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HYSTERESIS IN THE LORENZ EQUATIONS
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The phenomenon of hysteresis, associated with multiple stable solution behaviours, has been predicted and observed in

the Lorenz equations when r and o are large.

1. Much of the recent literature on chaos in dynam-

ical systems has been concerned with pointing out the
behavioural similarity of many different types of
models. The transition to aperiodic motion via the
(Feigenbaum) period-doubling cascade occurs in dif-
ference equations [1], differential equations [2] and
fluid experiments [3]. The phenomenon of intermit-
tency [4] has also been widely observed in the above
types of system [5], which argues persuasively that it
is a “‘universal” kind of behaviour. To a lesser extent,
hysteresis (representing the concurrent existence of
different stable trajectories in dynamical systems) is
also commonly observed [6], and indeed might be
expected in any system which can behave intermit-
tently: for example, the Rossler equations exhibit
hysteresis, period-doubling, and intermittency in
various ranges of their parameter space [7].

2. The best-known dynamical system, the Lorenz
equations X=—oX+ oY, Y= r-2)x-Y, Z=XY
— bZ,is known to exhibit period-doubling [8] and
intermittency [9], and one might reasonably expect
hysteresis as well; indeed, it is well-known [10] that
for the “‘standard” values ¢ = 10, b = 8/3, the non-
trivial fixed points (Z =r — 1, ...) coexist (stably)
with the strange attractor for 24 06 SrS24.74, and
hence hysteresis occurs in this range: for higher r,
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transitions can be intermittent.

All these phenomena, and particularly hysteresis,
can be explained on the basis of a suitable non-mono-
tone difference equation [11], such as that relating
successive maxima of Z constructed by Lorenz [12],
which exhibits a pronounced cusp. In turn, this can
be readily understood as being due to the occurrence
of a homoclinic orbit in the system [13]: as r passes
through the value at which the homoclinic ‘“‘explosion”
takes place, a strange invariant set of trajectories is
produced, including an infinite number of periodic
orbits [14,15]. It may be better to think of period-
doubling windows as being a result of the existence
of homoclinicity in a system (which “produces” the
orbits which are then “absorbed” by the period-
doubling window) rather than as being primarily due
to successive bifurcations of a parent periodic orbit.
This view is derived from that of Sparrow, as expressed
in his forthcoming book [15].

3. The “Lorenz map”’ relating successive maxima
of Z on the strange attractor should be a curve crossed
with a Cantor set; that Lorenz observed a single-valued
function is directly due to the strong contraction rate
of phase volumes. In turn, this can be considered as
being due to the large value of ¢ in his computation.
We have taken advantage of this observation to con-
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struct a Lorenz map analytically when ¢ and r are
both large. The construction uses the technique of
singular perturbation analysis as applied to relaxa-
tion-type oscillations [16]. Specifically we define p
=r/6,6 = b/o, and analyse the equations in the limit
p~0(1),6 <1; at leading order one obtains a com-
plicated difference equation relating M, ; to M,,,
where rM,, is the nth maximum of Z on a trajectory:
in its simplest form (and for |M, — (1 +1/4p)| < 1)
this difference equation can be written parametrically
as

62/322/3§ :|
(1 +apttsd’
M, 1 =2 —k|Ai(=) P exp(—Ns2/37) 1)

M,=(1+ 1/4p)l:1 +

where

k=4(1 +1/4p) exp{—2[(1 +4p)}/2 —In 2]
X [(1+4p)1/2 —1]71},

B=28/[(1 +4p)1/2 — 1],

A=22B[ A +4p)! 31 +4p)2 — 1]}
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Fig. 1. Form of the difference equation from a slightly more
accurate version of (1), at parameter values o = 100,r = 160,
b = 1: the first ten cusps have been indicated. Here My, = 1
+ 9,Mn+1 =1+¢.
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The form of this difference equation is shown in fig.
1; as also found by Lorenz [17] for decreasing b (so
also § — Q), there are multiple cusps superimposed on
a cuspless “envelope” curve; these are of “thickness’
exp[—0(1/8)], and spaced O(52/3) apart.

Fig. 2 shows the result of a numerical solution of
the equations. All the interesting dynamic transitions
occur when a cusp approximately overlies the inter-
section of the 45° line with the envelope curve. This
happens at a sequence of values p = p,s=1,2, ...
when the first, second, etc. cusp overlies the fixed
point of the envelope curve, at a sequence of values
M, = C,. The values p, (and also C,) are O(5%/3)
apart, and interesting behaviour is when |p — pg|
= O(8) (otherwise the difference equation has a simple
fixed point, corresponding to a periodic solution of
the Lorenz system). Putting M,, = C; +6u,,, M, ¢
=C, +84,,,,p = pg +8xp, where x is an O(1) con-
stant, one derives the locally approximate canonical
difference equation

#n+1=5+K(/"n_anl“n|)’ (2)

where k, §2 are O(1) constants. To the same order of
approximation given by (1),

Phi

PR

Theta

Fig. 2. Difference map obtained from a direct numerical inte-
gration of the Lorenz equations at the same parameter values
as fig. 1. The full height of the cusps is not seen because of
their narrowness. There are obvious quantitative discrepancies,
but we wish to point out the qualitative similarity.
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evaluated at p = p,. (The invalidity of (2) when
> 1 does not materially affect the dynamics.)

Q=231 +4p)1/3 3)

4. The derivation of the Lorenz map is carried out
in detail elsewhere [18], as is the derivation and anal-
ysis of (2) [19]. Here we sketch some typical results.
We call the trough between the sth cusp and the (s
+ 1)th cusp the sth trough, T. For each cusp number,
we identify the corresponding r, = ap, for which the
cusp overlies the fixed point of the envelope equation.
Generally {r,} is an increasing sequence. For each
value of s, there is a value r(l) such that for r <r(1)
there is a stable T, fixed pomt (and an unstable
one); at r( ) these coalesce (a saddle-node blfurcatlon)
and if k < 0.2178... the resultant motion is “probably”’
chaotic (in 7). (This stems from the fact that when
the relation u, , = f(u,,) given by (2) has two coales-
cent fixed points, let us say u = u, it turns out that
the minimum value of f for 4> 0 [at u =8, i.e. fiin
=p +kQ(1 — In Q)] is greater or less than u_ depend-
ing on whether 1/(1 — k) + In[«/(1 — k)] is greater
or less than 0, and these correspond to « being
greater or less than ¢/(1 + ¢), where ¢ef =e1,

i.e. k greater or less than 0.2178... . If k is greater
than 0.2178..., then the minimum of fin > 0 is
greater than the value of fat u_, and so when the
saddle-node bifurcation takes place, trajectories move
towards u > 0, in which region they then remain.)

On the other hand, for sufficiently high r (but
near ry), there is a stable T fixed point; this becomes
unstable (to a two-cycle) as r decreases through r(3)
For k <0.2178.. r(3) > r( ), and as r decreases be-
low r(3) a penoddoubhng w1ndow ensues. However,
ifk > 0.2178.., then r(l) > r(3) and for r(l) >r
> r(?’) there exist concurrent fixed pomts (i.e. peri-
od1c orbits of the differential equations). As r de-
creases below r( ) a period-doubling route towards
chaos ensues; at a lower value r(4) stable aperiodic
motion visits Ty and T, ﬁnally, at a value r(z) (if
k>0.2178..) (when the chaotlc T, tra]ectory in-
cludes the stable manifold of the unstable T,_, fixed
point), the T, motion becomes unstable, and the T, _;
stable fixed point is (almost) globally attracting. Con-
sequently, when x > 0.2178... there is an interval r(2)

<r <r(l) in which two different stable (non- constant)
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Tablel
Values ofr_g’) for 0=300,b=1;k is 0.68 and 0.63 fors =1,
2 respectively.

s r@® r@) r@ r@
2 240.5 223.6 233.6 2294
3 271.5 252.6 266.5 261.1

solution behaviour are possible, and transition be-
tween them is hysteretic.

Computation of k shows that k increases with ¢,
s0 it is plausible to expect intermittency to occur for
lower o, hysteresis for high o. The expression for «
in (3) does not reveal a dependence on ¢ (at fixed p),
but one can perhaps see from (1) that a more accurate
expression for k will reveal such a dependence. More
obviously, k is the (local) slope of the envelope curve
[e.g. compare k in (3) with dM, , ;/dM,, in (1)], and
increasing k with ¢ simply indicates that this envelope
becomes “‘steeper’ as g increases: or, in terms of figs.
1 and 2, the troughs become shallower as ¢ increases;
this, incidentally, is in accord with Lorenz’s map,
where only the first trough is observed at ¢ = 10.

The range of r over which transition occurs is o
X O(8) = O(1); however, due to various factors of
“order unity” which are actually quite substantial,
the numerical range is somewhat larger than this. For
example, table 1 shows values rg’) fors=2,3ato
=300, b = 1. On the basis of these, we would predict
the results shown in table 2, which also shows results
taken from a direct numerical solution of the equa-

Table 2

Comparison of predicted and observed behaviour for o = 300,
b = 1. Here f.p. = fixed point, ap.m. = aperiodic motion, p.d.w.
= period-doubling window.

Predicted Observed
r <2236 T; f.p. 220, 225
22362294 T, f.p. Ty,2 ap.m. 230
22942336 Ty £.p. Ty pdw. 239 (T, two-cycle)
233.6—240.5 T, f.p. T, f.p. 240, 246
r<2526 T, f.p. 250
2526 261.1 T, f.p. T 3 ap.m. 260
261.1 —» 266.5 T, f.p. T3 pd.w. 270 (T3 two-cycle)
266.5—271.5 T, f.p. T3 f.p. unavailable
r < 287.0 (=r@)) Ts £p. 280

105



Volume 92A, number 3

100,

-100 100

-1000

PHYSICS LETTERS

1 November 1982

340,

T30h_

X

Fig. 3. Phase plots of stable Ty and T, limit cycles at» = 240, 0 = 300, b = 1. The inner (T;) cycle has one crossing of X = 0 be-
tween maxima of Z, and hence gives the apple-shaped curve on the X—Z plot. The other (T;) has two crossings, so that X, Y are
(mostly) one-signed. It has a symmetrical counterpart with X, ¥ < 0. Note the close approach of both limit cycles to the Z-axis.

tions. The bifurcation sequence is correctly predicted,
and the numerical values of the transition parameters
are fairly accurate. Fig. 3 shows phase plots of the
stable T’y and T’ limit cycles (fixed points) at r = 240,
0 =300, b = 1. Note that at these values of ¢ and b,
the non-trivial fixed points (M,, ~ 1) are linearly
stable untilr = o(c + b + 3)/(0 — b — 1) =~ 306, so
that at r = 240 (for example) we have two stable limit
cycles and a stable fixed point: two hysteresis bands
overlap.
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