and Yuen and Schubert
(1979), but more or less scotched by Fowler and Larson (1980a).

The issue of the extra condition which describes the position of the grounding line
is a thorny one, which is as yet not completely resolved. At a formal level, the most
detailed studies are those of Wilchinsky and co-workers (Chugunov and Wilchinsky
1996, Wilchinsky and Chugunov 2000, 2001), but these papers are severely impen-
etrable, even to initiates. Chugunov and Wilchinsky (1996) consider the transition
zone in a similar manner to that presented here. They assume Newtonian flow and a
steady state, and claim to deduce the grounding line position. Two key assumptions
are apparent in their reasoning. The first is the arbitrary assumption that the hori-
zontal length scale for the ice shelf is comparable to that for the ice sheet. This allows
then to deduce that (with present notation) Hg = 3(g/d)'/? for some O(1) coefficient
B; the origin of this (realistic) scale is, however, mysterious. The deduction of a nu-
merical value of § ~ 1.5 from a numerical calculation involves (in the appendix to
the paper) the assumption that the bed B(X) (in present notation) is smooth. While
this may be correct, it is not immediately obvious why it should be so.

Wilchinsky and Chugunov (2000) extend this analysis to the junction between a
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rapidly moving ice stream, where shear is less important, and an ice shelf. They now
state that the grounding line position is determined by the requirement of continuity
of the lower ice surface at the grounding line, but they do not carry through the calcu-
lation. The scaling analysis involved is rather different than for the shear-dominated
sheet /shelf transition. Finally, Wilchinsky and Chugunov (2001) extend the scaling
of the 1996 paper to the nonlinear rheology of Glen’s law. The flow is still steady,
and it is stated that the condition B(0+) = 0 determines the grounding line position,
and that the depth at the grounding line is, in present notation,

qG = (%) HE=?; (4.157)
this can be compared with (4.94). Numerical evaluation of (3 is again only done for the
Newtonian case n = 1, under the additional assumptions of Bxy = Bxx =0 at X =
0+, which are geometric constraints associated with the geometrical transformation
of the domain used in solving the problem numerically. Like its predecessors, this
paper is hard to fathom.

4.5.4 Sliding and drainage

The theory of basal sliding over hard beds stems from Weertman (1957) and Lliboutry
(1968). Two reviews of progress by the end of the seventies are in Lliboutry (1979)
and Weertman (1979). The linear theory is primarily due to Nye (1969, 1970) and
Kamb (1970), while the material presented here is based largely on Fowler (1986,
1987b). Till rheology is discussed by Boulton and Hindmarsh (1987). An up to date
theoretical discussion of sub-glacial cavitation is given by Schoof (2005).

The classical theory of drainage is due to Réthlisberger (1972), while the devel-
opment for jokulhlaups follows Nye (1976).

A recent review of subglacial processes of current interest is by Clarke (2005).

Exercises

4.1 Solve the cross section velocity equation (4.21) with (4.20), assuming the rate
factor A = 1 and a semi-circular profile for the ice cross section I. Hence find
the ice flux () as a function of the cross sectional area of the flow.

4.2 Use lubrication theory to derive an approximate model for two-dimensional flow
of a valley glacier, assuming Glen’s flow law with a rate constant independent
of temperature, and no sliding at the base. Non-dimensionalise the model, and
show that for typical lengths of 10 km, accumulation rates of 1 m y !, and if
the rate constant in Glen’s law is 0.2 bar 3 y~! (with the Glen exponent being
n = 3), a typical glacier depth is 100 m. Show that the dimensionless model
depends on the single dimensionless parameter p = dcot a/l, where d is the
depth scale, [ is the length scale, and « is the valley slope. What are typical
values of u?
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4.3

4.4

4.5

4.6

Show that if © < 1, the model takes the form of a first order hyperbolic wave
equation. Write down the solution for small perturbations to the steady state,
and show that the perturbations grow unboundedly near the glacier snout. Why
is this? Write an alternative linearisation which allows a bounded solution to
be obtained.

More generally, an exact characteristic solution of the model allows shocks to
form (and thus for the glacier snout to advance). Discuss the role of p in shock
formation.

A glacier is subject to a balance function a whose amplitude varies sinusoidally
in time about a mean (space dependent) value; specifically

a = ap(z) + a ™,
where a; is constant (the real part may be assumed). Use an appropriate
linearised wave theory to determine the resultant form of the perturbed surface.
What can you say about the effect of millennial scale climate changes? about
annual balance changes?

How would you generalise your result to a general time dependent amplitude
variation?

Write down the equations governing three-dimensional flow of an ice sheet, and
show how they can be non-dimensionalised to obtain (4.43), assuming Glen’s
flow law and a temperature independent rate coefficient. Show that the dimen-
sionless basal shear stress is 7 = —H V..

A marine ice sheet terminates on the continental shelf during an ice age, in
water of fixed depth d,,. The calving ice velocity is cd,,, where c is a constant.
Show how this, together with an expression for the ice flux which can be inferred
from (4.43), yields a boundary condition for H of the form (4.44).

(Assume firstly that u, = 0. Then find the corresponding boundary condition
assuming a Weertman sliding law of the form u, = C|7|™ '7, where m > 1,
using 7 = —HVs.)

The horizontal force balance at the calving front of an ice shelf can be written
in the form

011 = —Puw,

where p,, is the (hydrostatic) water pressure. Show that, when written in terms
of the ice sheet scales, this condition takes the form

—s+&*(—p+m) = bz,

where § = (p, — pi)/p; and z is measured from sea level. Hence show that in
terms of the ice shelf scales, the condition is

—sS—p+71 ==z
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4.7

4.8

4.9

Use the approximate results p ~ —71, s + b = 0, to show that the vertically
averaged deviatoric longitudinal stress at the calving front is

7 =—1b(1+0)°,

and if this is taken as the boundary condition for the ice shelf stress 7y, show
that

n~ —%b

everywhere.

The drainage pressure in a subglacial channel is determined by the Rothlisberger
equations

_ he?

Pwd sin A = W’
mL = p,g@ sin o,
o~ KSN™,
Pi
Explain the meaning of these equations, and use them to express the effective
pressure N in terms of the water flux ). Find a typical value of NV, if Q ~ 1
m® s~ and sina, ~ 0.1, fi = fpuwg, f=005m23s2 n=3, L=33x10°J]
kg™ and K = 0.1 bar™3 y~ 1.

Use a stability argument to explain why Rothlisberger channels can be expected
to form an arterial network.

The relation between ice volume flux and depth for a surging glacier is found
to be a multivalued function, consisting of two monotonically increasing parts,
from (0,0) to (Hy,Q+) and from (H_,Q_) to (00, 0) in (H, Q) space, where
H., > H and Q; > @Q_, with a branch which joins (H_,Q ) to (Hy,Q-).
Explain how such a flux law can be used to explain glacier surges if the balance
function s(x) satisfies maxs > @, and give a rough estimate for the surge
period.

What happens if maxs < Q_? maxs € (Q_,Q4)?

The depth of a glacier satisfies the equation
o n+2 ,
Hi+— |(1—pH,)" = :
g (1= iH) | = )

where © < 1. Suppose first that 4 < 1, so that the diffusion term can be
neglected. Write down the characteristic solution for an arbitrary initial depth
profile. What is the criterion on the initial profile which determines whether
shocks will form?

Now suppose s = 1/(n+2) is constant, so that a uniform steady state is possible.
Describe the evolution of a perturbation consisting of a uniform increase in
depth between x = 0 and x = 1, and draw the characteristic diagram.

198



Shock structure. By allowing p # 0, the shock structure is described by the
local rescaling z = z4(t) + pX. Derive the resulting leading order equation
for H, and find a first integral satisfying the boundary conditions H — H. as
X — £ 00, where H_ > H, are the values behind and ahead of the shock.
Deduce that the shock speed is

[H"+2)t
[H]f

Ty =
and that ¢ = H/H, satisfies the equation

¢ = —[g(¢)"/" — 1],
where § = X/H,, ¢ > rasé — —o00, ¢ - 1as & — oo, and

(" =1~ 1)+ (- 1)
C-DgT

with » = H_/H, > 1. Show that g(1) = g(r) = 0, and that g(¢) > 1 for
1 < ¢ < r, and deduce that a monotonic shock structure solution joining H_
to H, does indeed exist.

Suppose that § = AH/H, is small, where AH = H_—H,. By puttingr = 1+¢
and ¢ = 1+ 0P, show that

9(8) =

2n+1)(n+2)

g=1+ 5 P1—-P)+...,
and deduce that
Oz ~ —P(1 — D),
where
- P+ (n+ 2)5

2n
Deduce that the width of the shock structure is of dimensionless order

2npH
Pn+1)n+2)

T— Ty~

or dimensionally
2n d3

(n+1)(n+2) (Ad)?tana’
and that for a glacier of depth 100m, slope (tana) 0.1, with n = 3, a wave of

height 10 m has a shock structure of width 30 km! (This is the monoclinal flood
wave for glaciers, analogous to that for rivers discussed in chapter 2.)5

5The observation that the smallness of surface slope diffusion is offset by the smallness of surface
amplitude is made, for example, by Gudmundsson (2003) (see paragraph 16).
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