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Abstract. This note discusses the possible use of perturbation methods in studying chaotic 
trajectories of ordinary differential equations, with particular focus on a recent paper on 
this topic by Rowlands. 

In a recent paper, Rowlands (1983) has presented an approximate analysis of the 
Lorenz (1963) equations, which gives a (quantitative) description of the cusp-shaped 
difference map found by Lorenz, which related successive values in the sequence {M,,} 
of maxima of one of the variables, Z. Since this non-monotone map provides an 
explanation of the chaotic (aperiodic) behaviour of numerically computed solutions 
of the Lorenz equations (Lorenz 1963, Li and Yorke 1975, May 1976, Collet and 
Eckmann 1980), its prediction would essentially ‘solve’ the system-at least in prin- 
ciple-and one could then seek to apply Rowlands’ method to other chaotic systems. 

The method used is none other than the standard method of multiple scales (as 
developed by Stuart (1960) to follow disturbances to shear flows into the finite 
amplitude range) applied to Hopf bifurcation from a steady state solution. This method 
is well known and widely used, but in the original problem (turbulence in shear flow) 
for which it was devised, it has failed to achieve anything resembling a description of 
turbulence; the basic reason for this seems to be that, although the theory is relevant 
to the problem at hand (there is a sub-critical Hopf bifurcation in plane Poiseuille 
flow, for example (e.g. Stewartson and Stuart 1971), it is not obviously or even 
necessarily closely related to the phenomenon of turbulence: bifurcation theory is 
essentially concerned with (asymptotically) small amplitude disturbances, close to 
some critical parameter value. 

Despite this, the temptation to try and push nonlinear stability theory further than 
it can go is strong. Davey and Nguyen (1971) tried a Stuart-Watson theory for pipe 
flow, despite the apparent non-existence of any finite critical Reynolds number. In a 
different vein, Lin and Kahn (1980) in studying periodic solutions of the delayed 
logistic equation, achieved a numerical extension of the range of validity of their small 
amplitude expansion by a judicious change of variable. Similarly, Rowlands (1983) 
constructs a finite amplitude difference equation for M,, using just such an expansion 
procedure, and shows that it accurately mirrors Lorenz’s (1963) results. Nevertheless, 
this method is only formally valid for small amplitude motions, in which case (e.g. for 
ordinary differential systems) a marginally stable eigenmode proportional to exp(iflt) 
has a slowly varying complex amplitude A which satisfies the Landau-Stuart equation 

dAldt  = klA +k21A12A, (1) 
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whatever the system under consideration. Equation (1) is valid when !AI2 - (Re kll << 1, 
and is trivially solved, with the conclusion that if Re k 2  C 0, a stable supercritical Hopf 
limit cycle exists for Re k l > O ,  and if Re k 2 < 0 ,  then (for Re k l  > O )  infinitesimal 
disturbances grow super-exponentially until [AI = 0 ( 1 ) ,  when the analysis is no longer 
valid. 

In the light of these remarks, a closer look at Rowlands’ results seems worthwhile, 
with two main considerations in view: firstly, although the analysis is quantitatively 
vindicated, it is conceptually inaccurate, and it would be unwise to leave the general 
reader with the impression that multiple scales analyses will provide an understanding, 
in themselves t ,  of chaotic behaviour. Secondly, one might suppose that conceptual 
inaccuracy hardly matters if the analysis is quantitatively accurate, and so I wish to 
point out that the numerical validity of the approximation to Mn+] as a function of 
M, is not systematic (it is equivalent to taking a two-term Taylor series of a general 
function), and the claim of predicting a non-monotone function (which is where the 
chaos comes from) is erroneous. 

As already explained, Rowlands analyses the Lorenz system 

x = - u X + u Y ,  I ‘ = ( r - Z ) X - Y ,  Z = X Y - b Z ,  ( 2 )  
near the critical value r = r ,  = u(a +b + 3)/(u - b - l), where the two non-trivial steady 
states X = Y = * [ b ( r  - 1)]1’2, 2 = r - 1 (for r > 1)  bifurcate oscillatorily. Con- 
sequently, with solutions of the form 

X = * [ b ( r - l ) ] ! / 2 + { A  exp(int)+(*))+O(A2),  (3) 
etc, (*) as usual denoting the complex conjugate, A satisfies the Landau equation (l), 
where Re k l  - r - r ,  << 1, and / A  1 - Ir - rcI1I2, by assumption. 

Rowlands next uses the solution of (1)  (obtained by first writing it as 

dlA12/dt = K1 (A l 2  + K2JA 1 4 ,  (4) 
where K 1  = 2Re k l ,  K 2  = 2Re k2) to form a difference equation for A?,, = M, - ( r  - 1)  
(M,  is the nth maximum of 2 in a sequence, obtained (say) by numerical integration 
of ( 2 ) ) .  A more direct, and asymptotically equivalent, approach, is essentially to apply 
the method of averaging to (4), thus replacing d(AI2/dt by {lAn+ll2- jA,/2}/~, where 
T = 2.rr/fl is the basic period of the oscillation, and A ,  and A,+1 are values of A a 
time T apart. This yields from (4) 

IAn+l12= lAn12(1+rK1+rK21An12)+O(IAn16), ( 5 )  
and is valid for lAn12 - KI << 1 .  This is equivalent to Rowland’s equation (3.7). He 
then shows that one can take M,, = (A ,  1, and consequently ( 5 )  gives, as the Lorenz map 

a n + l = ( l + & ) M n ( l + K M ;  +O(M;)), (6) 

Mn +Mn+l, 

where 
1 

E = I T K ~ ,  K = $K2 ; (7) 

f See the later remarks on ‘co-dimension two’ bifurcation when two parameters take on critical values. 
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equation (6) is asymptotically equivalent to Rowland’s equation (3.9), and is based 
on the assumption A?,, = O(E ”’), where by assumption E << 1 .  

There is always a requirement for interpretation when asymptotic (i.e. limiting) analyses 
are applied to actual numerical examples. If E is a small number, then usually E = 0.1 
is considered ‘small’ enough. Depending on the situation, however, E = 1 may also 
be ‘small’ (e.g. Stokes flow in fluid mechanics at Reynolds numbers of 0 ( 1 ) ) ,  and 
sometimes computer extension of asymptotic series provides results for E >> 1 (e.g. 
Reynolds numbers 0(10),  see Van Dyke 1975)! 

In this case, Lorenz’s parameters r = 28, U = 10, b = ! (which are close to critical 
in the sense that r - rc 2: 3.26 is ‘small’) gives an E of 0.064, from Rowland’s equation 
(3.9), and (6) above. Consequently, one expects his difference equation to be formally 
valid in the numerical range 0 <a,, = O(E ’”) = 0.25. Clearly the extension of the 
prediction up to values A?,, =MC= 11.8 is a posteriori, in the sense that it works (in 
this case); in general, there is no reason for it to do so. Actually, inspection of (5)  
indicates that (6) represents the first two terms in a Taylor expansion of IA,+112= 
f(lA,,I2); the coincidence of predicted and observed results simply indicates that f is 
‘nearly linear’, and presumably higher coefficients are numerically small. For example, 
K = ~ / 3  = 0.0025 using Rowland’s values, even though (formally) it is O(1). 

Whereas one can accept small Taylor coefficients as a reason for quantitative 
accuracy, it is not clear why any such difference equation should apply at all, since 
uniqueness of solutions to ordinary differential equations implies the existence of a 
vertical structure at each A?,,, which is often considered to be a Cantor set, if a strange 
attractor is present (Ott 1981). In fact, it is known that a strong contraction rate of 
phase volumes will squash this structure to be ‘nearly’ zero-dimensional, so that a 
curve does ensue. 

Perhaps the main point I want to make is that, even if one accepts the extension 
of the local result beyond its expected range of validity, the notion that it will predict 
chaos by virtue of a non-monotone map is incorrect. Rowlands ascribes the critical 
value of A?,, to the occurrence of a zero in trajectories in X. This is actually right, 
but for the wrong reason. The Lorenz equations are indeed symmetric, but this does 
not mean that the curve for A?,, to obtain that for A?,, >A?c. 
On the contrary, the symmetry of the equations is lost in the difference equation 
which takes the same form whether X is greater or less than zero. Actually, even 
accepting Rowlands’ definition of &fC, one cannot, even heuristically, extend the 
present analysis to the range A?,, >A?c: for, when the trajectory crosses from X > 0 
to X < 0, it then oscillates about X = - [b(r  - l)]”’, and cannot be represented in the 
form (3) (where a plus sign applies to X>O). That the map is symmetric about 
A?,, =MC is simply not generally true, even though it seems so for r = 28, U = 10, b = Z. 

The presence of a cusp, and hence the non-monotonicity of A?,,+l(A?,,), is due to 
the occurrence of a homoclinic orbit (Robbins 1977, Kaplan and Yorke 1979) which 
leaves and returns to the origin. This orbit is of finite amplitude and infinite period, 
and thus not conceptually obtainable by the Landau-Stuart equation. It is as a 
consequence of this that the form of Yorke and Yorke’s (1979) approximate analysis 
is valid, and it is actually possible to systematically extend their local analysis in a 
global manner, again approximately (Fowler and McGuinness 1982). Furthermore, 
the bifurcation of the homoclinic orbit takes place at a ‘homoclinic explosion’ (Sparrow 
1982) for a value of r which is parametrically unrelated to rc. For Lorenz’s parameters, 
this value is rH = 13.296, as opposed to rc = 24.74. 

is reflected about 
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The circumstance in which one can find chaos by a regular multiple scale expansion 
is by having a ‘co-dimension two’ birfurcation, i.e. one at which two different 
instabilities occur (almost) simultaneously. This can either be due to two parameters 
attaining critical values (ArnCodo et a1 1982), or by seeking some distinguished limit 
(Gibbon and McGuinness 1982), but in any case one does not predict chaos directly, 
since the generalised amplitude equations one can obtain are of third order, and again 
require a numerical solution. One can, in such circumstances, prove the existence of 
a strange invariant set of trajectories (e.g. Holmes 1980, Keener 1982), but even 
whether the invariant set is attracting or repelling cannot yet be stated. 

The only other approximate analyses I am aware of for attempting to predict chaos 
are based on the analysis of weakly non-Hamiltonian systems, of which the Lorenz 
equations as r + 00 are an example (Robbins 1979). By use of the method of averaging 
(Sparrow 1982) or that of Kuzmak-Luke (Kevorkian and Cole 1981, Poyet 1980), 
one can construct a pair of second-order autonomous differential equations for the 
slowly varying amplitude functions B and D (see Robbins 1979 for notation). A fixed 
point solution of these equations corresponds to a periodic solution of the original 
equations. Unfortunately, the worst a pair of autonomous differential equations can 
do is have limit cycle behaviour, and even that cannot occur in the Lorenz system. 

There is one other facet of the averaged equations of some importance, and that 
is that the line B =D is degenerate, in that Lipschitz continuity of the system does 
not hold there. The averaged equations can have non-unique solutions as a con- 
sequence, if trajectories in (B,D) space reach this line, which one can think of as 
being like a cut in the plane. There is then some hope that the averaged analysis can 
be extended to cope with this line (it formally breaks down as B -D + 0), but it is 
difficult. A similar investigation has been attempted by Shimizu and lchimura (1982) 
for a different problem (but still with such an invariant line); they identify the cause 
of ‘phase-mixing’ chaos (i.e. crossing the invariant line), but are unable to give a 
predictive analysis. The point here is that the invariant line exists because the 
underlying periodic solutions of the system (whose amplitudes are B and D )  have 
periods which tend to infinity as B +D, and this is a consequence of the existence of 
a homoclinic orbit in the system. Again, the homoclinicity is the fundamental cause 
of  the (eventually appearing) chaotic behaviour. 
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