Nonlinear systems

PROBLEM SHEET 1.

1.1 The pair of equations
&= f(z,y),
y=9g(z,y),

has an equilibrium point at x = zg, y = yo. If the matrix A is given by

-(54)

9z Gy
evaluated at (zg,yo), and its trace and determinant are denoted by 7' = tr A, D =
det A, show that the stability of (o, o) is determined by 7" and D, and delineate the

curves in (7, D) space which separate regions in which the critical point is a saddle,
(stable or unstable) node, etc.

1.2 The Lorenz equations are given by
T =—ox+ oy,

y = (’l" - Z).’L' - Y
z=uxy — bz,
where r,0,b > 0. Show that the origin is a stable equilibrium point if » < 1, and
unstable if r > 1. Show that if » > 1, two further equilibria C, given by z = y =

+4/b(r — 1), z = r—1, and the eigenvalues of the Jacobian of the linearised equations
at either equilibrium satisfy

p(A\1) =X+ (0 4+ b+ 1N+ b(o + 1)\ + 2ba(r — 1) = 0.

Deduce that at least one root is negative, and that if r is close to one, the other two
are as well. (You may need to use the fact that as r varies, the roots A\(r) of p =0
vary continuously — why?) Show that the two roots other than the negative one can
be an imaginary pair €2 only if r = r., where

o(c+b+c)
o—b—1

Deduce that the equilibria Cy are stable if 1 < r < r., and unstable if r > r,.

1.3 If z € R satisfies © = f(z, ), with

f£(0,0) =0, f.(0,0)=0,

write down an approximate equation for  near 0 by expanding f in a Taylor series,
retaining terms up to degree 3. By considering the relative magnitude of these terms
when z and p are small, show that:



(i) if f, # 0, then approximately
&= pfu+ 5° fos;
(i) if f, = 0, approximately
& = p fop + 322 foo + 312
(iii) if f, = 0 and f,, = 0, approximately
& = p fou + §7° fooe + 51° Funs

and that in the last case, the u? term can also be ignored.
Deduce that the bifurcation is either of saddle-node, transcritical, or pitchfork

type.

1.4 Show that the system

&= p—2?

y=-y
has a bifurcation at g = 0 where a saddle in < 0 joins a node in z > 0 (hence the
name saddle-node bifurcation).
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PROBLEM SHEET 2.

2.1 Show that if z € R™, 2™ = 21" ... 2", m = (my1,...my), A = (A1,... ), A =
diag();), and {ex} is a normal basis, then
Lpaz™es = [(m, A) — As]z™es,

where Lyh = h'/Ax — Ah, and A’ is the Jacobian of h.
Deduce that if

m
gr = Z CmsT €s,

Ym;=r
then the solution of the homological equation Lyp = g, is
Cms m
P -

Ym;=r

(The solution of the homological equation determines the form of the near identity
transformation which removes the non-resonant term g, of degree r.)

2.2 A real, 2-D system © = f(z,u), ¢ € R?, has a Hopf bifurcation at 4 = 0. By
embedding the system with the equation i = 0, show that the normal form can be
written as

=Mz + Y en(w) [z 2,

where A\(0) = i€2, and z is an appropriately defined complex variable.

2.3 (Wiggins p. 239) Calculate the general form of the normal form expansions, and
give an explicit transformation which removes the quadratic terms from the following
systems:

i) 6=—0+7%

v = —siné.

(i) &=jzz+y+a?y,
y=z+2y+y>

2.4 (Wiggins, p.240) By suspending the following systems with the equation g = 0,
find the general form of the normal form expansion of the following systems:

(a) = %x+y+x2y,
y=gz+2y+py+y°

(b) =2z—2y+ pz,
=3z —y—z>
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PROBLEM SHEET 3.

3.1 Give a formal justification that a fixed point z* is stable if |f'(z*)| < 1. (That
is, prove that if f is continuously differentiable and xzy is close enough to z*, then
Tn, — ¥ as n — 00.) Show also that the stability of the periodic orbit {zi,...z,} of
f is determined by [IT} f'(z;)]|-

3.2 Use the implicit function theorem (see, e.g., Devaney) to show that if x — f(z,¢)
is a smooth (C') map, and z* = f(z*,0) with f'(z*,0) # 1, then for sufficiently small
€, there is a fixed point z(¢) of f with z(0) = z*. Deduce (with some care!) that the
map

0 — f5(0) = 0 + sesins6 + O(¢*) (mod 27)

defined on the unit circle, i.e. 6 € [0,27], has 2s fixed points for small ¢, where O(e?)
is a C? perturbation.

[The notation g € C™ means the function g and its first n derivatives are continu-
ous. Hint: consider, in the statement of the implicit function theorem, the functions

g(z,e) = f(z,e) —x, g(0,¢) = (f¢(0) — 0) /=]

3.3 By expanding in Taylor series in the vicinity of the bifurcation point, show in
detail that a period-doubling bifurcation generates a single periodic orbit, and give a
criterion for its stability in terms of the Schwarzian derivative at the fixed point,

o3y
si= 14 2<f,) |

3.4 Classify all bifurcations of fixed points (stating the bifurcation parameter values)
of the following maps:

(i) z—p—a%
(ii)) z— pz(l—2x);
(iii) = — pr — 2%
Sketch the local bifurcation diagrams.
3.5 (Drazin p. 111) If z — f(z, u) = z[p/{z® + (u — 2?)e~*™*}]'/2, show that if u < 0,
f has a stable fixed point x = 0, and if 4 > 0 then f has an unstable fixed point

z =0, and two stable fixed points x = &,/u. Find f"(z, 1) (the notation f" denotes
the n-th iterate of f). What are the domains of attraction of these stable fixed points?
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PROBLEM SHEET 4.

4.1 Draw a graph of F(z) = 42 — 3z on the interval [—1,1]. Show that the map
x — F(z) has three fixed points, and examine their stability. By using a suitable
trigonometric transformation, show that the map is chaotic, and construct a suitable
symbolic representation for orbits of F. [Hint: write x as a ternary fraction]. Use
the symbolic representation of = to find how many fixed points and period two cycles
there are, and verify your answer using the map.

4.2 (Jordan and Smith p. 146) Use the Poincaré-Lindstedt method to find approximate
periodic solutions of

(i) Z—exz+2x=0,
i) (I+er)i+z=0, ex]l.

4.3 Use the Poincaré-Lindstedt method to find approximate periodic solutions to

f+rt+er’=0, el

4.4 Show that the system
&= —y+ px + 9’

y=z+py— 2

has a Hopf bifurcation at ;4 = 0. Use the Poincaré-Lindstedt method to find periodic
solutions when y = —&2, and show that their amplitude is approximately 2(—2u)'/2.

4.5 Use the method of averaging in its simple form (e.g. Drazin p. 192) to approximate
the solutions of the equation

Z+ellz|—1z+2=0

as € — 0. Could you use Poincaré-Lindstedt?
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PROBLEM SHEET 5.

5.1 Show that the equation
§+G(9)¢* — F(g) =0

may be put in Hamiltonian form by writing p = f(¢)¢ for some appropriate function

f(a).

5.2 Suppose that a Hamiltonian system has Hamiltonian H(q,p), and that a func-
tion S(g, ) can be found such that p = 05/9q, and S satisfies the Hamilton-Jacobi

equation
oS ~
H| — = H(I
(8q ) q) ( )7

for some function H.
Derive an expression for p in terms of ¢, I and derivatives of S.
Derive another expression for p by differentiating H with respect to g.
Hence show that

I=0.
By differentiating H with respect to I, show also that

. OH
e—ﬁ.

(I, 8 are action angle coordinates for the integrable Hamiltonian H.)

5.3 Use perturbation theory to solve for the motion described by the perturbed Hamil-
tonian
H =1 +wd®) +e®, e< 1.

(You may assume that suitable action angle coordinates when € = 0 are ¢ = (21 /wg)*/?sin 8,
p = (2wol)'/?cosb.)

Hence show that the perturbed frequencies are given by
15J
N=wy—e|—]...
o)== (357)

5.4 Write a short (2-3 page) essay describing how stochastic behaviour arises in per-
turbed Hamiltonian systems.
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PROBLEM SHEET 6.

6.1 For the symmetric Lorenz map

¢ — sgu(é)alél’ - ul,

a > 0,6 < 1, find the values of u for which (a) the bifurcating fixed point (from
¢ =0 at u = 0) has a saddle-node bifurcation; (b) the strange invariant set becomes
attracting.

Describe what happens as p varies if a < 0.

6.2 (i) By consideration of the Lyapounov function V = rz? + oy? + (2 — 2r)2, show
in detail that trajectories of the Lorenz equation enter the ellipsoid D,: rz? + 3% +
b(z — r)? = b*r? + &2 after a finite time. Deduce that thereafter trajectories remain
inside the ellipsoid V' < maxp, V. Can we put € = 0 in the above? Why? Or why
not?

(ii) Show that, if 0 < 7 < 1 in the Lorenz equations, the origin is globally stable.
(Hint: consider the Lyapounov function V = z2 + oy? + 022.)

(iii) Show that the Lorenz equations have a pitchfork bifurcation of the origin at
r = 1, and a Hopf bifurcation of the two non-trivial steady states at

r=o(c+b+3)/(c—b-—1).
6.3 Shil’nikov bifurcations occur for systems of the form

T = —Azw—wy-l—P(ac,y,z,u),
= ww—)\gy—{—Q(w,y,z,u),
z = /\12+R(x7y727,u’)7

where P,Q,R = O(r?). If there is a homoclinic bifurcation at g = 0, then an
appropriate Poincaré map is approximately 1-D, and is

¢ — al?’ cos

= n(1/Q)] + 1, (¢ >0)

where ¢ o z on the Poincaré surface r = (22 + y?)/2 = c. Here § = A\y/)\;. Deduce
that for § < 1, an infinite number of periodic orbits bifurcate at u = 0, but for 6 > 1,
only one does. Draw a bifurcation diagram of In(1/{) versus u in each case.

6.4 Write a short essay describing the way in which chaotic trajectories arise in the
Lorenz equations.
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VACATION SHEET.

vac.l Define what is meant by a Cantor set. The Cantor middle-thirds set is con-
structed by deleting successive middle thirds of intervals, as follows:

SO = [07 1]
Sl = [07 % U [%a 1]
52 = [07 é]U[%a%]U[gag]U[%J]

Show that 1i_)m S, exists, and is a Cantor set (closed, no interior points, no isolated
n—oo

points) (hint: use a ternary representation for z € [0,1]). Show that this Cantor set
has (Lebesgue) measure zero.
Can you define a mapping such that ¢(Ss) = S, and which is chaotic?

vac.2 Consider the conjugacy between the Smale horseshoe ¢ and the shift map o on
Y.

(i) Define a metric on .
(ii) Show that ¢ is continuous and (continuously) invertible.
(iii) Construct a dense orbit for o.

(iv) Let 0 = (...00.000...) € X5. A sequence s is called homoclinic if 0"(s) — 0 as
n — +o0o. Prove that homoclinic sequences are dense in Y.

vac.3 Consider the piecewise linear map f : [0,4] — [0,4] defined by f(0) = 2,
f(1)=4, f(2) =3, f(3) =1, f(4) =0, with f linear between these values.

(i) Show that f has a unique fixed point in [0,4] and that it is unstable.
(ii) Show that all periodic orbits of f are unstable.
)

(iii) Show that f has a period 5 orbit, but no period 3 orbit (hint: consider the
actions of f on the intervals I; = [i — 1,1]).

(iv) With I; defined as above, let the matrix A = (a;;) be such that a;; = 1 if ; is
mapped to I;, and 0 if not. Show that (A™);; represents the number of distinct
paths which map I; to I; under f™. Can this be used to infer information on
periodic orbits? Calculate A® and A°.



