Nonlinear systems. Specimen Finals questions

1. Describe what is meant by an equilibrium point and its (linear) stability for the
set of differential equations

szf(x), r € R",

and explain how the stability can be calculated.
Show that the Lorenz equations

T =—o0x+ oy,
y:(’f’—Z).’L'—y,
z=2ay— 2,

with o, b > 0, have a pitchfork bifurcation at the origin when » = 1, and a Hopf
bifurcation from the non-zero steady states when

o(c+b+3)
o—b—1 "

I 2. Define what is meant by saddle-node, transcritical, pitchfork, and Hopf bifur-
cations for a differential equation

&= f(z,pn), z€R".

Give criteria for the existence of each, and illustrate the first three using specific
examples.
Show that the Rayleigh equation

. Y
Yy—my+3y+y=0

has a Hopf bifurcation at y = 0, and use perturbation methods to find its amplitude.



I 3. Show that if z satisfies
t= Az +g.(z) +O(r +1)

where z € R™ and g, is a polynomial containing terms of degree r > 2, and O(r + 1)
signifies terms of degree r 4+ 1 or higher, then the substitution z = y + p,(y), with p,
a polynomial of degree r, will reduce the differential equation to the form

y=Ay+0(r+1),
providing p, satisfies the homological equation
Lap, = Prl—lAy - Apr = 9r,

where P!_, is the Jacobian of p,.
Assuming {e;} is a basis set of eigenvectors of A, with eigenvalues \;, show that

Laz™es = [(m, \) — Ag]z™es
where ™ = 27" ...z A= (A1...\,), m = (my,...m,), and deduce that a nonlin-

ear system & = Az + go(z) + g3(x) + . . . may be formally reduced to the linear system
y = Ay, providing A; # (m, \) for all choices of s and m.

I 4. Explain in outline the procedure for the reduction of the differential equation
&= Az +g(z), z€R",

to normal form. (You may assume A is diagonalisable.)
Find the normal form for the pair of differential equations

T=x—2y+...,

y=3r—y+....

Hence find the resonant quadratic term(s) in the normal form reduction of
T=x— 2y,

y=3z—y—z°



I 5. Describe what is meant by a Hopf bifurcation of an ordinary differential
equation

= f(z,p), z+R"
Show that the real two-dimensional system
Ty = pxy — Qxo + f(21, 72),

T = Qa1 + pxo + g(21,22),

has a Hopf bifurcation at y = 0. By writing z = x; + iz2 and embedding the system
with the auxiliary equation

p=0,
show that the normal form can be written in the form

b= (et i)z 4 Y emlu) 27

m>1

I 6. Use the Poincaré-Lindstedt method to give solutions correct up to and in-
cluding terms of O(e?) of the equations

(i) %—exi+z=0;
(i) (1+ex)i+z=0,

where € < 1.



I 7. Describe two different kinds of bifurcation associated with a zero eigenvalue
of the Jacobian Df of the differential equation

i = f(z,n), ze€R",

where f(0, ) = 0 for all p.
A feedback control system is modelled by

F+6x+x(z?—1)=—z,

z+ oz = ayz,

where x is the amplitude of a nonlinear oscillator, and z is the controller. Evaluate
the fixed points and their stability, and show that bifurcations can occur on three
distinct surfaces in («, ,7) space. Show that these surfaces meet at vy =1, § = 1/a.
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1. Write down Hamilton’s equations for the generalised coordinates p;, g; of the
Hamiltonian H(p;,q;,t). If H is autonomous show that it is a conserved quantity.
Describe the use of a generating function S(g;, P;) to integrate an autonomous hamil-
tonian system by solving the Hamilton-Jacobi equation.

A simple harmonic oscillator has Hamiltonian

1
H=§ﬁ+ﬁf)

By solving the Hamilton-Jacobi equation for S(g, I), find the action angle variables
1,60 and hence integrate the system.

II' 2. Describe what is meant by a canonical transformation of a Hamiltonian
system.

For a one degree of freedom Hamiltonian H(p, q,t) determine which of the follow-
ing are canonical transformations:

() Q= 34° P =p/q;
(ii) Q = tanq, P = (p — k) cos? g;
(iii) @ =sing, P = (p — k)/ cosg;
(iv) Q = q'/2et cosp, P = ¢'/?etsinp.



ITI 3. Write down the Hamilton-Jacobi equation for the perturbed one degree of
freedom Hamiltonian

H = Hy(I) + eHy(I,0) + €Hy(1,0) . . .,

where Hy, H ... are 2m-periodic in 6. By expressing the generating function S(6, J)
as a power series,

S=J0+eS+eSy+ ...,

show how Si,S; may be chosen to express the Hamiltonian in the form K(J) =
Ko(J) + eK1(J) + €€K3(J) . . ., providing wo(J) = H}(J) # 0.
Apply the method to the perturbed Hamiltonian

1
H = 5(102 + whq®) + eg?,

by first writing Hy in action angle variables. Hence show that the perturbed frequency

is given by
15J
QJ(J) = Wy —62 (4—(,061) +



IT 4. Show that the equation of motion describing a simple pendulum,
0 + wZsinb = 0,

describes a Hamiltonian system with Hamiltonian

* * * 1 * *
1¥(p,q)==§p2-—w3amq-

Show that, for small amplitude oscillations, the Hamiltonian can be written in the
perturbed form

H(p,q) =Ho+eHi +€Hy..., e<1,

where H* = ¢H, p* = \/ep,, ¢* = /€q. By transforming to action angle variables and
applying canonical perturbation theory, show that the perturbed frequency is

w:wo—gJ-i—...,

where J is the (perturbed) action variable.

IT 5. Describe the use of canonical perturbation theory in solving the perturbed
n degree of freedom Hamiltonian system

where I, 0 are n-dimensional vectors. Show that a perturbed generating function

S(J,0) =6.J + €Sy + €28 + ...

can be defined, and find an expression for S; if

Hi(1,0) = Hi(I) + > Hipme™?.
m#0

Show that perturbation theory fails if the unperturbed frequencies are resonant, i.e.
m.wg = 0, where wy = V Hy.

Give a statement of the problem of small divisors, and a statement of how the
KAM theorem surmounts this.



IT 6. Prove the Poincaré-Birkhoff fized point theorem for the area-preserving twist

map 7, given by
T I'\ ([ I+e9(1,6)
‘A6 ) \0+2rw(l)+ef(1,0) )’

where f and g are smooth 27-periodic functions; that is, if w(lp) = r/s € Q, w'(ly) #
0, then for sufficiently small ¢, there are (in general) 2ks orbits of period s near I = I,
which are alternatively saddles and sinks.

Explain why, if the stable and unstable manifolds of neighbouring saddles intersect
transversely, stochastic behaviour can be expected.
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1. A twist map is defined by 8 — T.(6), where
T.(0) = 0 4 2mQ(€) + esin sb),

where € < 1 and Q is a smooth function of e. Show that if Q(0) = r/s € Q, then
for sufficiently small €, there are 2s fixed points of T? providing |Q'(0)| < 1/27, and
determine their stability. Deduce that 7T, has two period s cycles, one stable and the
other unstable (you may assume r and s have no common factor).

If '(0) varies independently of €, what happens as |Q'(0)| increases through 1/277

IIT 2. Define a Cantor set. Describe the construction of the Cantor middle-thirds
set, and show that it is a Cantor set. Show that, at the n-th stage of construction,
there are 2" intervals, each of length 3. Deduce that the Cantor set has measure
Z€ero.

IIT 3. Define what is meant by a Cantor set. Show that the Cantor middle-fifths
set, constructed as follows, is a Cantor set. Delete the middle fifth (0.4, 0.6) from
the unit interval [0,1]. Then delete the middle fifth from each of the two remaining
intervals, and continue in this fashion. Find the number of intervals at the n-th
stage, and compute their total length. Hence deduce that the middle-fifths set has
Zero measure.



IIT 4. Use symbolic dynamics to show that the baker map

bni1 = 26, mod 1

has
(i) a countably infinite number of periodic orbits;
(ii) an uncountable number of aperiodic orbits;
(iii) a countable number of homoclinic points to the origin;
(iv) sensitive dependence on initial conditions;
(v) a dense orbit,
taking care to define the meaning of the terms in (iii), (iv) and (v).
Deduce that the logistic map z,11 = px,(1 — z,) is chaotic when u = 4.

IIT 5. What is meant by chaos in a one-dimensional map?
Use symbolic dynamics to show that the maps

(i) z—4z(1—2x), z€]0,1];
(i) = — 423 -3z, ze[-1,1],

are chaotic. How could you generalise these to obtain other smooth chaotic maps?

IIT 6. Describe the dynamics of the Smale horseshoe map, and show that the
invariant set is the cartesian product of two Cantor sets. Show that the dynamics
on the invariant set are topologically conjugate to the action of the shift map on the
space X of sequences of two symbols. Hence show that the invariant set contains a
countably infinite number of periodic orbits, and an uncountably infinite number of
aperiodic orbits.
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1. Define what is meant by a dissipative differential equation.
Show that the Lorenz equations

T =—ox+ oy,

y:(r—z)x—y,
z2=uxy — bz,

are dissipative, assuming o,b > 0.

Show that there is a pitchfork bifurcation from the origin at » = 1, and a Hopf
bifurcation at r = o(0+b+3)/(c—b—1). By writinge = r~ /2, z = e 1€,y = ¢ 2071,
z=¢2(c71( + 1), t = er, show that for € = 0, the solution is periodic.

Give a brief description of the fate of both types of periodic solution as r varies.

IV 2. Let
&1 = Mz + P21, 22, 23, 1),

Ty = AoZo + Q(71, To, T3, 1),

T3 = A\3z3 + R(z1, 22, T3, 1),
where P,Q, R = O(|z|?) at = = 0, possess a homoclinic orbit T to the origin at y = 0.
Suppose also that —Ay < A; > —A3 > 0. Show how to construct an approximate
Poincaré map on the surface of section z3 = ¢, if ¢ is small. (Assume that T is
tangent to the positive z1 axis and the positive z3 axis at the origin.)

By appropriately scaling x and p if necessary, show that this map may be approx-
imated by the one-dimensional map

£ a® —p, (£>0)

where z; o< &, and 6 = |A3] /1. If @ > 0, show that this map has two fixed points if
p < [(1-46)/0](ad) /=0,
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IV 3. The Lorenz equations have a homoclinic bifurcation at r = r, &~ 13.926.. . ..
For yu = r — ry, close to zero, the dynamics are smoothly approximated by the map

& = sgn()[di [ + pbi] + arn[€]”,

n — sgn(€)[n* + da |€ + ubo] + asn €

where £, < 1, and 63 < 1 < d9, dy,b; > 0. Describe briefly how this map can be
derived, and show how symbolic dynamics can be used to show that there is a strange
wnwvariant set for 0 < p < 1.

*IV 4. Shil’'nikov bifurcations occur for systems of the form

T = —Azx—wy‘f‘P(l'a?/aZ,M),

y = wr — /\2y + Q($7y7z7u)7
Z2=Mz+ R(xayazaﬂ)a

where P,Q, R are O(z? + y2 + 22). Suppose there is a homoclinic orbit for u = 0,
tangent to the positive z axis. Construct an approximate Poincaré map on the surface
of section S : r = (22 + y?)'/2 = ¢, where c is small. By writing z = c(, show that
this map may be written in the form

¢ — d¢? cos[d + Aﬁ In(1/¢) + ®,] + pby,
1

0 — a(’ cos[d + )\i In(1/¢) + @3] + pbo,
1

where § = \y/A\;. Assuming (, 6, u < 1, show that the map is approximated (after
rescaling ¢ and p) by the one-dimensional map

¢ — al’ cos

i~ In(1/)] + .

Deduce that for § < 1, an infinite number of periodic orbits bifurcate at u = 0, but
for 4 > 1, only one does.
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