
On the Flow of Polythermal Glaciers. II. Surface Wave Analysis

A. C. Fowler; D. A. Larson

Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol.
370, No. 1741. (Mar. 12, 1980), pp. 155-171.

Stable URL:

http://links.jstor.org/sici?sici=0080-4630%2819800312%29370%3A1741%3C155%3AOTFOPG%3E2.0.CO%3B2-G

Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences is currently published by The
Royal Society.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/rsl.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Mon Jul 30 04:19:47 2007

http://links.jstor.org/sici?sici=0080-4630%2819800312%29370%3A1741%3C155%3AOTFOPG%3E2.0.CO%3B2-G
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/rsl.html


Proc. R. Soc. Lond.  A 370, 155-171 (1980) 

Printed in Great Bri tain 

On the flow of polythermal glaciers. 
11. Surface wave analysis? 
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We show how the 'reduced' model developed in part I of this paper may 
be used to derive a nonlinear hyperbolic equation which describes the 
passage of kinematic waves along the surface of a valley glacier. Qualita- 
tive descriptions of large-scale snout movements and the formation and 
evolution of surface shocks are found from this approach, and earlier results 
of Nye (1960) are reproduced in the limit where surface disturbance 
amplitudes are 'small ' . 

The study of kinematic waves on the surface of glaciers is a subject that has received, 
and continues to receive, a considerable amount of attention from theoreticians 
interested in the dynamic properties of glacial ice flow. Such waves are observed as 
undulations of the ice surface which propagate down-gla,cier a t  speeds of the order 
of three to four times the surface ice speed. They are thus somewhat analogous to 
water waves. 

The mechanism of their propagation is well understood, and their properties 
(wave speed, etc.) have been studied in numerous works. Among the earliest of 
these, the paper by Finsterwalder ( I907) is of particular i m p o r t a n c e ~ ~ e  showed that 
consideration of an integrated form of the equation of conservation of mass deter- 
mined a nonlinear hyperbolic equation for the glacier depth; this equation could be 
solved implicitly by using the method of characteristics. Finsterwalder considered 
also the formation and propagation of shocks. His work was reviewed by Lliboutry 

('964-5). 
More recently, Nye (1960, 1963a, b) and Weertman (1958) formulated similar 

models, and were able to explain the observed wave speeds. Nye's work in particular, 
which uses a linearized analysis based on the kinematic wave theory of Lighthill & 
Whitham (1955), is extensively referred to, and one aim of this paper is to provide a 
nonlinear analysis of an analogue of Nye's surface wave equation: in so doing, we 

t Part I appeared in Proc. R. Soc. Lond. A 363, 217-242. 
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hope to develop a more complete theory of surface wave phenomena. Our work 
echoes that of Finsterwalder (1907), but we are also able to provide a quantitative 
analysis of the effects of small perturbations and of seasonal climatic variation. I t  
is worth emphasizing that a more complete understanding of surface waves 
may be of assistance in indirectly determining the flow law of ice, basal sliding 
velocities, and so on. 

Our aim here will be to develop a rational theory of large scale nonlinear waves, 
and we thus show in § 2 how a simple analogue of previously studied equations can 
be derived from the 'reduced' glacier flow model which was presented in part I: for 
analytical simplicity, we make the assumptions that the ice is completely cold, and 
the viscosity is independent of the temperature; arguments are presented as to why 
the equation should be a useful qualitative model for the description of surface waves 
on polythermal glaciers in general. The resulting dimensionless equation then 
describes evolution of the ice thickness H(x, t ) ,  and is scaled in such a way that H is 
assumed to have O(1)derivatives in x: we thus concern ourselves with the evolution 
of an entire glacier profile. Other authors (Lick 1970; Hutter 1979) have given non- 
linear analyses which, however, are implicitly concerned with surface motions whose 
wavelength is much shorter than the glacier itself. Such models would not, for 
example, be relevant to the study of the effects of climatic variations. I n  5 3, the 
general solution of our nonlinear equation is given by means of the method of 
characteristics, and solutions are described in detail for several particular cases of 
physical interest. First, we discuss the case of an initially present shock such as 
might physically represent a sudden flux of ice onto the glacier surface owing to the 
surging of a tributary. We show that the disturbance always reaches the snout in a 
finite time, and give a formula for the eventual advance of the snout position. 
Secondly, we discuss the evolution of an initially small perturbation about the 
(unique) steady state glacier profile. For this case, we show that shocks can form, 
but only sufficiently near the snout. We develop a method for constructing leading 
order approximations for the corresponding solutions, and this method is applied, 
by way of example, to the study of perturbations induced by high frequency 
seasonal variations in the surface ice accumulation rate. In  § 6, we briefly discuss the 
mathematical difficulties that arise when we introduce into our surface wave 
equation appropriate diffusional terms that tend to zero with the ice thickness; 
a comparable situation is discussed by Nye (1963 b)  for a linear equation of similar 
type. The conclusions of the paper are given in 5 7. 

2. EQUATIONS S T E A D Y  P R O F I L E SA N D  S T A T E  

Our study of glacier surface waves is based upon the reduced flow model of 
part I ;  we use the same notation as was used there. We focus upon the case of a cold, 
non-slidingglacier, the viscosity of which is temperature independent. Asis discussed 
below, surface wave phenomena for more general types of polythermal glaciers are 
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expected to be qualitatively the same as for this special case. We therefore assume 
for now that 

T < TQ (2.1) 
throughout the glacier and that 

K = 0. (2.2) 

I n  this case (as in 5 5 of part I),the boundary value problems in the reduced model 
of part I for the stream function and the temperature field .uncouple, that for the 
former being 

ul,, = -p(H, +hx)ln, \ 

Two immediate integrations of this system yield 

with H(x, t )  determined from 

Differentiating this last equation with respect to x, we find that ice thickness 
changes in the glaciers we consider here are governed by the following equation: 

This last equation is easily seen to be a particular case of Lighthill & Whitham's 
(1955) 'kinematic wave equation ', 

where Q, the flux, is assumed to depend on x, H and H, in some prescribed way. 
Nye's ( I960, I 963a,b)  theory of glacier surface waves is based on a linearized version 
of equation (2.7). In  553-5 here, we develop a nonlinear theory of surface waves 
based on equation (2.6); this theory is compared to some extent to that of Nye in 
5 5. Although equation (2.6) has only been derived for cold non-sliding glaciers for 
which K = 0, similar ice thickness evolution equations can also be derived for 
purely temperate glaciers with R,constant. Furthermore, for any glacier that under- 
goes small fluctuations only about some stable steady state (i.e. for most non-surge 
glaciers), one may replace T and w in the reduced model equations of part I by the 
(assumed known) steady state temperature and moisture content solutions and 
again derive an approximate ice thickness evolution equation of a type similar to 
equation (2.6). (Further details of this procedure are given by Fowler 1977.) There- 
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fore, even though the assumption that K = 0 is not a completely realistic one (cf. 5 3 
of part I),we expect that our theory will provide qualitatively valid descriptions 
of surface wave phenomena for most (non-surge) polythermal glaciers. 

From 5 3 of part I, i t  is expected that ,u < 1 for many glaciers. In  $5 3-5 here, we 
therefore make the simplifying assumption that 

The effect of making this approximation is discussed briefly in 9 6. Using equation 
(2.8), we find that equation (2.6) becomes 

Ht +  Hn+lH, = s,(x, t).  (2.9) 

Putting x = x,(t) in equation (2.5), we find that a boundary condition for this 
eauation is 

We aIso prescribe the initial condition 

H(x,0) = A(x) for x,(O) < x < x,(O), (2.11) 

A(x) being left arbitrary for now. The initial-boundary value problem posed by 
equations (2.9)-(2.11) is to be solved for non-negative values of H in regions where 
x 2 x,(t) and t 2 0. The snout position, x,(t), is then defined for each t 3 0 as the 
smallest value of x > x,(t) such that H(x, t )  = 0. 

Before considering the full time-dependent problem posed by equations (2.9)- 
-(2.1 I), let us recall from 5 5 of part I that there exists a unique steady state solution 
to  the problem for s(x, t) 5 s(x) (so that x,(t) = x,).This solution is given by 

H,(x) = s(xs) 0. (2.12)[ (n+ 2) s ( ~ ) ] l I ( ~ + ~ ) ,  = 

Similar results are given by Lliboutry (1964-5). It may be observed that if (as is 
physically reasonable) s' is finite a t  x, and x,, then H, has infinite slope a t  these 
points. As discussed by Fowler (1977), this occurs because terms of order 62 were 
neglected in deriving the 'reduced model' from the 'scaled model' in part I ;  
inclusion of these terms in a local analysis near x, and xs reveals that Hz is in fact 
finite a t  these points. 

To sirnplify our study of solutions to the problem posed by equations (2.9)-(2.1 I), 
we shall in this and ensuing sections consider the case where s(x, t )  is independent of 
time. In  5 5 we briefly discuss a situation where this restriction is relaxed to some 
extent. If s(x, t )  = s(x), then x,(t) = x, and equations (2.9)-(2.11) become 
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The parametric equation that defines xs(t) is 

The problem (3.1) may be formally solved by the method of characteristics (cf. 
Pinsterwalder 1907), its characteristic form being 

dxldt = Hn+l, dHldt = sf(x), 


H(x,, t )  = 0 for t 0, (3.3) 


H = d ( a ) ,  x = r  on t = O ,  


where a E [x,, xs(0)] is a characteristic parameter. 
Before solving equations (3.3), let us note from equation (2.4) that the surface 

velocity usof the ice is given by 

Comparing this result with the first equation in (3.3), we see that the wave speed of 
solutions to (3.3) -i.e. the speed a t  which ice thickness disturbances are propagated 
along the glacier - is equal to (n + 1) times the surface speed, i.e. 4uS.As mentioned 
previously, this result was derived by Nye (1960) and is in good agreement with 
field observation. 

To solve equations (3.3), we note immediately that a first integral is given by 

where s l ( r )  is defined for all r E [x,, x,(O)] by 

and hence represents the change that must be made to the steady state flux function 
s(a)  in order that A(a)  be the corresponding steady state ice thickness profile. I n  
what follows, we shall regularly think of s,(a) instead of A ( r )  as the initial data for 
equations (3.3); in doing this, i t  must be remembered that the restrictions placed on 
A(a)  above imply that sl(xo) = 0, sl(xs(0)) = s(x,(O)) and sl(a) < s ( r )  for all 
r~(x,, x,(O)). Substituting equation (3.5) into the first equation in (3.3) and solving 
the resulting initial value problem, we obtain 

which describes the (x, t )  pairs that collectively comprise the characteristic para- 
metrized by a. Along this characteristic, H(x, t) is then found from equation (3.5), 
and so equations (3.5) and (3.7) provide a formal characteristic solution for equation 
(3.1). 
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To illustrate the general nature of the characteristics defined from equation (3.7), 
let us consider the special case that corresponds to a steady state ice flow with 
xs(t) r xs(0) = x,. In  this case, sl(cr) r 0, and equation (3.7) becomes 

dx 
[(n+ 2)~ ( x ) ] ( ~ + l ) / ( ~ + ~ )' 

Along any characteristic (where cr is constant), equation (3.8) implies that as t is 
increased, x increases until x = x,, a t  which point H = 0 and the characteristic 
slope dtldx = +oo.This time taken for an initial disturbance at x = cr to propagate 
along the characteristic and reach this point is then given by equation (3.8) with 
x = x,. This time is finite or infinite according to  whether [s(x)]-(n+l)/(n+2)is integrable 
or not in a neighbourhood about x = x,. The former case is generally true, since the 
ablation rate a t  the snout is typically finite; we assume there that this is indeed the 
case. A typical steady state characteristic diagram is then as shown in figure 1. (This 
figure is similar to one given by Nye 1960.) 

Xo Xs x 

FIGURE1. Typical steady state characteristics. 

I n  the general case where sl(cr) # 0, equations (3.5) and (3.7) implicitly provide 
the unique solution to equation (3.1) in (x, t)-regions where cr(x, t) is single-valued. 
I n  such regions this solution is qualitatively the same as that for the sl(cr) - 0 case, 
characteristics having shapes similar to those shown in figure 1. Along any specific 
characteristic, x increases with t (cf. figure 1 )  until an (x, t )  point is reached where 
either cr becomes multi-valued (and the solution ceases to be valid) or s(x) = sl(cr). 
At points where this second condition holds we have H = 0, which marks the 
glacier snout position, and hence x = x,(t) and the characteristics are considered to 
terminate. The time evolution of the snout position x,(t) is then completely described 
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for increasing values of t 0, as long as cr(x,(t), t )  remains single-valued, by the 
parametric equations 

s(x,(t)) = s1f4,  

zs ( t )  dx (3.9) 

The time taken for an initial disturbance a t  x = cr to  propagate along the charac- 
teristic parametrized by cr and reach the snout, assuming cr is single valued along 
this path, is then given by the second equation in (3.9). We shall again assume that 
for all relevant cr, [s(x) - is integrable in any x-neighbourhood about sl(cr)]-(n+l)/(n+2) 
x = x,(t), so that this time is finite. 

If cr(x, t) is uniquely defined from equation (3.7) for all XE[X,, xs(t)] and t 2 0, 
x,(t) being defined for t 0 from equation (3.9), then equations (3.5), (3.7) and (3.9) 
provide the complete solution to equation (3.1). As we shall now show, this is the 
case if and only if s;(cr) 6 0 for all cr E [x,, x,(O)]: if s;(cr) > 0 for some such cr, then 
equation (3.7) does not provide a single-valuedprescription of cr(x, t) for all relevant 
(x,t)  pairs. The implicit function theorem guarantees that a t  any (x, t )  point where 
cr is multivalued (i.e. where characteristics intersect), both (3.7) and the 'envelope 
equation ', 

(i.e.the result of differentiating (3.7) with respect to cr) must be satisfied. Performing 
the differentiation in equation (3.10) and using equation (3.6), we find that equation 
(3.10)can be rewritten as 

Since A(cr) 2 0 for all c r ~[x,, xs(0)] and the integrand on the right-hand side of 
equation (3.11) is positive for all relevant (x, cr) pairs, it is clear that equation (3.1 1) 
can never be satisfied if s;(cr) < 0 for all cr E [x,, x,(0)]. Conversely, if s;(cr) > 0 for 
some such cr, then the right-hand side of equation (3.11) increases continuously from 
zero to infinity as the (x, t) characteristic path parametrized by cr and defined from 
equation (3.7) is traversed from the point where (x, t )  = (cr, 0) to the point where 
s(x)= sl(cr). There clearly must then be some intermediate (x, t )  point on this path 
for which both equation (3.7) and equation (3.11) are satisfied for this value of C, 

and hence, as claimed, the prescription of cr(x, t )  in equation (3.7) is single-valued 
for all relevant (x, t )  pairs if and only if s;(a) 6 0 for all cr E [x,, xs(0)]. 

I n  general, s;(cr) will be positive for some c r ~[x,, xs(0)] and so equations (3.5), 
(3.7) and (3.9) will provide a unique solution for equation (3.1) only for values of 
t E [0,tc),  tc being the infimum of all positive times t for which cr(x, t )  is not single- 
valued for all x E [x,, xs(0)]. Standard 'shock' theory for hyperbolic conservation 
laws (see, for example, Murray 1970)can be used, however, to provide a discon- 
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tinuous but physically meaningful extension of this solution for times t 3 t,. Along 
any path in the (x,t) plane where a discontinuity in the solution (i.e. a shock) occurs, 
we require that the solution represent the physical fact that mass must be con- 
served across the path. If we denote the position of any specific shock a t  time t by 
xd(t), then in the usual way (Murray 1970)the velocity of the shock is given by 

(see also Fowler 1977). Away from shocks, the extended solution is given by 
equations (3.5) and (3 .7) . I n  order that this solution be uniquely defined for all 
t >, t,, we must consider any characteristic defined by equation (3.7) to be termi- 
nated a t  any (x, t) point where it intersects a shock. From equation (3.7), x increases 
as t increases along any such characteristic and, assuming the characteristic 
emanating from x = x, a t  t = 0 does not intersect any shock before it terminates a t  
the snout position x,(t,) for some time t, > 0, we find that t, and xs(t,) are given 
explicitly from equation (3.9) and the fact that s,(x,) = 0 by 

From the assumptions made above, t ,  is finite; by this time, all initial disturbances 
have reached the glacier snout, and the ice flow is steady for all subsequent times. 

I n  general, the extended solution to equation (3. I )  for t t, will involve multiple 
shocks and must be studied on a case-by-case basis. I n  the next two sections, we 
indicate the flavour of such analyses by considering several special cases of (3.1) 
which we feel are of intrinsic interest in their own right. 

4. E V O I ~ U T I O NO F  A N  I N I T I A L L Y  P R E S E N T  S H O C K  

In  order to illustrate in a more detailed way the nature of characteristic solutions 
to equation (3.1) when shocks are present, we consider equation (3.1) here with a 
special restriction on the initial data. Specifically, we consider the case where for 
some (a,, a,) c [x,, xs(0)] and c > 0, 

-c for a, < a < a,, 
$ 1 ( ~ )= 

0 otherwise, 

so that shocks are initially present a t  x = cr, and x = a, as illustrated in figure 2. 
This initial information models, for example, the physical situation existing after 
the surge of a tributary glacier has deposited a large quantity of material on the 
main glacier surface. 

A typical characteristic diagram for this first special case is displayed in figure 3. 
I n  constructing this diagqm, we have argued as follows. It is clear that a single 
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$5 

FIGURE2. The initial glacier profile with shocks. 

FIGURE3. Characteristic d iag~am for the case of an initially present shock. 

shock must emanate from CT,: this will be denoted by CT,C, C being the point where 
the shock terminates (where the jump in H has decayed to zero). It is also mathe- 
matically possible (as shown by Fowler 1977) that a second shock emanates from 
cr,, but, as discussed by Whitham (1974, p. 38), such a shock is structurally unstable 
and hence physically unrealistic. On the other hand, there exists a perfectly good 
continuous single-valued solution available for the characteristics emanating from 
the vicinity of CT,: as shown in figure 3, the characteristic diagram for this solution 
takes the form of an expansion fan. On physical grounds, we therefore consider only 
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this possible solution in what follows. The characteristics that begin on cr2xS(O) and 
terminate on either g 2 D  + (i.e. the right-hand side of this shock) or x,(O) D are 
'steady state' ones as given in equation (3.8); this is also the case for the ones 
beginning on xogl and terminating on the line x = xs(0). We denote by a,A the 
'lowest' such steady state characteristic, A being the point where this characteristic 
reaches the snout. 

If we suppose that C lies in x < x,(O), then a t  this point a,C must be tangential 
to two characteristics, one coming from g2xs(0) and the other from ala2or xogl. 
Along the first one, Hn+2/(n + 2) = s(x), and since H is continuous at C (because the 
shock terminates there), this must also be true along the second one, which is 
therefore also a steady state characteristic, and thus can only emanate from x , ~ , .  
However, distinct steady state characteristics can never intersect, and so we are 
forced to conclude that C can actually lie only in x > x,(O). Initially present shocks 
of the type considered here must therefore always lead to a temporary advance of 
the snout. 

We denote by D the point where g,C and x = x,(O) intersect. From equation 
(3.12), DC is described by 

dx, Hn+l(x; (t),  t )  
dt n + 2  

On comparing equation (4.2) with equation (3.4), we see that (when there is a shock 
a t  the snout) the rate of advance of the snout is equal to (n + l ) /(n+ 2) ,-8 times 
the local surface speed. This prediction should be capable of field verificat,ion, unless 
altered by the effects of 'diffusion' (see § 6) and seasonal variations. 

DC terminates (at C) when the jump in H-which is H(xgft), t )  here-becomes 
zero. From equation (4.2), dx,/dt = 0 there, so that a2C is tangential a t  C to a 
vertical line. We denote by B the point where the characteristic emanating from 
g, + meets g2DCA (the DCA part of this curve being the x = xs(t) snout curve). If, 
as portrayed in figure 3, B lies on CA, then all characteristics arriving a t  CB emanate 
from algaand the equations in (3.5), (3.7) and (3.9) completely describe the solution 
of equation (3.1) along these characteristics. I n  particular, since s,(a) - - c  for 
a €(gl,g2),the first equation in (3.9) shows that (as portrayed in figure 3) CB is 
vertical. On the other hand, characteristics arriving a t  BA emanate from the 
expansion fan a t  a,, within which [Hn+2/(n + 2)-s(x)] decreases from c (on a,B) to 
0 (on a,A). If we parametrize the characteristics within the expansion fan a t  a, by 
the value s",, -c < s", ,< 0, SO that the 8, characteristic is the curve along which 

then the equations in (3.5), (3.7) and (3.9) with a and s, replaced by a, and 
s", completely describe the solution of equation (3.1) along these characteristics. 
In  particular, since S, increases monotonically as the expansion fan is traversed 
in an anticlockwise manner, and s is assumed to be monotonically decreasing in 
x for x B x,(O), the first equation in (3.9) now shows that x,(t) is monotonically 
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decreasing in t as BA is traversed. It then follows from equation (4.2) that x, 
is monotonically increasing as DC is traversed and hence, as shown in figure 3, B 
must indeed be on CA. The point C therefore marks the maximum advance of the 
snout, and it is of interest to compute what this advance is. Along any character- 
istic arriving a t  a,DC - ,  Hn+,/(n + 2) = + c. Since H must equal zero a t  C, s ( ~ )  
if we denote the solution of s(x) + c = 0 by x,, then 

and xc marks the maximum advance of the snout. If c is small, then we may write 
s(x,) E -as(xc-xs(0)), where as = -s1(xS(O))is the ice ablation rate a t  the steady 
state snout, and hence we have 

xC-xs(0) z c/as (4.5) 

Denoting dimensional variables by a superscript D, we then have that the maximum 
advance AxD of the snout past its steady state position is estimated by 

AxDz (cD/ag)(1Vld) = U(cD/ag), (4.6) 

where U is a typical longitudinal ice velocity, and d,  I and V are as defined in part I 
of this paper. If, for example, U z 100m a-l, a: z 5 m a-1 and cD z 10 m of ice is 
suddenly applied to some region of the glacier surface, then the snout will eventually 
advance a distance AxD FS 200 m before retreating. It is seen from equation (4.5) that 
the maximum advance is independent of the length a, -a, of the initial disturbance. 
This length clearly plays an important role, however, in determining the length of 
CB: the larger cr, -a, is the longer the snout will dwell a t  its position of maximum 
advance before retreating. In  this case, an upper bound ic, on the (non-dimensional) 
time period during which the snout remains a t  this position can be given from 
equations (3.9) and (4. I )  by 

dx 
i~~= Ig: [(n+ 2) (s(x) + c}](n+l)I(n+2)' 

this being dimensionally on the order of the decay time for the disturbance. 

I n  this section, we discuss further the characteristic solution of the surface wave 
problem in two distinct cases where the solution represents a small perturbation 
about the steady state solution (2.12). First, we consider the effect of initially 
imposing a small perturbation on the steady state ice profile. Secondly, we discuss 
the nature of ice thickness perturbations induced by high frequency seasonal varia- 
tions in the surface ice accumulation rate. 

We suppose first that s(x, t) - s(x); in this case the solution of the surface wave 
problem is as described in general in 3 3. We define 
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and assume that 
z <1, 

so that we consider here the limit where Z: tends towards zero; i t  then follows from 
equation (5.1) that 

max { l ~ l ( ~ ) l }= O(2) 
~ E [ Z O ,XS(O)I 

as 2 -+ 0. From equations (3.5) and (3.7), the general solution away from shocks is 
given by 

Hn+2/(n+ 2) = s(x)-sl(u), 1 
dx (5.3)

t = JUX i[(n+ 2) (s(x) -s , ( u ) ) ] ( ~ + ~ ) / ( ~ + ~ )' 

and if a shock forms a t  some point (x, t )  along the characteristic parametrized by u, 
then from equation (3.11), x = X(u)  must satisfy 

1 x ( u )  dx 
(5.4)[(n+ 2) (s(x) -S ~ ( U ) } ] ~ + ( ~ + ~ ) / ( ~ + ~ )' 

As Z: -+ 0, An+l(u) is uniformly O(1) while s;(u) is uniformly O(E), and hence it is 
clear that this condition (5.4) can be met for any fixed value of u E (x,, x,(O)) only if 
s(X(u))-sl(u) = o(1) -i.e. X(u)  is sufficiently near the x value a t  which the inte- 
grand in equation (5.4) is singular. Since i t  has been shown in § 3 that the equation 
s(x)-sl(u) = 0 formally defines the snout or the head of the glacier, it then follows 
that shocks can form only very near the snout (or, less interestingly, the head) of 
the glacier for 2 $ 1. 

We now wish to develop approximate expressions for the general solution given 
in equation (5.3) under the assumption that Z: < 1. The first work of this type was 
done by Nye (1960),who sought approximate solutions to a linearized version of 
equation (2.7) under this assumption. The result of his analysis is that small depth 
perturbations eventually decay to zero, but not uniformly in x, as may be seen from 
figure 4 (after Nye). In  Nye's words, 'the lower parts thicken unstably until a 
kinematic wave arrives to restore stability '. This non-uniformity in the approxima- 
tion arises from the linearization of equation (2.7) about a steady state depth 
profile which goes to zero as x -t x,(O). This difficulty is avoided in the following 
analysis where the approximate solution we develop from equation (5.3) is uni- 
formly valid over its domain of definition, which is upstream from shocks. We have 
already shown that such shocks can only exist near the snout, and so our approxi- 
mate solution is uniformly valid over most of the glacier. To complete the approxi- 
mation, we could use the shock analysis presented in 3 3, but in view of the comments 
on diffusion effects to be given in § 6 and those on model rescalings in the snout 
region presented by Fowler (1g77), this is hardly a useful exercise. I n  any case, i t  is 
clear (since the depth decreases a t  such shocks) that the solution so extended would 
not grow in time in the manner of Nye's solution, and in this sense our approximate 
solution is considered to be uniformly valid in x. 
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4. Typical time evolution of initially small depth perturbations 
as predicted by Nye (1960) ( l /s z basic unit of time). 

We assume here, as we did in 5 3, that [s(x)]-(n+l)/(n+2) is integrable in any neigh- 
bourhood about the point where this expression is singular; as discussed there, this 
assumption is felt to be generally justified. As Z-t 0, the second equation in (5.3) 
may then be expanded (upstream of any shocks) as 

dx 
=Sux[(n+2)s(x)l(n+l,/(n+2)+0(1), 

so that 
a = a,(x, t )  +o(l) ,  

with a,(x, t )  defined from 
dx 

=Su:[(n+ 2) s(x)l(n+l)/(n+2)' 

and hence from the first equation in (5.3), 

We immediately see, on neglecting o(Z) in equation (5.8) and using the definition of 
a, from equation (5.7), that the first-order approximation to the perturbed depth 
H(x, t) is then given by the solution of the problem 

where H,(x) is the steady state solution defined by 
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Letting 

we find that the first equation in (5.9) becomes 

Subject to the second equation in (5.9), equation (5.12) has the solution 

(5.13)H =f (6)+ $(c- t )  = + $(c- t),
where 

$a)= A(4-Ho(x) (5.14) 

is the initial perturbation in H. The first-order correction term for the depth profile 
is thus $(t- t) ;  this term is uniformly bounded and valid upstream from shocks as 
Z -+ 0 and illustrates very clearly the travelling wave nature of the evolution of ice 
depth perturbations. 

I n  all sections so far, we have for simplicity assumed that the flux function s(x, t) 
is independent of time. We now demonstrate that ice depth profiles corresponding 
to fluxes s(x, t) and s(x) evolve very similarly in time if s(x) is the time average of 
s(x,t) and s(x,t) oscillates very rapidly in time. For example, this means that 
seasonal flux variations have a negligible effect on the longer term evolution of ice 
depth profiles. Instead of equation (3. I) ,  we consider here the model problem 

where s;(xo) = 0 (in order that the problem be consistently posed a t  x = x,),Ho is as 
defined in equation (5.10), w 9 1 and the initial data are left unspecified, but is 
restricted to be everywhere within O(l/w) of the steady state Ho as l / w  -t 0. 

A slight modification of the analysis used above to derive equation (5.8) from 
equation (5.1) then shows that 

H = Ho+ O(l/w) (5.16) 

as l / w  -+ 0, i.e. as claimed, the solution of equation (5.15) is very similar to that for 
the case of s;(x) = 0 as long as w 9 I. We can now use equation (5.16) to determine 
the nature of this O(l/w) term. 

As was true for the first small disturbance problem considered earlier in this 
section, the characteristics for equation (5.15) are then described in the l / w  -+ 0 
limit by equations (5.6) and (5.7), a t  least upstream from possible shock regions 
near the snout. Substituting equation (5.6) into the solution of equation (5.15) and 
neglecting o(l/w), one then finds that H(x, t) is given by an equation involving the 
parameter uo defined by equation (5.7) : on eliminating a, one obtains the following 
approximate equation for H,  which on comparison with equation (5.15) is seen to 
be directly obtainable from that equation by a straightforward linearization of the 
characteristics : 

Ht + H{+:Hz = s'(x)+ s;(x) eiut, H(xo, t) = 0. (5.17) 



169 The jlow of polythermal glaciers. 11 

The error in determining H from this equation is o(l/w). Using the variable changes 

and defining -
H = Ho+ $([, t), $ = O(l/w) as l / w  -+ 0, (5.19) 

we find that 4 satisfies 
$t + 4' =fl(8eiwt, 

of which the solution satisfying $(O, t )  = 0 is 

where we have used fl(0) = 0. $, is determined from the initial conditions, and by 
assumption is O(l/w). We see that the effect of a non-zero 4, is a transient one which 
vanishes in finite time. After this time, the depth H is described from equations 
(5.19)and (5.21) by 

which shows that for w B 1 the leading order deviation of the depth from its steady 
state profile is simply a time harmonic oscillation of frequency w (and amplitude 

si(x)). 

6. EFFECTSO F  D I F F U S I O N  

I n  $5 3-5, we have discussed the manner in which ice thickness profiles change in 
time by studying the solutions of appropriate initial boundary value problems for 
equation (2.6) in the physically realistic limit where ,u = 0. Frequently these 
solutions have been found to contain discontinuities, i.e. shocks. In  models for other 
physical systems (for example, gas dynamics), where shocks arise when a small 
parameter multiplying the highest order derivative term in the model equation is 
set equal to zero, the shock discontinuities are 'smoothed out ' in a diffusive manner 
if the small parameter is made non-zero and of an appropriate sign. Since equation 
(2.6)can be rewritten in expanded form as 

and the diffusion coefficient ,u[(n/(n+ 2)) {I -,u(Hx + hX))n+lHn+2] must be positive 
for almost all relevant (x, t) pairs when ,u u. 0, we therefore expect that the shock 
solutions found above for equation (2.6) should in fact be smoothed out and made 
continuous. This may not be true, however, a t  the snout (and/or head) of the 
glacier where H and hence the diffusion coefficient are zero. I n  this section, we 
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discuss the difficulties inherent in trying to determine whether or not diffusive 
effects smooth out shocks which form at  the snout (cf § 3) and in trying to describe 
the behaviour of H(x, t )  in general for values of x near the snout (or head) when,u > 0. 

As pointed out in 5 2 above, the fact that H, in our analysis is infinite a t  the snout 
is inconsistent with the reduction of the scaled model to the reduced model of part I, 
and hence it may be inappropriate to use any version of equation (6.1) in trying to 
describe the behaviour of H(x, t )  for values of x near the snout position. Based on 
Fowler's (1977) comparison of the scaled and reduced models we conjecture, 
however, that this behaviour will in fact be reasonably accurately described by the 
solution of a properly posed initial boundary value problem for equation (6.1) and 
the role of additional scaled model terms is simply to make Hz finite (but still large 
in magnitude) a t  the snout position. If this is true, it is however still not clear as to 
what constitutes a proper set of spatial boundary conditions for equation (6.1). As 
noted by Nye (1963 b), moving boundary problems for parabolic equations such as 
equation (6.1) typically involve the prescription of three spatial boundary conditions 
(i.e. two to augment an equation which has second order spatial derivatives and one 
to describe the moving boundary) and there seem to be only two natural ones, 
namely equations (2.10) and (3.2), for the physical situation being considered. It is, 
however, known (see, for example, Smirnova 1963) that many boundary value 
problems for parabolic equations with diffusion coefficients which degenerate (i.e. 
become zero) on part of the boundary are properly posed and admit unique solutions 
only if less than the ' usual' number of boundary data are prescribed. We conjecture 
that this is indeed the situation for equation (6.1); once equations (3.10), (3.2) and 
initial data given in (2.1 1)are prescribed, the resulting moving boundary problem 
for equation (6.1) admits a unique solution for all t 2 0. 

7. C O N C L U S I O N S  

In  this paper, we have shown how a rational model for the motion of two- 
dimensional glacial ice flows, proposed in part I of the paper, may be used to consider 
the well-known phenomenon of kinematic surface waves. We show how an equation 
analogous to that considered by Nye (1960) may be analytically derived in a 
particular asymptotic limit of the reduced model, in which the dependence of the 
viscosity on temperature and the variation of the surface slope from the mean 
bedrock slope are neglected (i.e. K = ,u = 0), and also the glacier is assumed not to 
slide on its base. These assumptions greatly simplify the analysis, but are not 
expected to alter the results qualitatively. The main result of Nye, namely that the 
wave speed of disturbances is about four times the surface speed, is of course 
reproduced, but a nonlinear analysis indicates that shocks (i.e. surface discon- 
tinuities) will in general form, and portions of Nye's theory are invalid in such 
circumstances. 

To illustrate the utility of our approach, we use it to study the time evolution of 
ice depth profiles that result from two particular initial depth profiles of interest. 
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First, we consider the case of an initially present shock, such as might represent the 
result of a surge of a tributary glacier. Using the method of characteristics, we find 
that such an initial profile inevitably leads to a temporary advance of the snout, and 
an estimate of the magnitude of this advance is given. Secondly, we consider the 
effect of a small initial perturbation to the steady state surface profiles (or equi- 
valently, to the steady state surface flux function). In  general, shocks will still form, 
but only sufficiently near the snout; away from this region, we show that there is a 
uniformly small perturbation to the steady solution which may be explicitly found 
from the characteristic equations by linearizing the equation for the characteristics 
(andnot the one for the profile itself). The perturbation represents a travelling wave 
that reaches the snout region in a finite time. Although the solution is not valid all 
the way to the snout tip, previously described shock arguments could be used to 
extend it. It is pointed out, however, that the reduced model (though not incon- 
sistent) is not strictly valid near the snout, and it is therefore pointless to consider 
shocks which form in the snout anyway. 

Note. I n  part I ,  we referred to certain results on the thermal nature of glacier flow 
that were to be presented in this paper: this work will now be published elsewhere. 
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