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Linear and Non-linear Stability of Heat Exchangers
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The hydrodynamical problem of one-dimensional flow with a uniform heat input
resulting in a change of phase is considered. Equations of mass, momentum, energy
and state representing the dynamic behaviour of such a system are reduced to two
coupled equations for the density p{x, t) and the inlet velocity 1/(0 on the assumption
that the pressure drop applied between the inlet and the outlet is "small". A linear
stability analysis is carried out which leads to the problem of computing the zeros of a
complicated analytic function. A non-linear analysis is applied to the case of weak
instability to find the evolution of the slowly varying amplitude of a small oscillation:
in certain circumstances, a "burst" occurs, and in such cases no such small oscillation
can exist.

1. Introduction

A PROBLEM OF much interest to industrial engineers is that of determining the stability
properties of two-phase fluid flow in boilers and nuclear reactors. A typical situation
is when the flow is driven by an applied pressure drop through a bank of parallel
channels, as shown in Fig. 1. The fluid, in its liquid phase at the inlet, is subjected to a
strong external heat input so that it undergoes a change of phase as it proceeds up the
channels. If the pressure drop and heat input are given, then the system shown in
Fig. 1 is self-contained, and one is then interested in determining steady-state values
uw of the inlet velocity, and the stability of these to small perturbations of the
system.

There are two possible approaches we may adopt. In view of the complexity of the
system (the flow is turbulent and comprises two phases), one may attempt to
construct as realistic a model as possible, and thus hope to gain a reasonable
comparison with experimental results: such models require numerical work from the
outset, however, and offer little hope of analytical results; alternatively, we may
choose a simpler model which it is hoped will reflect the qualitative behaviour of the
system, and which is capable of some analysis. It is this second approach which we
adopt in this paper.

The model that we shall use is based on the models of earlier authors (e.g. Zuber,
1967; Davies & Potter, 1967) who also studied the linear stability of steady-state
solutions. In this sense, the linear stability of flow through a single boiling channel
may be said to be well understood. We find that the equations can be partially solved,
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so that the original model is reformulated as a pair of delay integro-differential
equations for the (dimensionless) density p{x, t) and inlet velocity U(t): this is done in
Section 2. The method is slightly different from that of earlier authors (e.g. Davies &
Potter, 1967) in that the equations are simplified before the stability is examined by
linearization.

Flow out

Heot-
input

-Heat
input

Flow in

FIG. 1. A once-through heat exchanger.

In Section 3, we examine the steady-state solutions (there may be more than one)
and assess their linear stability. This is in essence a recasting of previous work. In
passing, we prove Ledinegg's (1938) result that negative-slope regions on the
equilibrium pressure drop/flow curve are associated with monotonic instabilities,
which seems previously to have been supported only by dubious physical arguments.
The converse, however, is not generally true (as is confirmed in Section 5, where a
numerical counter-example is given).

In Section 4 we turn to the principal purpose of the present paper, a non-linear
analysis of a small amplitude oscillation by the method of multiple scales, as
described by Stuart (1960). The only previous work in this area appears to be that of
Friedly & Krishnan (1974), who used Poincare's method to compute the amplitude
of a small, steady oscillation when the equilibrium of the system has a slight
oscillatory instability. The work does not describe how this limiting solution is
approached, or what happens if no such solution exists. In Section 4 we show how the
method of multiple scales may be used in the present problem to obtain an evolution
equation for the amplitude of an oscillatory disturbance from the steady state. There
are then two choices: firstly, that a limiting amplitude is indeed reached; secondly,
that a "burst" occurs, that is, the amplitude becomes infinite in a finite time. The
asymptotic solution then becomes invalid, and the steady state may be said to be
non-linearly unstable; in this case little further can be said analytically. However, it is
reasonable to suppose that a "burst" is associated with large amplitude oscillatory
behaviour, and thus the system may exhibit a kind of "threshold excitation" between
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large and small oscillations in certain parameter ranges. Such a phenomenon appears
to have been experimentally observed by Jain (1965).

In Section 5 we give the results of some numerical computations on the analytic
results of previous sections, and these results are discussed in Section 6.

2. Mathematical Model

Let us consider a heated one-dimensional flow in a pipe 0 < x < I, which reaches
its saturation temperature at a point called the boiling boundary. For simplicity we
shall suppose that the outlet is reached before the two-phase mixture becomes dry
steam, so that the flow consists of two regions only. (This assumption is not necessary
to the analysis.) The flow is subject to a constant heat input Q per unit length per time
and is supposed driven by a constant pressure drop Ap.

With the assumption that the two-phase region is homogeneous, suitable equations
of motion are

p, + upx + pux = 0, (2.1)

px = -Kpu2, (2.2)

+pux Q/A, (2.3)

where p, u, p, e are the density, velocity, pressure and specific internal energy
respectively, A is the cross-section of the tube, and K is a given constant. Suffixes
denote partial derivatives and d/dt is the total (material) derivative. The term Kpu2 in
(2.2) is an empirical friction force used to model the turbulence of the flow (Davies &
Potter, 1967). We have neglected the frictional dissipation in the energy equation
(2.3) and the inertial terms in the momentum equation (2.2). This latter
approximation is valid if K is "large" enough (more specifically if /? in (2.20) is large
enough), but we wish to emphasize that this simplification is made purely to shorten
the arithmetic (which is in any case considerable), and is not necessarily intended to
be a realistic approximation. In a particular application, it would be advisable to
incorporate inertial terms, but their inclusion does not invalidate the method
described in Section 4.

As equation of state, we assume that the water is incompressible so that

£ - ,,4,
there. In the two-phase region, the usual Clausius-Clapeyron relation between
pressure and saturation temperature is given by

Tf = ^> ( 2 5 )

8T Tv/g

where 5T is the change in the saturation temperature T corresponding to a change dp
in the ambient pressure p, L is the latent heat, and vfg is the change in specific volume
between liquid and vapour. If we assume
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VJTE<1' (26)

then also

£<l. (2.7,

and we may realistically suppose that the saturation temperature T is effectively
constant. In this case the densities and specific internal energies of both steam and
water phases, ps, es, pw, ew are constant, as is the latent heat L. (These formal
assumptions are found to be accurate when checked against steam tables.) The
assumption (2.6) is valid if the pressure drop Ap along the tube is sufficiently small.
Since vfg = l/ps—l/pw, and ps < pw, (2.6) is certainly valid provided

^ - « 1 , (2.8)

and this condition is usually satisfied in applications. For instance, if Ap = 1 bar at an
ambient pressure of ~ 30 bars, then Ap/psL ~ 3 x 10~3. We therefore take the above :

defined thermodynamic variables to be constant. In particular, the latent heat L is
defined by

L = es-ew + p/ps-p/pw,

1

so that dividing by pwL(l/ps—l/pw), we obtain

fpw i+0 f*L\ (2.9)
J \PLJL l • roul " I i

. „ L Pw-Ps J \PwL

This result is used below in (2.22). Additionally, in view of (2.4) above, pw being
constant requires that we specify p = pw at x = 0, as in (2.18) below. With these
assumptions, addibility of mass and internal energy in the two-phase region imply
that

(2.10)

and
sa (2.11)

there, where a is the void fraction (fraction by volume of steam), and (2.10) and (2.11)
simultaneously define the equation of state for the two-phase mixture.

Eliminating a between (2.10) and (2.11), we obtain

(2-12)

where

p PwP»fo-O a PWPW-PS^S mi\
Pi = , Pi = • (2-13)

PP PP
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From (2.1) and (2.12), we find

and so in the two-phase region (2.3) becomes

[fii+P>x = Q/A. (2.15)

If we define the boiling boundary as r(t), so that

e = ew on x = r(t), (2.16)

then (2.15) is valid in r(t) < x < I, arid (2.4) is valid in 0 < x < r(t). In order that x = /
is reached before the flow becomes one of pure steam, we require

a < 1 on x = /. (2.17)

In this case the boundary conditions for the equations are that

e = e0, p = pw on x = 0,

u,p are continuous across x = r(t), (2.18)

Ap = constant (given).

Here, e0 and pw are given constants. We show below that these conditions are
sufficient to determine the solution.

In order to proceed further, we non-dimensionalize the equations. Let u^, be a
steady-state value (as yet unknown) of the inlet velocity (there may be more than one
corresponding «o a given pressure drop). We define dimensionless variables by
writing

pwuwLA _
p = pwp, u = uwu, x = — x,

e = Le, t = ^ - t , p = pout + (Ap)p, (2.19)

Here L is the latent heat and pou, is the outlet pressure. The choice of x scaling is
motivated by the fact that in the steady state p»uwA is the (constant) mass flow rate,
and so (with L constant), pwiiwLA/Q would simply be the length of the two-phase
region, if the tube were so long that a reached 1 before x = /. This is clearly the
natural length scale of the problem.

On using (2.19), and dropping the bars on these dimensionless variables for
convenience, the two-phase equations (2.1), (2.2) and (2.15) become

Px = -Ppu2, (2.20)

(oa>p+i/n)ux= 1,
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where

( 2 2 1 )

Vn = ifii+pm,i)/pwi~

From the definition of /?, in (2.13) and using (2.9), we see that (neglecting O(Ap/psL))

p. = — • (2.22)
CO

Since by choice of scaling in (2.19) p ~ 1, from (2.22) fico~ 1, and by assumption
a « 1 in (2.21), it follows that

<7/icop ~ a 4, 1 (2.23)

in (2.20), i.e. <7a>p is much smaller than l/fi. We make this statement formally precise
by considering the asymptotic limit

CT-0, n,p,co = O(l), i.e. finite. (2.24)

A slight qualification must be made to (2.24). At low operating pressures, the ratio co
is quite small; for example co ~ 1/50 at 33 bars: hence also p. ~ 50. Furthermore,
neglecting a in (2.20), we have ux = p, and since pu = 1 in the steady state, it follows
from the second equation in (2.20) that p ~ P/lpco2, since u -> l/co as a -» 1 (the fact
that we constrain a to be less than one is irrelevant here); by definition, p ~ 1, also
nco ~ 1, hence fi ~ to. One might suppose, therefore, that there is some kind of
limiting process associated with co -* 0; however, this is not so, and such an
asymptotic analysis would be irrelevant. In view of this, we formally consider co as
0(1), although in reality it may be quite small. In any case, it is clear from (2.23) that
the limit (2.24) accurately represents the model.

Putting a = 0 in (2.20), we find that the energy equation in the two-phase region
reduces to the simple form

ux = fi. (2.25)

(A similar equation may be derived in a zone of dry steam, if this is assumed to obey
the perfect gas law: the derivation is much the same.)

Let U(t) be the (unknown) dimensionless inlet velocity, so that U = 1 is a steady
solution of the problem (see Section 3 below). Since the water is incompressible, we
have u = U(t) and p = 1 in 0 < x < R(t), hence the dimensionless form of (2.3) is
easily seen to be

e,+ U(t)ex=L (2.26)

This equation may be solved for e by the method of characteristics. In particular,
we find that the boiling boundary R(t) is given exactly by

R(t) = f U(6)d6, (2.27)

where the delay T0 = (ew — e0)/L is the dimensionless transit time from the inlet to the
boiling boundary: it is seen to be proportional to ew — e0, which may be taken as a
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measure of the "inlet sub-cooling", i.e. the difference between the inlet temperature
and the saturation temperature, and so in general we shall simply refer to T0 as the
inlet sub-cooling. We define the non-dimensional length X of the tube as

I = 'Q (2.28)
pwuwLA

and then we can write the equations for u and p in the two-phase region from (2.25)
and (2.20) as

< + pux = O

with boundary conditions

u = U(t), p = 1 on x = R(t), (2.30)

where R(t) is defined by (2.27). The final boundary condition in (2.18) is then
satisfied, from (2.20), by specifying

Cx

P\ pu2dx=\. (2.31)
Jo

Since pu2 = U2(t) in x < R(t), we may write (2.31) in the form

fU2(t)R(t)+\ pu2dx=1-. (2.32)
:o P

The system to be solved is now (2.29) and (2.32), with the boundary conditions
(2.30) on R(t), given by (2.27). In principle, we also require an initial condition for p
but this can safely be left arbitrary. The unknowns in the problem are U(t) and p{x, t).
Assuming U known, we may solve (2.29) and (2.30) to find u and p in terms of U, and
then U(t) is to be determined as the solution of the remaining equation (2.32). The
above system of equations remains valid provided a < 1 at x = X (the case X < R(t) is
trivial).

3. Steady-state and Linear Stability

The system of equations and boundary conditions (2.29), (2.30) and (2.32)
described in Section 2 is sufficient to determine U(t) (and hence p(x, t)) if the right-
hand side of (2.32) is a known constant. Ap is a given constant (as is pw) but we have
not specified uw: we now do this.

By the definition of uw, U = 1 is a steady solution of the equations. Substituting
successively into the equations (2.27), (2.29), (2.30) and (2.32), we find that in the
steady state

K = T0 . (3-D

- T 0 ) , x > T0, (3.2)

P = -r-—, r. x > T0, (3.3)
1 + / ( X T )



368 A. C. FOWLER

and therefore

- ,

i.e.

(3.4)

which defines the right-hand side of (2.32) in terms of the three parameters /*, A and T0.
(3.4) also serves to determine the steady inlet velocity uw as a function of Ap and the
other inputs to the problem. Since from the definitions of n, X and T0, we have
H,T0 = constant and I/A oc uw when only uw is allowed to vary, it follows, using the
definition of P in (2.21), that (3.4) can be written

Ap = A uw (3.5)

where A,B,C are functions of the parameters Q, pw, etc., but are independent of uw. A
typical example of an equilibrium pressure drop/flow curve given by (3.5) is shown in
Fig. 2. One can see in this case that there are three possible steady-state values of uw.

I bar -

FIG. 2. A typical steady-state pressure drop-flow curve.

Finally, the condition that the outlet should be in the two-phase region may be
written, from (2.17), (2.10) and (2.19) as

1 > p > co on x = A. (3.6)
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From (3.3) and the definition of/i (2.22), this is

K1+-IHX1,
CO O)

" i.e.
(3.7)

t A quantity commonly measured by engineers is the "exit quality", which is the mass
fraction of steam at the outlet. From (2.10), this is given by

In the steady state, a is given from (2.10) and (2.19) by

> 1-P

1-1 '

1 - O J (3.8)
/i(X-T0)

and so the exit quality is denned by

- = x - r 0 , (3.9)

and increases linearly along the tube. (3.7) then simply states that the exit quality be
between zero and one, and provides an easy way of measuring the value of k — T0.

We now collect the time-dependent problem stated in Section 2 as

R(t)=! U(6)de, (3.10)

(3.11)

p, + upx + pux = 1, p = 1 on x = R(t), (3-12)

z0)
2, (3.13)

where we have integrated u using (2.29) and (2.30).

A steady solution of (3.10)-(3.13) is

To examine its linear stability, we put

U=

(3.14)

(3.15)
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where e <£ 1, c, = fi~l log[l +fi{x — T 0 ) ] and n is in general complex. We neglect O(e2)
and solve (3.12) for po(£,): substituting this into (3.13), we find that the perturbation
of the dimensional pressure drop may be written as

APl = P(Ap)f(n)e"\ (3.16)
where

f{n) = 2/,+ —— [e(2"-"H>-\']+- (e^i -1)- — (l--io)(l-e-mo), (3.17)
ifi — n ft n

^ ( 3 . 1 8 )
n-n

and t! = fi~l log [1+/<(/,.— T0)] is the dimensionless transit time through the two-
phase region. The flow is then linearly unstable if/(n) has any zeros with Ren > 0;
otherwise it is stable. The details of this solution are given in Appendix 1.

It is simple to prove/(n) has an infinite number of zeros if T, 4= 0, but only a finite
number with Re n > 0. (This is because the zeros are isolated and/(n) -> 21 as \n\ ->co,
Ren ^ 0.) A reasonable bound is easy to obtain, and the roots can be estimated by
scanning the complex plane, thus obviating the need to use Nyquist's criterion. By
expanding for small T,, it can be shown that in this case any zero of/(n) must have
Ren < 0. In other words, the flow is stable for small exit quality (defined above).

Now suppose we have a general dimensional inlet velocity uwU(t) that induces a
dimensional pressure drop Ap. We may write

(3.19)

where N is a non-linear operator. If U = l+ee"', then by the analysis above leading to
(3.16) we can expand N as

N[uw(\ H-ee-)] = Nluw] + eli(Ap)f(n)e'" + O(e2), (3.20)

where/(n) is the stability function of (3.17). But N[uw] is just a function of uw: in fact,
from (3.5), N[uw] is a cubic in uw (see Fig. 2). By Taylor's theorem

dN
A / K ( l + e ) ] = Nluw] + euw — +O(e2). (3.21)

If we put n = 0 in (3.20), subtract it from (3.21), divide by e and let e -*0, we obtain

^ ^ . (3.22)
u

If Â CWH,] has a negative slope region u, < uw < u2, say, then in this region
dN/duw < 0, so /(0) < 0. But as n -> + oo along Im n = 0, / -> 21 > 0. Therefore, in
«! < uw < u2, the system has a static or "Ledinegg" instability (corresponding to a
real positive zero of/(n)). This result was first given nearly 40 years ago (Ledinegg,
1938), but no conclusive proof appears to have been given to date. The converse is
also usually taken for granted, that on positive slope regions a static instability
cannot exist, but this is not necessarily true, and for sufficiently high inlet subcooling
is false for this model, as is shown below by a computed counter example.
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4. Non-linear Stability

As we vary the parameters /i, T0, X, the zeros of/(/i) will vary continuously. Suppose
we fix n, T0 and vary only A. We know that for X — z0 -4 1, the system is linearly stable.
Therefore, provided the system becomes unstable for X — T0 < 1, there will exist a
minimum X,X0, say, such that the zero of/(n) with greatest real part, n0, has
Ren0 = 0. At X = Xo the system is said to be in a state of marginal stability. If we
increase X slightly further, so 0 < X — Xo <̂  1, this root will cross the imaginary axis
into the positive half-plane Ren > 0. The system is then linearly unstable, but the
linear solution becomes invalid for large times since the velocity perturbation,
assumed small, tends to infinity. In order to try and obtain an expansion which is
valid for all time, we expand the equations about Xo and try an asymptotic solution
for the velocity of the form

U=\ + V, V = eViU + e2Va). .. (4.1)
where

e = e((5), S = X-X0, e - > 0 a s < 5 - 0 . (4.2)

Then if n0 = iQ at X = Xo, the first-order solution is

+ (*) (4.3)
where (*) denotes the complex conjugate; but, however we choose e(<5), the O(e3)
terms include the fundamental e'Ql, which leads to so-called secular solutions

Vi3) = A2te
in' (4.4)

as particular integrals. Thus this expansion is also not uniformly valid. However, if we
write

V = eetn'\_A0 + e2A2t+ . ..] +higher harmonics, (4.5)

we may suspect that the coefficient of ein' is the Taylor expansion of a function of the
slow time e2t. Thus we should look for an asymptotic solution

V = eA(s2t)eiil'+ ... (4.6)

We do this by using the method of multiple scales (Cole, 1968). We write

V = eVil)(t*,t) + e2Vl2)(t*J)+ . . . , t* = t, t = e2t, (4.7)

with a similar expansion for p, and formally rewrite the equations (3.10)—(3.13) in
terms of t* and F, expanded about Xo. Thus, for example, d/dt is rewritten as
d/dt* + e2d/d7. In order to eliminate secular terms, we must be able to equate the
coefficients of e^' in the O(e3) equation to zero, and for this we must choose

e = 5i (4.8)

because of the appearance of terms of 0(5) from the expansion of the equations about
Xo. We may solve iteratively for Vir\ and we find that the coefficient of eini' in the
O(e3) equation for K(3) is of the form

dA
ml-^r+m2A+m3A\A\2, (4.9)
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where A(7) is as defined in (4.6). (4.9) is equated to zero so that the equation for A(i) is

dA
-j, = kxA + \
dt ,

(4.10)

where kuk2 are complex constants. The details of this process for the present system
are given in Appendix 2 and the values of kl and k2 in Appendix 3. One of the main
uses of this technique in partial differential equations has been in treating the
instability of Poiseuille flow (Stewartson & Stuart, 1971). It should be noted that,
although that paper considers spatially as well ^s temporally modulated solutions,
there is no need to dp so in the present case, since the tube, is of finite length.

: In (4.1Q), Re/q > 0 if the system is linearly unstable; if-Re/c2 < 0, \A\ tends to a
finite limit, and there is a small steady oscillatory solution. However, if Re k2 > 0 then
\A\ -*oo in a finite time, and the solution again becomes invalid. In this case we might
expect a large osciljation.

5. Results

In fig. 3, a stability map is shown at a pressure of about 33 bars (/x = 49). The axes
are T0 (a dimensionless measure of the inlet subcooling) and A —T0 (exit quality): an
increase of 01 in t 0 corresponds to an increase of about 387°C in the sii^cooling at
the inlet. The curve marked N denotes values pf (T0, A - T 0 ) for which the equilibrium
pressure drop/flow curve has zero slope, that is,/(0) = 0. N is simply determined by
an examination^ of the zeros of dAp/duw, as given by (3.5). For large enough t0 , the
curve has two branches (the lower being unmarked), and the region where
dAp/duw < 0 lies to the right of the curve: in other regions dAp/duw > 0. The curve L
divides the plane into a region where there exist Ledinegg instabilities and a region

0-8

0-6

0-4

0-2

L

-

-

N/

/

/

1 l l i
Ol 0-2 0-3 0-4

FIG. 3. Linear stability map.
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where there do not (although there may exist oscillatory instabilities). The lower
branch of L coincides with that of N, and the region of Ledinegg instability lies to the
right of L. We thus see that there is a large area between the upper branches of L and
N in which dAp/duw > 0, i.e. /(0) > 0, but Ledinegg instability exists. This is in
disagreement with previous authors. The curve S distinguishes regions of stability
from regions of oscillatory instability (it may be called the marginal stability curve). It
is considered to terminate when it meets N, since it then becomes irrelevant.

To see how the roots off(n) vary, let us vary T0 and k-x0 so that we traverse the
stability map in the following way. Let us start at (say) (TO ,A-TO) = (0-3,0) where the
flow is stable. Moving upwards, a real zero crosses n = 0 from n < 0 as we cross the
lower branch of N (and L). As we move further upwards and cross the upper branch
of N, a second zero of/crosses n = 0 from n < 0 so that/(O) > 0 but there are two real
positive zeros of/. As we move sideways towards L, these zeros approach each other
until, as we cross L, they join and bifurcate off the real axis as a conjugate pair of
roots in the manner of the roots of a quadratic equation as its discriminant becomes
negative. To the left of L, the equilibrium is oscillatorily unstable, and as we move
downwards to cross S, the pair of roots of f(n) with largest real part crosses the
imaginary axis into Re (n) < 0, so that the steady state is again stable.

— 10 -

O-OI 002

FIG. 4. Variation of limiting amplitude along S.

The marginal stability curve marks the transition from stable to oscillatorily
unstable flow as X — xn increases. For critical A = An, we find that the non-linear
analysis predicts a "burst" (|/l|-»cb in (4.10)) if T0 > 0017, otherwise the unstable
mode evolves into a small oscillation.

In Fig. 4, a graph of \An\ against T0 along the marginal stability curve S is shown
for 0 < T0 < 0017 (note that this is not the same as Fig. 3 of Friedly & Krishnan
(1974), which corresponds to a single point of the present diagram). As T0 increases,
the amplitude of the steady oscillation increases and decreases again before tending to
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-200 -

-400 -

-600-

- 8 0 0 -

-1000 0005 0-01 0015

FIG. 5. Variation of limiting frequency along S.

infinity as T0 -»== 0-017. This approach to a "bursting" region may help to explain the
dramatic increase in the amplitude of steady oscillations in certain parameter regions
measured by Jain (1965). Figure 5 shows the variation of Q^ as T0 increases along S.
Qf is the frequency correction defined by

\2lmk2 (5.1)

using (4.10). The frequency of the limiting oscillation is thus given, from (4.10), by

Ao)Q/. (5.2)

0O05 0-01 0-015

FIG. 6. Q,nw along S at e2 = 005.
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It can be seen that Q^ < Q in this case and that fi — ilx increases and decreases again
before becoming infinite as [A^ -KX>. An illustrative graph of fl and ilx against T0 is
shown in Fig. 6 for e2 = 005.

6. Discussion

The model proposed above may be expected to exhibit qualitatively similar
behaviour to that of actual boilers, and in some cases (where the approximations used
are realistic) may be used for predictive purposes as well.

There are two interesting conclusions to be drawn. The first is that Ledinegg
instabilities may occur on positive slope regions of the pressure drop/flow curve (and
must occur on negative slope regions). The second is that in general if the system has a
weak linear instability, then there is an oscillatory solution with limiting amplitude
\AX\ which varies with the parameters of the problem, but for sufficiently large T0, the
amplitude becomes infinite in this theory. In this case, the asymptotic expansion
breaks down, and we should expect that {A^ is in reality finite, but that I/1.J P O(e).
As yet, the theory has not been extended to include this case.

Other more obvious conclusions may be drawn from an examination of the
stability map, for example the increasing instability as k increases in Fig. 3. In this
respect, the results concur with those of other observers.

In conclusion, since this paper may be of interest to practising engineers, I would
like to re-emphasise its aim and the importance of the results presented.

The aim has not been to apply the results to any particular model, but rather to
show that a qualitative model of the type encountered in heat exchanger dynamics
can exhibit both small oscillations and bursts. It is realized that both gravity and
inertial terms should be included for any practical application, but it is nevertheless
true that an identical analysis to that presented here could still be applied, and the
same form of evolution equation (4.10) for small amplitude disturbances would be
obtained. The qualitative results obtained here are therefore of interest, and the
comparison with Jain's (1965) work is a valid (if not quantitative) one.

From the point of view of the engineer, the result that (for this model) Ledinegg
instability may occur on positive slope regions of the equilibrium pressure drop/flow
curve is a strange and novel one. It is not due to the pump "operating characteristic"
(i.e. Ap) being a function of the inlet velocity: Ap is considered to be a constant in this
paper. Engineers have always taken it for granted that Ledinegg instability occurs if
and only if the equilibrium curve has negative slope (dAp/duw < 0). This result is
simply unproven, and "proofs" like that given by Hands (1975) have to assume that
the operator N in (3.19) is an analytic function of U(t), whereas even in the present
simple model, such an assumption is obviously unwarranted. Again, R. Potter
(private communication, 1975) has commented: ". .. static instability on a positive
sloping characteristic seems impossible . . .". On the contrary: it seems impossible to
be able to extract information about a complicated dynamical system incorporating
(in the present instance) two time delays merely from an examination of its steady-
state characteristic. In fact, we have indeed shown that negative slopes of the
equilibrium curve imply Ledinegg instability, but this seems to be all that we can
usefully say.
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Appendix 1. Linear Stability

With U and p given by (3.15), the equation for pQ is, on linearizing (3.12),

^ +(fi + n)Po = fill- X- ( l - e - ^ (Al.l)
aq |_ n j

with

(0) = -0 n
The solution is

where a and b are given by (3.18). The linearized form of (3.13) is

u f"
2A-2 - (A-TO)(1 -e~"°)+ p^^di, = 0.

" Jo
Substituting for p0 from (A1.3), we obtain/(/i) as defined in (3.17).

Appendix 2

We write
t* = t, r=e 2 t ,

p = ~
U =
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and expand (3.12) and (3.13) in powers of e. To do this, we use the relations

(A2.2Jd/dt = d/dt*

I F{6,e2e)de=\ F(a*J)d<j* +
J'-to JC-to C

2
C Qf

e2 . (a*-t*) — (a*J)do*..., (A2.3)

* which come from expanding F(G*, d) about Fand using a — 7 = e2{a* — t*) on the path
of integration a = z2a* in the (o*,d) plane.

Equating terms of equivalent order, we find

P (1)) = P,
,p(1)) = 0, (A2.4)

O(£
2j: L(Va\pa)) + l2(V

{U,Pw) = 0,
K(1),p(1)) = 0, (A2.5)

O(e3):
L3(K(1»,p(1),K<2);p(2)) = 0,

2)) = o; (A2.6)

p (3)(O,t*,r)= B1(K
c ' • ' . • . • • • i -

These operators are defined in Appendix 3: L, M, Blt L, M', B' and dLjdk are linear
(dM/dl =. 0), L2, M2, B2 are quadratic, and L3, M3 , B3 are cubic. 3L/3A is the
coefficient .of 8 in the expansion of L about k = Ao, and L', M', B' arise from the
operators .involving Fin (A2.2) and (A2.3).

The solution of (A2.4) is

U £ ) < < ) - (AZ7)
where (*) denotes the complex conjugate, and p0 is defined by (A1.3). We only require
a particular solution of (A2.5), since the general solution will not contribute to any
secular terms at O(e3).

It is fairly straightforward to show that

4^Va)e4L(l>,^{tMe\ (A2.8)
at on at \ on j

and that

9 =~dt
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satisfies pi3)(O,t*J) = B'(K(1)). We write

K(3» = Ui)p(3) = ^ ^ £ ( ^ i n ) e . n , - + M 2 i ( A 2 9 )

so that the equations (A2.6) become

0, (A2.10)

(ul,u2) + M3(V
li),pil),Vl2),p{2)) = 0, (A2.11)

*,F) = B1(l/(3>) + B3(F(1),p(1),K(2),p<2)). (A2.12)

Finally we solve (A2.ll) as a particular integral u, = u l p , u2 = "2P
 s ° that the

non-linear part of the boundary condition (A2.12) is satisfied; then, with
#i = "1 — " i p . 02 = "2 ~ U2p. we have

f
= higher harmonics, (A2.13)

where m3/4|/l|2 is the coefficient of e'n'* in

m3 being a function of Q. The condition that the solution of (A2.13) should contain no
secular terms is that

f f - 0 ' (A2.14,
or

A A

- ^ = M + fc2-4|/4|2, (A2.15)
at

where

is the linear growth rate,

Appendix 3

All indefinite integrals in this section are between t* — i0 and t*, and p(0) is an
abbreviation for p(0, t*,7). The operators and functions referred to in Appendix 2 are
given by
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, =//|V(I), (A3.1)

(A3.2)

( fin (A3.2), the second term is an abbreviation of I K(1)) , and similar notation will be

employed subsequently.

(A3.3)

)-6, (A3.4)

(A3.5)

(A3.6)

Ml2(p) = P,'+Ps + HP, (A3.7)

(A3.8)

(V<2> + p<2>(0) f K(1» + i T F<"x

<» fK<2>-/i3 f3

.^ f K ( i ) l

-/! {

( A 3 9 )

(A3.10)

(A3.ll)

, (A3.12)
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f
P Vil) + n2 f3

(A3.13)

(A3.12) and (A3.13) have been simplified by using (A3.1) and (A3.2) in the values for
p(1)(0)andp<2)(0).

By inspection of (A3.6), (A3.7), (A3.8), the particular solution of (A2.5) is

. (A3.14)

Substituting (A3.14) into (A2.5), we obtain

(A3.15)

(A3.16)

(A3.17)

(A3.18)

C 3 T,+

-iQ) + P(2/i){fl(-in)fl3-c2-c3}]

c, =a0(/ /T0-l) , (A3.20)

(A3.21)

a 2 = [2To+2(Ao-To)l/(2ifl)-/iK(2in){P(2/i-2«n)-P0i)}] ' K '

dx = ^a2 K(2ifi), (A3.23)

do= R(iQ)R3-(rf1+rf2 + d3), (A3.24)
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where

-(l-e~"°),
z

D{z) =
JO

U{z)=l-fiR(z), (A3.25)

R3 = {i

R2 = aDfji-

and a,b are given by (A3.4).
Substituting (A3.14) and (A2.7) into (A3.9), we find that a particular integral of

(A2.ll) satisfying the boundary condition p<3)(0) = B3 (given by (A3.3)) is

= 0,

K+yg e-(, . + mK]> ( A 3 2 6 )

where the/- are given by

/„ = - ( ^ + iQ) - (ao + a o ) ( l - ^ o ) ,

^

(A3.27)

fs = ~ (/. +f2 +f3 +/* +/5 +/6 +/,) + E.

Here a bar denotes the complex conjugate, and S is the coefficient of I/J^/Je*"'* in
(A3.3), given by

I = L2[R4-2n2R(in), aoro , a2/?(2iQ)] +

c2 + 3/iC3,
+ 2pdx + (in + 2^M2 + 3/i£/3] +

-2Ai26], (A3.28)
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where

R4 = {ii
L2[z1,22,z3] = z1{z2 + z2) + z1z3, (A3.29)

L3[z,,z2,z3] = zlz2z3 + zlz2z3 + zlz2z3.

L2 and Li give the coefficients of \A\2A e'n'' in products of (i) an 0(e) and O(e2) term,
(ii) three 0(e) terms, respectively.

Thus the particular solutions u l p = 0, u2p are given by (A3.26), and

/ s D( - i

= e,,say. (A3.30)

It remains to compute the coefficient of \A\2A e'n'' in L3 (A3.13). This is

Qx = 2t0L2[l ,a0 ,
2L2[R2, ao(l -

L3[l/(2iQ),[/(2iQ),aD(-in) + bD(-/ / )] . (A3.31)

Thus, m3 in equation (4.9) is given by

m3 = <2i + Q2- (A3.32)

df/dn, dfjdk may be found explicitly simply by differentiating f(n).


