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ON THE NATURE OF THE TORUS
IN THE COMPLEX LORENZ EQUATIONS*

A. C. FOWLER] AND M. J. McGUINNESS$

Abstract. The complex Lorenz equations are a nonlinear fifth-order set of physically derived differential
equations which exhibit an exact analytic limit cycle which subsequently bifurcates to a torus. In this paper
we build upon previously derived results to examine a connection between this torus at high and low
(bifurcation parameter) and between zero and nonzero (complexity parameter); in so doing, we are able
to gain insight on the effect of the rotational invariance of the system, and on how extra weak dispersion
(r 0) affects the chaotic behavior of the real Lorenz system (which describes a weakly dissipative, dispersive
instability).

1. Introduction. Very recently, Gibbon and McGuinness [4] have shown that a
fifth-order differential system of amplitude equations may be derived from weakly
dissipative systems which exhibit a primarily dispersive instability, if extra ("detuning")
dispersive effects are present. Moreover, when spatial variations are excluded, this
system may be viewed as a complex generalization of the Lorenz equations [11]. A
concise summary of this derivation, and of other relevant papers, is given in the article
by Gibbon [3]. The complex equations may be written:

(1.1) 2=-crx+try, =(r-z)x-ay, :i=1/2(xy*+x*y)-bz,

where r, b are real parameters,, but r rl + ir. and a 1 ie are complex, and hence
x and y are complex also. Equations (1.1) can describe (codimension two) bifurcation
behavior in baroclinic instability and nonlinear optics, and (in principle) in a variety
of other physical systems too. For this reason, and also because they may increase
understanding of the chaotic behavior of the real Lorenz model, a study of their
solutions is of some interest.

An initial such study was made by Fowler et al. [1], and we here summarize their
main findings. There is a trivial solution of (1.1), namely x-y= z=0, representing
the state of rest in the original physical system. If we adopt rl as the bifurcation
parameter, then this solution loses stability to a limit cycle as rl increases through

e + r2) e rr2)
(1.2) rlc 1 +

(tr+ 1)2

this limit cycle is the complex generalization of the nontrivial steady states in the real
Lorenz equations: moreover, the limit cycle has an exact analytic form, given by

(1.3) x=Aei’’, y= 1+ Ae z=lAI2/b,

where

r(e + r2)
(1.4) to IAI 2 b(rl rlc)

cr+l

and we suppose to 0. The exact limit cycle exists by virtue of the rotational invariance
of the system, i.e. the equations are invariant under the transformation x + x e

icy + y e z z. As a result of this, a transformation to the rotating frame, in which
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coordinates (X, Y, Z) are given by

(1.5) x=Xei’, y Y e kot, Z Z,

reduces the limit cycle to a continuum of fixed points, whose stability and bifurcation
may be analyzed in a standard manner. We find that the limit cycle loses stability
oscillatorily at a value rl rc, and solutions must (generally) bifurcate to a torus
(Joseph [7]). The toroidal motion can be very nicely visualized in the rotating frame,
since near bifurcation the unstable oscillation precesses slowly round the continuum
of fixed points (underlying limit cycle) (Fowler et al. [1]). Numerically, we find for
e 3 re, cr 2 that the bifurcation to a torus is subcritical for 0 < re < 1; this is analogous
to the subcritical Hopf bifurcation in the Lorenz model (McLaughlin and Martin [13],
Roshchin [20]). However, whereas the resultant motion tends to be aperiodic in the
real Lorenz system when the nontrivial fixed points are unstable, numerical evidence
when r2 0 suggests that the bifurcating branch might "bend back" so that one sees
snap-through instability to a stable torus on the upper branch.

This is the kind of behavior one would associate with the Stuart-Landau type
amplitude equation

(1.6)
dA
dt" kia + kzlalZa + k3lalaa,

where ? is a slow time, and A the complex slowly-varying amplitude of an e i"’

disturbance to the underlying limit cycle. For the complex equations, one analytically
derives (1.6) (but without k3) by the method of multiple scales. Subcriticality suggests
Re (k2) > 0. However, if (numerically) 0 < Re (k2) << 1, then we would formally derive
(1.6) using the method of multiple scales by examining the distinguished limit where
the amplitude e is such that

(1.7) Re (k2)’" E 2, Jr1- rc[ E 4, " E4t,

and if Re (k3)<0, the upper branch would be stable. Though we have not even
computed k2, let alone k3, the numerical form of the solutions could plausibly suggest
that the bifurcation analysis does (at least qualitatively) carry "round the corner" in
this way.

The form of the bifurcating torus is best represented using the five real variables
Xl, x2," ,x, where

(1.8) x Ial(x + ix2), y Ial(x3 + ix4), z (Ial2/b)xs.
The equations may then be written

(1.9) f(x),

and the property of rotational invariance follows from

(1.10) f(nx) Rf(x),

where R (a) is the real five-by-five matrix corresponding to the change of variables
(x, y, z,)(xe, y e, z). The transformation (1.8) locates the limit cycle as

(1.11) x=R(wt)Xo, x0 (1, 0, 1, w/r, 1)7";
for r close to r, the fixed point x0 in the rotating frame becomes oscillatorily unstable
with eigenfrequency fl, and corresponding eigenvector (in the fixed frame) R(wt)U,
where Un does not depend on time. The multiple scales analysis then shows that the
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form of the bifurcating torus is given by

(1.12) x= R(t)u(fit),

where for r- r’cl << 1 (---e e), we can write

3 o + O(2),
(.3) fi=n+o(),

U=Xo+ e{U, e’+ (,)}+ O(e2),
and e is a measure of the amplitude. The notation in (1.12) signifies R (0) and u(0)
are 2rr-periodic functions of 0. As discussed, we surmise that the form of (1.12)
qualitatively represents the upper branch stable torus which is numerically observed.
The "bifurcation theory" version of (1.12) and (1.13) has recently been given by
Renardy [17]; see also Rand [16].

Various questions now present themselves. Since the form of (1.12) is representa-
tive of the rotational invariance of the system, we may inquire whether this form
persists for larger rl. If we examine phase plots of xl versus x2, or x3 versus x4 (i.e.
Re x/Im x or Re y/Im y), the limit cycle will appear as a circle (because of the form
of R) and the bifurcating torus will look like the projection of a solenoid (or a trajectory
wrapped round a doughnut). Figure 1 shows that this behavior persists away from rc,
and is suggestive of (1.12)ma limit cycle being precessed around the origin.

8.00 .00 --.00 -6100 --2 ?00 2.0 6.0 14700 i8700
x1

FIG. 1. Numerical solution of the complex Lorenz equations at b 0.8, a 2, rl 70, r2 0.4, e 1.2.
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The particular form of R (given by Fowler et al. [1]) shows that for solutions of
the form (1.12), x5 will be simply periodic of period fi, whereas the other xi will be
the sum of terms of the form e+iO;tx function of period l. Spectral analysis of x, y,
and z will therefore reveal (if (1.12) is relevant) peaks at , 21,. for z (xs), and
peaks at In + o31, n 0, 1,. for x and y (Xl," , x4). We can also use this to check
(1.12), and indeed we do find that spectral plots are consistent with this description.

This then raises a further question: if (1.12) is a valid description of the torus for
all rl, how do the frequencies change as r2 0, since toroidal motions of this type do
not (and cannot) occur in the real Lorenz system (Ott [14])? Particularly, how does
the torus adjust itself as r2 0 at high rl, where the real Lorenz system has a stable
periodic solution (Robbins [19])! In fact, a curious thing happens: as r2 0 at rl >> 1,
we find that if 03 030 and lo, then 030 1o/2. The motion becomes periodic
because the "splitting" frequency 03 locks on to half the rotating limit cycle frequency
f. The periodic motion then has frequency a3o, and can be written

(1.14) x= R(ot)U(2O;ot)

(if (1.12) is valid). Spectrally, we will see peaks for x and y (now real variables) at
030, 3030, 5a3o, etc., whereas z has frequencies 2o30, 4a3o,. . This simply represents

360.0 0 O0--280.00 o 21o

YR

FIG. 2. (a) Xn-Xn plot at rl 1000, r2 =0, e =0, b =0.8, cr 2.
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the natural symmetry of the real Lorenz equations under the transformation (x, y, z)
(-x,-y,z).

A little thought shows that as r2 0 at high rl, (xR, yR) plots should trace out a
torus whose envelope is the familiar (x, y) plot of the Robbins limit cycle. Similarly,
a (ya, z) plot will represent the Robbins (y, z) phase plot rotating round a line parallel
to the z-axis (her w-axis). These considerations are borne out in Figs. 2 and 3, computed
at rl 1000, and r2 0, 1. Note that the envelopes of the complex case do not exactly
overlie the (real) limit cycle.

In the next section we follow up the ideas presented here, by extending the analysis
at large r of the real Lorenz equations to the complex case, thereby obtaining an
analytic description of a nonlinear torus. In addition, we may hope to gain some insight
into how the motion on a torus can break down into chaos. It will be seen that the
analysis for 2 relies heavily on previous work by Robbins [19] and particularly on
more recent work of Sparrow [21].

2. /% nonlinear torus at high rl. We consider the equations

(2.1) :=-rx+o’y, y;=(r-z)x-ay, 2=1/2(xy*+x*y)-bz,

where r r + ir2, a 1- ie, in the limit rl co, where a dot denotes differentiation

-360.00 -280.00 --200.00 --40.00

YR

FIG. 2. (b) YR Z plot at 1000, 0, e 0, b 0.8, r 2.
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"560.01 "’210.00’ 200.00 120,00 41,00 40100 01.00 280 3GO,

YR

FIG. 3. (a) Xr Yr plot at rl 1000, 1, e 3, b =0.8, tr 2.

with respect to time T. To isolate the nature of the torus in this limit, we define

1 rltrr2 P2, e / a2,(2.2) e
/rl

rescale the variables as

(2.3) x x/rlr sc, y fir/, Z rl’, T
1

and consider the asymptotic solutions of the resulting equations in the limit where
e 0, r, P2, a2, b--- O(1)"

(2.4) (1 )+ iazr + e[ip2(- rl],

(Here a dot indicates d dt.)
This rescaling is standard; we only comment on the definition of r2 and e.

We choose r2, e---, so that the damping term due to r2 is absent at O(1), but present
at O(e): otherwise (if present at O(1)) the system is not weakly dissipative (rl is not
high enough): if absent at O(e), r2 is irrelevant to the dynamics. (2.4) is therefore an
interesting distinguished limit. Similarly, it is natural to scale e so that its (rotational)



THE TORUS IN TIlE COMPLEX LORENZ EQUATIONS 687

-’360.00 --20.00 --00.00’ -120.00 -,.00 ,0.00 12.O0 200.00 20.00 6.00
YR

FIG. 3. (b) Yr -Z plot at 1000, 1, e 3, b =0.8, tr= 2.

effect is felt at O(1). This discussion incidentally suggests that there may be some
critical value of p2, beyond which the torus (and the ensuing analysis) does not exist:
we note for the moment that this is consistent with curve/3 in Fig. 3 of Fowler et al.
E].

From (2.4), we derive

2 dt
[w2/lnl bw(1- w)+- ip2(r/* 2

d- w+ I1 e[b(1 w)- 1123,

where we have put w 1 ’. To solve (2.4), we now employ the method of averaging.
We define a slow time

(2.6) ’=et;

then (2.5) implies

(2.7) wZ+ln12 B2(-), w+1/2l#12 D(-),

A more methodical procedure is to use the method of Kuzmak-Luke-Kogelman-Keller [8], [9], [10],
[12], [15], but at leading order, the two methods are equivalent.
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correct to O(e). This implies that we can define functions 0, 4 (of and r) such that

(2.8) 1,2 w B cos 0, r/= B e i6 sin 0,

and hence from (2.4)2

(2.8)3 sc=[ iazq]/w+ O(e)=-ei[0 + i(d)-a2) tan 0],

correct to O(e). (2.7)2 then implies that

(2.9) D+B cos O=1/2[O2+(d)-a2)2 tan2 0].

From (2.4)1, = r/+O(e), whence (2.8) implies, on equating imaginary parts and
integrating, that

G(’) + a2 cos 0
(2.10) (6 a2) tan 0

sin 0

(the real part just leads back to (2.9)). (2.9) now implies that 0 satisfies

1 2 D +B cos 0
[G + a2 COS 012(2.11)

2 sin2 0

6 is given by (2.10), and in terms of 0 and $,

( =_ei4,[+ i{ G + a2 cos

sin 0

(2.12) r/= B ei sin 0,

w =-B cos 0.

The difference between real and complex cases is in G. In the real case, G a2 --0,
and (2.11) describes a simple pendular motion on the circle w2+ 7

2 --constant. When
l0, a20 the motion is pendular on the sphere wZ+[r/IZ=constant. Observing
that the kinetic energy of rotation (divided by Be, or using 1/B as a time unit) is
(2sin2 0)/2, and that from (2.10), =[Gcos O+az]/sin2 O, it follows that (2.11)
may be written in the form

(2.13) 1/202+1/24; 2 sin20- B cos 0 D+1/2(a-G2),
which is the statement of conservation of kinetic and potential energy for this system.
This illuminates the avoidance of the states of rest, 0 0, 7r, as is evident in Figs. 1
and 3a.

To solve (2.11) we must have D>-B. Then one easily finds that

(2.14) t=
0 [(2D + 2Bu)( 1 u 2) G + azu)2]1/2"

The cubic inside the square root has zeros ul, u2, u3 such that

1 > ul > 0 > U2 > -1 > u3,

(provided G is small enough); the square root is defined for ul > u > u2, and for such
u, we have

11 du
(2.15) /- t+constant (the phase)=

os0 [(Ul-- /g)(U-- /g2)(U b/3)] 1/2

2
(Ul-- ll3) 1/2

F(’’ p)’
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where

(2.16) A sin-l ( Ul-CS O) 1/Ul u2 )1/2/’1 ig2
p=

Ul u3

and

(2.17) da
F(h, p)

[1 _p2 sin20]1/2

is the elliptic integral of the first kind.2

Defining

Ul U3)
(2.18) u

2
+ arbitrary phase,

we have

(2.19) ul cos 0 ulSrt2U, k2

Ul u2 Ul_ u3

where k is the modulus: hence we derive expressions for sc, rt, w (at leading order) in
terms of elliptic functions" particularly,

W B[-u3-(Ul- u3) dn2u],

(2.20) sin O=[1-u+(u,-u3) dnZu{(ua-uz)sn2u-(ul + u3)}] a/2,

/2B(ua- u3)(Ul- U2) sn u cn u dn u

[1- u+ (Ul- u3) dnZu{(ul u2)sn2u-(ul + u3)}] 1/2"

We do not need to consider the explicit forms for , r/and w further, beyond observing
that indeed and r/are generally doubly periodic and w is singly periodic. We come
back to the form of (2.12) in due course.

In order to determine evolution equations for B, D and G, we require three
"near"-conservation laws for these variables. Two such are (2.5) and the third follows
rom

d sc,(2.21) -[scr/*- q-2iaew]= e[-(r+l)(rl*-*)-2ipzllZ-2iazb(1 w)].

To O(e), sc, r/, w are given by (2.12), and the right-hand sides of (2.5) and (2.12) are
determined accordingly. We find that

(2.22)

sort* * rl 2iBG + 2ia2 w,

[T][ 2 B2 sin2 0,

{GWa2cos 0}2

112 02 +
sin 0

Actually, the phase in (2.15) is a slowly varying function of time, Whose computation is extremely
tortuous. Fortunately, it is immaterial to the determination of the slowly, varying amplitudes B, D, G.
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and it follows that, to O(e),

(2.23)

ld
d--- [B2] e[-bB cos 0{1 +B cos O}+p2BG+ a2P2B cos O-B2 sins 0],

d--- e b(l+B cos 0)-r 02""
sin 0

d-t (BG)= e -(o" + 1)(BG + asB cos 0)

{(G+azcS0)2} ]-Jr- P2 02 + 3t- azb(1 + B cos 0)
sin 0

where 0 is given by (2.19). Now sn2u has period 2K in u, where K is the complete
’rr/2 k2 ]-1/2elliptic integral of the first kind, K =,0 [1- sin2 a da, and hence a period in

of 2K[2/B(ul- u3)]a/z= T, say. Therefore the right-hand sides of (2.23) are (consider-
ing B, D, G nearly constant) approximately periodic, and so if we integrate over a
time interval (t, + T), we find (for example)

(2.24)
1 ftt+7" dD 1- --d dt=-[D(r+eT)-D(r)]= eD’(’)= e[’],

where the overbar denotes the average value of the square-bracketed term over a
period of the elliptic functions. We note from (2.11) that

(2.25)
G + as cos 0} 2

02 +
sin 0

2[D + B cos 0];

hence the average equations for B, D, G are simply

1 d
(B2) -bBcl bB2c2 + psBG + a2P2Bcl B2(1 172)

dD
(2.26)

dr
b(1 + ClB)-2r(D+ caB),

d
d-- GB) (or + 1)(BG + a2BCl) + 2p2(D + clB) + a2b( 1 + ClB),

where

(2.27) Cl COS 0, C2 COS
2 0.

These averages are computed in terms of elliptic integrals from (2.19), and one finds

E
(2.28) ca u3+(ua-u3)-,

(2.29) cs u--(ua-u3)Z(1-k2) +2(ul-u3)-u3+-(ua-u3)(2-k2)],
where E is the complete elliptic integral of the second kind, E=
’rr/2 k2 1/2 2
o (1- sin2 a) da, and here k =(ul-u2)/(ul-u3). The equations (2.26) may
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finally be written in the form

D’= b(1 + ClB)-2tr(D+ ClB),

(2.30) B’ pEF/B (b a2p2)Cl-[1 -(1 b)c2]B,

F’ tr + 1 )(F + a2qB) + 2pa(D + ClB) + a2b( 1 + Cl B),

where we define

(2.31) F=BG.

3. The nature of the solutions.
Steady states. Consider the equations (2.30). These are defined for B > 0, D > -B

(at least when G 0; more strictly D+ BUl > 0). We define

U= D/B, c =--C =--U3-- (U Ua)(E/K),

(3.1) q(U) (U+ u)(1 u2)- y(1 + ceu) 2

y GZ/2B, a a2/G,

so that ul > u2 > u3 are the roots of 4 O, and hence

u + u2 + u3 U- ya 2,

(3.2) UzU3 + U3Ul + UlU2 =-1 + 2ya,

Uluzu3 U- T.

By substituting E/K from (3.1), we find, using (3.2), that

(3.3) c2=1/2[1-2ya]+-c[U+ ya2].

We now seek the steady state solutions of (2.30). Using (3.1) and (3.3), we find B, F
are given in terms of U and c by

b
(3.4) B= (from (2.30)1),

bc / 2tr( U- c)

b[2p2( U- c) + a2{(tr / 1)c + 2tr( U- c)}]
(3.5) F- (from (2.30)3),

(tr+ 1)[bc+2r(U-c)]

and then (2.30)2 (using (3.3), (3.4) and (3.5)) gives, after some algebra,

1-cU
(3.6) 2A 1 + d(A, b,/92, a2, c, U)

3c( U- c)’
where

(3.7)
o-+1

b+2’

--C p2--(1-b)a2 p2-a2 +(b+2)A (23,-1) U-Cb +
b+2

Equations (3.6) and (3.8) are really two equations for U and c, since

(3.9) c -u3-(u,- u3)E/K c(U, y, a),
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from (3.1). The constraints on the solutions are that

U>--l, [bc+2tr(U-c)]>O (B> 0),

0 <-- y<= yc, A >0,

where at yc, ck has a double root Ul u2-- Uc. In practice, we pick U and c (satisfying
(3.10)); then (3.4) and (3.5) determine B and G and hence D, (3.1) gives y and we
pick a2 SO that c computed from (3.9) equals our chosen c. With given P2, b, (3.8)
determines d d(A), and finally (3.6) prescribes A. Thus a two-parameter U, c) family
of possible steady state solutions of (2.30) determines a two-parameter (r, a2) family
of surfaces in parameter space. We would like to know how many solutions exist, and
for what values of o- and a2. Obviously, this is a complicated numerical problem in
general, and we do not pursue it here: however, the answer is relatively easily given
in the real case, when P2 a2--0. The details are given by Sparrow [21]; we should
emphasize that the treatment above and following stems largely from his work. If
p2 a2 0, then G 0 and c c(U). Also

1-cU
(3.11) 2A-1= =, say.

3c(U-c)
For U > 1, B > 0 and decreases monotonically from 1 to -} as U decreases from cc
to 1. Thus for each Z e (, 1) there is a solution with U > 1. For U < 1, increases as
U decreases from 1/2 at U 1 to o at U 0.65, where U c(U). For U< 0.65,
U-c < 0, and apparently.no solutions with A > 0 are possible. This shows that for

homoclinic explosion
B at k 2/3

u<l \ //

| x--oo / // Xdecreosincj

lu,/ I_ o =o
/ Hopf =bifurcation

b/2cr D

FIG. 4. Variation of equilibria of (2.30) when a2(=P2)=0 (solid line) and (possibly) when a2#0
(dotted line). As A decreases from oo to - (at P2 =0), the U < equilibrium approaches the "homoclinic
explosion" at A =-, where B D= 1. Locally, this approach is cusp-shaped, since (3.12), (3.15) and (3.17)
describe the curve locally as IA]--- 32 exp [-4/6], where 6 is proportional to distance along U 1, A is distance

from U 1. As A increases from to 1, the U > equilibrium explodes from B D 1, and reaches the
Hopf-bifurcating equilibrium at (b/2t,0) when A =1. We may expect similar behavior for p2#O, as
indicated by the dotted line. This figure may be compared with a similar one (energy of a simple pendulum)
in Howard [6].
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a e (, oe) there is a solution with U < 1. Additionally, the origin corresponds to a
steady state B D-1, i.e. U-1, and the nontrivial steady states to a steady state
B=0, D=b/2o-.

It has been pointed out by Robbins [18] and Sparrow that the U > 1 solution is that
involved in the subcritical Hopf bifurcation (near , 1 when rl is large), whereas the
U < 1 solution is the numerically observed limit cycle at large rl. As , decreases
through I 1, the U> 1 solution bifurcates from B =0, D= b/2o" (the Hopf bifurca-
tion). As I decreases towards , the U > 1 and U < 1 solutions approach the line U 1
and coalesce at B D 1 when , . The coalescence at B--D 1 represents the
approach to a homoclinic orbit; the homoclinic explosion takes place at a (for high
q), and the strange invariant set is "born" at this value. The situation is represented
in Fig. 4.

Of most interest as regards "chaos," is the passage of the equilibrium solution
through B 1 D as U varies through U 1. Since this is directly associated with
the strange attractor when a2 =0, we enquire if this coalescence can persist when
a2 0. In Fig. 4 we have also drawn a schematic track of equilibria as U and, say, ,
vary with, say, fixed a2. We can imagine an orthogonal G-axis pointing up out of the
paper. We have indicated that with a2 0 the solution track also encounters the
"homoclinic" point at B D= 1, G a2. From (3.6) and (3.8), we can see how this
can be so.

The only way (B,D,F) can approach (1, 1, a2) is if U, c 1, unless 2tr=
b, 2p2 + (tr-1)a2 0. Let us suppose the former, and that

(3.12) U=I+A, a=l+v, Ivl, [AI<< 1.

It follows that (assuming 3’ < 2)

(3.13)

hence

[--(A+ u3,) +{(A + u3,)2 + u23,(2-- 3’)} 1/23
u2" --1 +

2-3,

[--(A+ v3,)--{(A + v3,)2+ v23,(2-- 3’)} 1/2]
U3"--I +

2-7

(3.14)

2{(A+ l,3’)2-+ p23’(2- 3’)}1/2k2... 1
(2-3’)2

where we denote

(3.15)
2(2-3’)

In [8(2- 3,)/{(A + v3,) 2 + v3,(2 3,)}1/],

notice that A, v<< 6. It follows that

(3.16) U-c.-.6,
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so that

(3.17)

(3.18)

but also from (3.5),

2o-- b)B--- 1-
b

6...,

F=G/B--.a 1+ ’"

(3.19) F- a2 1 + 6
1.a2

+
o-+l

it follows that

(3.20) 2(2o-- b) 2p2 o--1

b (o- + 1)a2
+ o-+l"

Also,

(3.21) d"-’b+ 2 pz--(1-b)a2 p2-a2+

and (3.6) becomes

(3.22)

1 ]+0(6)(b+2)A

2a-l+d---1/2+O(6).
Thus as 6 - 0, a satisfies

(3.23) a +[p2-(1-b)a2/3] [(b+2)
pz-a2+

We denote the corresponding value(s) of a by ah, etc., and observe that for given a2,

(3.20) determines P2 as a quadratic function of A, so that there could be in general
five such values.

The above results suggest that when A Ah, the equilibrium solutions are such
that the underlying fast oscillations (0) can approach the saddle point 0 r, and hence
that a homoclinic explosion can take place at such a parameter value. It is of interest
to study the case of Fowler et al. [1], where (because of the model derivation), e and
r2 are related by e= 3r2. In terms of a2 and p2, this implies pz=o-a2/3; (3.20) and
(3.23) are then (if a2 O)

(3.24)1 (o-+l)(2o--b) o- o--1

b 3 2

and

(3.24)2 o-+l+az[o-+b-1] o-+1-a2 1- -(b+2).
For a given value of b, (3.24) determines values of a2 and o-, and a corresponding
"homoclinic" curve in (rl, r2) space as

(3.25) r2 {/o- a2/3}r/2.

The relation (3.25) is a prediction capable of numerical validation. Since homoclinic
orbits near these values are presumably unstable, such a prediction must await confirma-
tion by development of a special torus-following program. Nevertheless, the parabolic
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form of (3.25) ties in nicely with the apparent parabolic shape of curves B and C in
Fig. 3 of Fowler et al. [1]. In particular, we might predict curve B if we were able to
do linear stability analysis of the fixed points in the (B, D, G) plane; this seems
prohibitively difficult, however.

The "Hopf" bifurcation of the limit cycle is much simpler. The critical rl(- r)
is given in this case by Fowler et al. [1], and we find that, if e kr2,

(3.26) rc...[(k+l)(k-o-) 2{2r+ (r-1)k} ]r22"((r+ 1) 2 +
b(o-- b- 1)(o-+ 1)

in terms of P2, this gives the critical value

[ b(1-b) ] 1/2

(3.27) p&c--- 3
21 + 2b(1 b)

where_we also put e=3r2 (k=3) and tr=2. For b=0.8, this is p 0.26, or
0.18x/r1, more in line with (though still greater than) curve C in Fig. 3 of Fowler et
al. [1].

Form of the trajectories in the original variables. Returning to (se, /, ’) space, we
see that the steady state toroidal solution may be written in the form

(3.28) = R(&)v,

where = (R, :, TR, z, ’), V=(--0,-(G+a2 cos 0)/sin 0, B sin 0, 0, 1-B cos O) T

is periodic of period T=2K[2/B(Ul-U3)]1/2, and R is the rotation matrix dis-
cussed earlier; this is in the same form as (1.12), but & is not singly periodic, since
although given by (2.10) has period T, its mean is not necessarily zero. If we define

(3.29)

then is periodic of period T, and we may write (3.28) in the form

(3.30) R (t)u(fit),
where

(3.31) n(lt) R (4;)v, (/= 2zr/T,

and u and R have frequencies and 03, respectively. This shows that (1.12) is relevant
at both high and low r, and we can safely conjecture that it is valid in between, as
well. The frequencies at high ra are given by

7r (B(Ul-- bI3),)
1/2

(3.32) 1 =-
from (2.10). t; can be calculated, and we find

cos 0 + a2
sin2 0

[ (Ul--U2) (a2"bG) ( (Ul-U2))](3.33) t =2Kl (a21-- U1G) II iu- k - 1 Ul
I-I

1- U
k

where II is the complete elliptic integral of the third kind. We can evaluate t3 as G 0
(i.e., 32, p2 0): as 3’ G2/2B O, we find

y(l+a)2

Ul" 1--
2(1 + U)’

(3.34) u2+-U,

U3-’) 1,
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provided U < 1; from the previous discussion, this is the relevant parameter range for
describing the stable torus as p20. As y0, II((ul-u2)/(1 + ul), k) is bounded, but
we find H(- (u- u2)/(1- u), k) c, and using (3.34) and the definition of y, we find

’n" [B(I+U)] 1/2

(3.35) "-- u- u2

comparing this with (3.32), and using (3.34), we find that indeed

(3.36)

as 02 -’ 0, thus bearing out the observations of 1.

Anomalous solutious. At least for p2 small enough, we can expect that the U > 1
(Hopf bifurcating) torus is unstable, and the U < 1 torus is stable. It does not seem
possible to discuss the stability of the fixed points in any serious manner, and in any
case, bifurcations in the (B, D, F) phase space would hardly correspond to period-
doublings observed at small P2 and finite (if large) r: such period-doubling is probably
beyond the range of our analysis. In fact, if we believe (following Sparrow [21]) that
the coalescence of U < 1 and U> 1 fixed points at I lh (from (3.23)) represents
the approach to a homoclinic torus, then we might correspondingly expect the explosion
of an infinite number of tori in the complex case at this value of I. Since all these
orbits at high r could be equally well described by the averaging procedure, we might
conclude that to O(e) they are indistinguishable, and that the line of orbits (dotted
in Fig. 4 for/92 0) "really" represents a thin O(e)-wide sheath of orbits which would
disappear in period-doubling windows as rl decreases (for/92 0, one can imagine an
e-axis in Fig. 4 vertically out of the page: the periodic orbits at fixed U would mushroom
out of the page as e increases from zero and later disappear via coalescence). Presumably
a higher-order averaging theory might resolve these windows.

Sparrow also discusses the problem of the invariant line G a2, B D; as a
trajectory tends towards this line, k oe, and the method of averaging formally breaks
down when eK---1. With U and a defined by (3.12), one finds

2-y
(3.37) K

as 6 0, where 6 is given by (3.15). It follows that averaging breaks down when

(3.38) B- D--- exp [-O(1/e)],

which implies

(3.39) sr--- O(1), :, r/--- exp [-O(1/e)].

As 0, we use the results and definitions of (3.12) to (3.15), and find that, to 0(6),

(3.40)

D’--- b(1-B)-(2r-b)6U,

B’ b(1 B)- 6[b- azp2 +(1 + y)(1 b)B],

F"-- + azb(1 B) + 6B[2p2- az(r + 1 b)].

(3.40) is derived on the basis that B-D and F-a2B are both small, and is clearly
consistent with this assumption. Notice that 6 given by (3.15) is not constant in (3.40),
but is itself a function of B, D, and G. So long as 6 0, we rewrite (3.40), using
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D-B BA, F- a2B ua2B, as

B’--.b(1-B)+O(6),

(3.41) (BA)’--. 6[b-azp2+{-(1 +y)(1-b)-(2o--b)}B],

(B*,)’ 6[-(b- azp2) + {o- + 1 b- 2p2/a2-(1 + y)(1 b)}B].

We can anticipate that the logarithmic dependence of 6 on *, and A will enable
these variables to go to zero in a finite time. For simplicity, consider first the real case,
in which y a2 p2 F 0, so that

(3.42) 6 =4/ln (32/1AI) =4 In (l/[El),

where we define E A/32. ignoring AB’ o(6), (3.41) is then

B’.--b(1-B),
(3.43)

[ln ]24
where

(3.44) x 6o-- b- 2- 3b/B.

Over time scales tl << 1, B changes very little, and we can consider it approximately
constant. (3.43) then integrates to

(3.45) [1 +In (1/lYl)]=-lt/24

plus a constant which we have put to zero. In this case, (3.45) shows that 0 in
small (finite) time, and since D!B U 1 + 32, then D > B for > 0 if z < 0, D < B
for < 0: that is, trajectories reach and leave the line D B in the direction of increasing
D/B if /x < 0 (and in the direction of decreasing D/B if z > 0). These conclusions
were found by Sparrow [21].

To extend the results to p2 0, we suppose that the equations (3.41) are to be
integrated over a small range of Itl (if we expect both/ and *, to tend to zero in finite
time). We can consistently neglect the small terms zB’, A*,’. Then

A’.-- 6[(b-azpz)/B +.(1 + y)(1- b)- (2o-- b)],
(3.46)

u’ 6[- b azp2)/B + o- + 1 b 2p2/a2-(1 + y)(a b)],

and we deduce A CoU + cl. If cl 0, then 6 0, and A, *, will pass through zero, but
not simultaneously, and thus not intersect the invariant line. However, in every (small)
two-dimensional neighborhood of this line (for fixed B), there is a one-parameter
family of initial points for (3.46) for which Cl 0. In this case, A Co,,, with

[( b- azpz)/B +-(1 + y)(1- b) (Zo- b)]
(3.47) Co [- b azp2)/B + cr + 1 b 2p2/a2-(1 + y)(1 b)]’

and we have
CT/CB, say,

where
{(Co+ y)2 + 1,(2- 7)}1/2

(3.49) Z=
8(2_3,)2

,,.

(3.48) In [i-1] ;’ [(c+ Y)2+ Y(2- Y)]1/2
4(2-3,)
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The solution of (3.48) is E[1 +In (1/1;I)]-- (RHS of (3.48)) and thus E, and hence
u and A will reach zero in finite time. Thus trajectories with the right initial values
will approach and leave the invariant line in the direction of increasing D!B U
1 + A) if A increases with t, i.e. if cr > 0, or

(3.50) 6tr (1 23’) b 2(1 + 3’) 3(b azp2)/B < O,

and they approach and leave the invariant line in the direction of increasing G(
a2(1- u)) if u decreases with t, i.e. if cB < 0, i.e.

(3.51) 3(tr + 1 2p2/a2) (1 2 3’) b 2(1 + 3’) 3(b azp2)/B < O.

Along the line B-D= G-a2=0, there is a genuine nonuniqueness of the
averaged equations (2.26). Trajectories can reach and leave this line in finite time
without crossing it, and also apparently travel along it. Of course the averaging method
breaks down at this stage, but we can partially understand what happens by recourse
to Fowler and McGuinness [2]. As B--> D-> 0, G--> a2, so , r/-> 0 and sr begins an
exponential decay towards zero (B--> 1); this corresponds to the slow phase of the
relaxation oscillation which occurs when/92 0, tY rl --> . Thus we should expect an
analysis of the different asymptotic structure which is relevant when B D to determine
the time after arrival at which the trajectory is kicked off the line, due to the eventual
exponential growth of sc and r/ as " becomes small. In principle, such anomalous
trajectories could join up to give anomalous periodic orbits" these are more fully
discussed by Sparrow. We only point out that as r increases, we might expect such
anomalous orbits to become stable, and an interesting question is then, how does one
get from the parameter regime rl--- r >> 1 to the regime r >> 1, r--- 1 ?

4. Conclusions. Our main result is that the torus in the complex Lorenz equation
can indeed be written in the rotational form (1.12). Specifically, we have the following
bifurcation structure"

(4.1)
fixed point x 0 --> limit cycle x R (wt)Xo

--> torus x= R(t)u((lt),

as the parameter r increases. These descriptions are global, rather than local The
rotational forms (4.1) clearly stem from the rotational invariance of the system, and
we can at least pose the questions, can one prove the forms (4.1) for the complex
Lorenz system, or for more general systems (one thinks in this context of Taylor
vortices in rotating Couette flow [16]). Evidence for the rotational torus as in (4.1)
comes from local bifurcation analysis (Fowler et al. [1]), is corroborated by an
asymptotic analysis at high rl, and further substantiated by numerical experiments at
intermediate values of rl. The high rl analysis further suggests that a homoclinic
explosion of tori takes place at a critical value of A-- Ah as rl--> , and thus that the
numerically observed torus may undergo period-doubling bifurcation cascades as r2 --> 0
at finite r, as observed.

Another facet of the torus is that as r2--> 0, ra --> , the rotating frequency 03 tends
to a value which is half that of the underlying cycle. We predict this analytically, as
well as observing it numerically (in spectral plots): in this way the torus reduces to a
limit cycle at r2 0, as it must, for other reasons, being a dissipative system.

In the caption to Fig. 4, we have already noted that if I1- BI << 1, then we can
define the trajectories in (B, D) space for the real case by the approximate relation
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(since << A, from (3.15)),

(4.2) lal-- 32 exp [-4(2- b)/bs],

where as before A--. distance from the B D axis, and s 1-B is proportional (a
factor of /) to the distance along the B D axis from B D 1. The interesting
thing about (4.2) is that, although formally IAI << 1 only if s << 1 when o-, b--- 1, neverthe-
less s is only logarithmically small, and so can be numerically of reasonable size. In
other words, equilibria can correspond to near-homoclinic orbits in quite a large
neighborhood of Ah. Numerically, this means it may be hard to "get at" the homoclinic
orbits. On the other hand, since averaging breaks down when lal--exp [-0(1/e)], we
can expect anomalous orbits to appear when IAI is of this order. Thus if the equilibria
are "close" enough to B 1 that (4.2) is valid, and lal-- exp (-o(1/e)), then we can
expect the real system to be able to maintain stable anomalous orbits. From (4.2),
this is when

(4.3) s- 4e[2(cr/ b)- l],

and is generally << 1, (s 0 as e- 0), unless or/b becomes large. If s is indeed small,
then the above discussion implies that for A > Ah, anomalous orbits will be an unstable,
transient feature. However, they will become of global relevance when s O(1): from
(4.3), this is when

(4.4) b/r--- e= l//rlcr,
and implies that in a distinguished limit given by (4.4), or particularly when rl--- cr >> 1,
b 1, this style of chaos will prevail. For the real Lorenz system (/92 0), this parameter
regime has been studied by Fowler and McGuinness [2].

As a last comment, let us admit that the study of systems such as the complex
Lorenz equations is only ultimately "justified" if it sheds light on behaviors in a real
physical system. Apart from the actual derivation of the present system in models of
(for example) baroclinic instability, we may point out the resemblance of the bifurcation
behavior here to that in rotating Couette flow. The study of the Lorenz equations has
now led in Sparrow’s work to the recognition that a new type of bifurcation, associated
with the occurrence of a homoclinic orbit, can give rise to strange behavior unrelated
(at least parametrically) to any Hopf bifurcation in the system. If we think of the
transition to turbulence in plane Poiseuille flow at Re---1000, and the (unrelated)
subcritical Hopf bifurcation at Re 5772, one may suppose that analogies in simple
systems may have relevance in real fluid problems. One can also draw interesting (and
direct) parallels between the behavior of the real Lorenz equations at high rl and r

and Howard’s [5] schematic description of thermal turbulence, and we can therefore
hope that the development of techniques and results for systems of ordinary differential
equations may eventually bear fruit in the field of fluid mechanics.
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