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A set of complex Lorenz equations with an infinite number of z-components is shown to have an exact periodic solu-
tion. Sufficient conditions for the instability of this solution have been found and the effect of truncation of the z-compo-
nents is considered. It is shown that in certain cases truncation has little effect but in others the stability criterion is radi-
cally altered.

In applied mathematics, possible transitions to chaotic regimes in the underlying equations of motion are usual-
ly studied by reducing these equations to a finite set of ODEs. This procedure involves expanding the dependent
variables of the underlying PDEs as a Fourier series with time dependent amplitudes, substituting and then trun-
cating at a finite number of modes. Lorenz [1] used this method to derive his now famous equations from the
Navier—Stokes equations for two-dimensional convection. The mode expansion and truncation method can be
open to question if the further inclusion of higher modes produces radically different behaviour in the bifurcation
sequence. In most cases only numerical integration of the higher dimensional sets of ODEs in which more modes
have been included will say whether convergence to a particular set of transitions has occurred.

One set of equations, however, has been derived by various authors without using the Fourier expansion and
truncation method

X=—-gX+0Y, (1a)

f'=(r—X)Z>12,,—aY, r=rytiry, a=1-ie, (1b)
n:

2, =—b,Z, + Ly, (X*Y +XY¥), by, ¥, >0, n=1,..,00. (1c)

Eqs. (1) are a complex infinite version of the Lorenz equations with an infinite number of Z-components and
complex 7 and a but real ry,7,,0,¢,b, and v,,.

With the validity of truncation in mind, our intention is to study eqs. (1) as model set of infinite equations
from which we can derive a considerable amount of analytical information, to see whether certain stability crite-
ria of the finitely truncated versions of (1) differ markedly from those of the infinite set. This, of course, depends
strongly on the form of b,, and v,, as functions of » which is the number of Z-components. Our study will be
from the mathematical viewpoint and so we will consider various forms of b, and 7,,. Egs. (1) do have a physical
basis however. For a single Z-component various real and complex versions have been derived using secular pertur-
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bation theory for the two-layer [2,3] and Eady models [4,5] of baroclinic instability and also in the laser [6,3].
For an infinite number of Z-components they have been derived for the two-layer model [7—9] and the Eady
model [4]. The difference between the single and infinite sets derives from the use of side wall boundary condi-
tions in the baroclinic models. The infinite set arises out of correct use of these boundary conditions but to apply
them it is necessary to Fourier expand in the cross-stream variable. The equations as a whole occur out of the re-
moval of secular terms in a multiple scales approach with X being a slowly varying wave envelope in all cases with
the dot referring to a slow time variable. In the two-layer and Eady models, the forms of b,, and vy,, as functions
of the number of cross-stream Fourier components are very complicated. We shall consider these specifically later
as special cases. Qur main concern is to study (1) as a general set of mathematical equations with restrictions on
Yns by, >0) only in so far that certain series must converge.

The mathematical properties of (1) at the first bifurcation are very similar to the single Z-component case.
Fowler et al. [10] studied this case both analytically and numerically. In contrast to the real Lorenz equations
(single Z-component) the single Z-component complex equations do not show a transition to chaos (¢ > b+1)
when r; is raised through a critical value. Instead, the origin undergoes a supercritical Hopf bifurcation to a limit
cycle, the analytic form of which can be found exactly. This limit cycle is stable for all values of 7{ when o
< b + 1 but bifurcates subcritically to a two-torus when ¢ > b + 1 at some higher value of r{. Forry,e ~ 1, no
further bifurcations were found but in the limit r, - 0, the torus undergoes period doubling to chaotic motion. It
is in this limit that the complex version reduces to the real equations. The main conclusion of ref. [10] was that
complexification of the coefficients turns fixed points into limit cycles, limit cycles into tori and suppresses the
chaos into a very small region of parameter space. In analogy with the results of ref. [10], egs. (1) have only one
fixed point: X = Y =Z, = 0, which lies at the origin in phase space. No other fixed points occur unlesse +r, =0
which is a highly pathological condition. It is also the condition which is needed to scale out the imaginary parts
in (1) by a phase rotation to reduce the equations to real form. Therefore we will always assume that e +r, # 0.
A study of the stability of the origin shows that the stability matrix occurs in block diagonal form and the charac-
teristic equation is

nl:[1(7\+bn)[(7\+o)()\+a)—or]=0. )
The roots of eqs. (2) are A = —b,, and

A=L{_(0+a)* [(o+a)® +40(r - a)]}2). 3)
The value of 7 (r1) at which the origin becomes unstable is given by Re(A) = 0. We find

1= 1+ (e —ory)e +rl(o + 1)? 4)
and the frequency of the critically stable eigenmodes is (w = Im A at 7; =r,.) given by

w=0(e+r)o+1)7L, ®)

When eithere = r, =0 ore +ry =0, then w = 0 and 7y, = 1 which is the result found by Lorenz [1] for his real
equations. Since w = Im(A) = 0 in that case, no complex conjugate eigenvalues occur and a Hopf bifurcation is
not possible. However, in the complex case, w ¥ 0 and a Hopf bifurcation is possible yielding a small amplitude
limit cycle of frequency w about the origin. It is usually very rare for a limit cycle solution to be found exactly,
but in ref. [10] an exact periodic solution for the complex single Z-component version of (1) was found. Follow-
ing ref. [10] but excluding the algebra, an exact periodic solution of (1) for all Z-components is given by

X=Aexp(iwt), Y= a'l(a +iw)d exp(iwt), Z,=7, b;l |4 |2, (6a)
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|4 |2 = (rl - rIC)(r1Z=>l Tn b;l)—l ) (6b)

where w and r; are given by (4) and (5). Firstly, this is only a valid solution if the sum in (6b) converges. Hence,
if b, ~nB and y, ~ nG asn - oo, then we require G < B — 1. Secondly, this transition from the origin to the limit
cycle solution given in (6) is a supercritical Hopf bifurcation as (6b) shows. Thirdly, whene=r, =0ore +r, =0,
then w = 0; ry. =1 and the solution (6) becomes a continuum of fixed points. This continuum of fixed points re-
places the two fixed points of the real Lorenz equations [1] because the complex nature of X and Y (even when

e =r, = 0) allows these two points to be rotated to form a circle of fixed points. The fortunate occurrence of an
exact periodic solution in the form given in (6) allows us to investigate the stability of this solution by transform-
ing to a frame rotating with frequency w:

X=xexp(iwt), Y=yexp(wt), z,=Z,. @)

n

The new equations are

x=—(o+iw)x+oy, p= (r - 21 zn) x, —(atiw)y, Z,=-b,z, +%7n(x*y +x3%). 8)
n:

Apart from the origin, which is unstable when r; > r;, (8) has fixed pointsatx =4,y = (1 + iwo—l)A;zn
=v,by L2, Perturbing about these latter fixed points we find that the characteristic equation takes the form

—gN-\ o 0 0 0 | 0 .. 0
P LA 0 0 -A : 4 -4
0 0 —oN*-A o 0 10 0
0 0 p* —L*-) -A I[ -4 ... -4 ..
____________________________ =0, 9
v AN* iy.4 ly,AN  iy4 —bi-A ! 0 0 .. ©)
271 271 371 2N 1 |
o
|
!
. . . . !
';'7nAN* FTnA ';.'7nAN ';'%1’4 0 | by A
L=a+iw, N=1+iwe™!, P=r,—A2(E 'y,,b;1>. (10)
n=1

Using the fact that LN = P, we find by good fortune , that we are able to evaluate the infinite determinant in
(9) to give

A 7\[(7\+a+1)2 +42] + A2\ +20)(A+o+1) . }\Z"b }=0, ' an

where g2 = (2w — e)? and we are assuming without loss of generality that A is real. We can deduce three things
immediately. Firstly the A = 0 root derives from the phase invariance of eqgs. (1) which gives rise to the limit cycle
and has been discussed in detail in ref. [10]. Secondly, no positive real values of A exist since each term in (11)

is positive definite when A > 0. Thirdly, no further zero roots occur since Z,=; ¥, b, 1 js finite and positive. If
the limit cycle is to become unstable, it must then be through a complex conjugate pair of roots A = Ag +iQ
crossing the imaginary axis. Taking real and imaginary parts of (11) when A = #i{2 we find
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oo

DA’S=Q, DA’R=P, S-= nElbz s R=nZ=)1 %%, (12)
where

0=20%+1)Bo+ 1)+ [20(c+ 1) — Q2] [(c+1)? +4% — Q7], (13a)
P=—02@0 + D[(0 + 1)? +4*% - Q2] +292%(0 + 1)[Q2 - 20(c + 1)], (13b)
D=[20(c+1)—- Q%% +Q%Bo+1)%. (13¢c)

Since 42,22, R, S, D > 0 then we must have P, 9 > 0. This is violated if o0 < 1 which means that no roots Q2
> 0 exist. The 11m1t cycle is therefore stable for all 7y >y, wheno < 1.

When ¢ > 1, it is possible to find certain sufficient conditions for instability. The algebra is straightforward but
long, so we shall just summarise the results. Firstly, since A2 is proportional to r; we can consider solutions of
(12) in terms of large and small 42 with these limits being equivalent to large and small ry . Without specific forms
of v,, and b,, we cannot sum the series in (12) but instead we consider solutions £2 of each separately as func-
tions of A2 and call them 92 2 (42) and Q2 (Az) For instability, there must be a coincident solution of both
equations and so we must have 9123 = Qg. for at least one value of 42,

There are two ranges of g2 to consider. When

0<q2 < (0+1)2( —1)/Bo + 1), (14)
then no bounds occur on 2, but when

g?>(0+ 120 — 1)/(30 + 1), (15)
then

Q2>4%@o+ 1)f(e —1) — (0 + 1)%. (16)

However, for both ranges of g2, we can show that QR 0> QS(O) for all ¢ and so a sufficient condition for insta-
bility is that ) (A2 )> 92 (A2) as A2 - oo, If this is satisfied then the two curves must intersect at least once or
an odd number of times. From (12) and (13) we see that A2 - o0 as Q2 -~ o0 and in this limit

D~Q* P~(@-1)Q% 0~a4 17)

which reduces egs. (12) to

A2R[QEUD)] ~ (0 - 1), A>S[Q¥AD)]~1. (18)
Any sufficient condition for instability will now ultimately depend on how R and S behave in the limit Q2

-> oo, Firstly we consider a finite truncation of the sums R and S. Let us assume that we truncate after N modes.
R and S now take the asymptotic form

N N
R~Q2 :z_:zl Ypb, s~sz—2nZ=)17n, Q2 > ), (19)

and this gives immediately that a sufficient condition for instability is

o> (Z]_;v‘,l Y, b,,)(:ZZ)l 7,1)_1 +1. (20)

If only a single z-component is taken in the original equations then (20) reduces to 6 > b + 1, a result already ob-
tained by Lorenz [1] for his equations.
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For the infinite set of equations it is necessary to deduce how R and S behave as functions of 2 by using the
Euler—McLaurin summation formula. For any finite truncation, R and S behave as 22 for large £ but may not
necessarily behave like this for an infinite number of modes. In particular, if R and S do not behave the same as
one another for large 2 in the infinite case, then the stability criterion may be radically changed, if it exists at all.
In order to study the asymptotic behaviour of R and S for an infinite number of modes, we will consider two
cases in order to illustrate this point.

(i) b, bounded as n = *.If v,, and b, are such that Zv, b, and Zv, converge then the Euler—McLaurin sum-
mation formula shows that

R~Q~2 nZ=)1 Ypby, S~Q72 ;L;)ly,, Q2 »>o), (21)

and the instability criterion is given by (20) with the partial sums replaced by infinite sums. Thus for this case,
there is no qualitative difference between truncation at large V and the infinite system. A physical example in this
first category is the form of v,, and b,, for the two-layer model for baroclinic instability. We find in this case that

2(n — 1)2 2(n — 1y2
- 2m=(n —3) . b, = 2 (n 2) . 22)
[0 = )2 = m2][(r — 2% + a7] (n— 1212 +4a2

In this case it is possible to evaluate the infinite sums for R and S in (12) by using Fourier series. The final result
is most easily expressed in the form

Tn

i = 2#2(1 _ M2)~1 , R- ms=(1;“2)_”’2"_2 l:l _M} (23)

@)+ 4m%i? (au)? + 4m2n2

This integration was first performed by Smith [9] for the two layer problem with real variables only i.e.e =7,

= 0 which implies that « = 0 and the limit cycle reduces to fixed points. He did not consider any other forms of
Y, or b,,. We can see that, as predicted, R and S do indeed behave as Q-2 for large . In passing, it is interesting
to point out that the partial sums for the 7, and b, of (22) do not tend to the same limit for large values of  and

m as the analytical form of the infinite sum expressed in (23) since R (partial) ~ a—4 but R (infinite) ~ ¢=3 as ¢
- oo,

(ii) b, unbounded as n -> o, There are several cases we could consider, but they can be summarised by taking
the example of b, ~n and 7,, ~ n~P (p > 0) as n - o, This establishes the convergence of the infinite sum in the
periodic solution (6). If p > 2, then it may be verified by the summation formula that R, S ~ =2 as - « and
so truncation makes very little difference and the stability criterion is again given by (20) with N replaced by in-
finity. An example of this is the Eady model for baroclinic instability [4] in which

_ (2mS0/ah)(a2 — m272)(1 — 0—Ltanh 6)
) [1 — 42 - m2]2

, 0=(@n-1)nSya~l, b,=06tanhs. (24)

Tn

In this case b, ~ n and 7,, ~ n~% as n > o and so p=4. Truncation is therefore established for this model as a
procedure which will not materially affect the instability criterion.

If however, 0 < p < 2 then the summation formula shows that the partial sums do not converge uniformly
with . We find for the p = 1 and 2 cases that in the § - o limit

p=2: R~0(Q2log,Q), S~0(Q7?, (252)
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p=1:. R~0(Q™D, S~ 0(Q 2log, Q). (25b)
In both cases, using (18), we find that for fixed 0 > 1,

Q3 (UH>02U4Y) asd? e (26)

and so no instability can occur as A2 (or r1) = . This is in contrast to the truncated case for which a stability
criterion in the form of (20) always exists. We conclude in this case that it is not valid to truncate the equations.

Finally we note that there still remains the possibility of multiple intersections of the 912( and Q§ curves. For
a final instability (stability) there would need to be an odd (even) number of intersections which would produce
closed “windows” of instability along the r; -axis. A numerical check on the two-layer formulae showed no evi-
dence of these windows.

We should like to point out that our study of the infinite complex Lorenz equations has had a two-fold motiva-
tion. Firstly we have used them as a test-case set of equations which have an exact solution to test the validity of
truncation procedures. Secondly, we have shown analytically that truncation does not alter the characteristics of
the Eady and two-layer models mentioned above. Pedlosky and Frenzen [7] numerically integrated the real ver-
sion of the infinite Lorenz equations for up to 24 modes. Our analytical conclusions therefore confirm that trun-
cation is a valid procedure in the neighbourhood of the instability of (in this case) the continuum ot fixed points.
However, this analysis predicts nothing about behaviour at other bifurcation points such as possible transitions
from periodic or quasi-periodic solutions to chaos. For the specific case of the two-layer model these have been
studied numerically in ref. [7] but it would be interesting to also perform a numerical investigation with various
other forms of v,, and b, for both the uniform and non-uniform cases. -

Finally we note that Manley and Tréve [11] and Tréve [12] using a method of Foias and Prodi [13] have
shown that a lower bound on the number of modes in a Fourier expansion is needed in Bénard convection in oz-
der to obtain qualitatively correct approximate solutions of the Navier—Stokes equations.

We gladly acknowledge both guidance and conversations with Professor J.T. Stuart. M.B. would like to thank
the SERC for the award of a studentship.
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