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We reconsider the problem of formulation of a model for polythermal glaciers, 
focussing attention in particular on the temperate zone where ice and water can co- 
exist at the melting temperature. The energy equation for the ice-water mixture in this 
zone introduces a moistureflux, and a constitutive law for this flux is required. By 
analogy with the flow through a porous medium, we use Darcy’s law (i.e. the second 
momentum equation of a two-phase flow model with “porous” geometry), and then 
require a mechanical constitutive relation relating the water pressure pw to the 
average ice pressure p I .  Experience in two phase flows suggests that p w = p r  may be 
problematical, and experience in soil mechanics suggests it is inaccurate. A 
constitutive relation is therefore presented based on work of Nye (1976), and its effect 
on the well-posedness of the model is examined. Considerations of the sort presented 
here have clear relevance in the formulation of similar problems in other geophysical 
situations, notably mantle convection. 

1. INTRODUCTION 

The problem of the flow of a melt through its own solid phase is one 
which has a wide variety of applications, particularly in the 
geophysical sciences. We might mention subglacial drainage systems 
and moisture transport in temperate glaciers (Nye, 1976; Nye and 
Frank, 1973; Spring and Hutter, 1981; Hutter, 1982), melt water run- 
off from snow (e.g. Colbeck, 1977) and magma percolation through 

?This work was reported at the Euromech symposium 172 on Mechanics of 
Glaciers, Interlaken, Switzerland, during September 1983. 
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100 A. C. FOWLER 

solid rock, with relevance to volcanism and emplacement of magma 
chambers (as well as mantle convection) (Frank, 1968; Turcotte and 
Ahern, 1978; Stevenson, 1982a, b). Other applications suggest 
themselves in metallurgy and crystal growth, if the density difference 
associated with the phase change is assigned the importance which, 
in principle, it is due (Rubinstein, 1979). 

In common with other two-phase flows (Drew, 1983), a correct 
formulation of these problems is not an easy matter; consequently, 
this paper will be largely concerned with formulation: clearly, this is a 
necessary preliminary to the process of calculation. In particular, we 
will focus attention on the particular case of the transport of 
moisture through ice, when such moisture is created by frictional 
heating in a polythermal glacier, i.e. one which is partly cold and 
partly temperate, The reason for this emphasis is that a realistic 
model of a fully temperate glacier must take account of larger scale 
water transport as well, which may not necessarily be describable in 
terms of the model developed here. 

The nature and dynamics of moisture within temperate ice has 
been of interest for some time (Lliboutry, 1971, 1976; Nye and Mae, 
1972; Nye and Frank, 1973), and Lliboutry (1976) explicitly wrote an 
energy equation for temperate ice, which involves the moisture 
content w. In their model of polythermal glaciers, Fowler and Larson 
(1978) also had such an equation, together with certain continuity 
conditions across the cold-temperate interface. Their treatment was 
somewhat abrupt, although they did claim to have produced a well- 
posed problem. More recently, Hutter (1982) reconsidered the 
formulation, and concluded that Fowler and Larson’s (1978) 
conditions at the cold-temperate transition were both physically and 
mathematically in error. 

In this paper, we reconsider the problem of moisture transport, 
and in particular examine the possible constitution of the moisture 
flux, which will lead to a constitutive law for the water pressure. As 
a consequence, we seem to find a well-posed problem, which in some 
respects is akin to that proposed by Fowler and Larson (1978). 

In addition, we will present a model equation describing the 
transport of salts within the water phase of temperate ice. It is often 
held ( e g  Glen et al., 1977) that salts have an important influence on 
the behavior of temperate ice. Our point of view is that while this 
may be true at the bedrock, for example, the dependence of melting 
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POLYTHERMAL GLACIERS 101 

temperature on salt concentration is so weak (Lliboutry, 1976), that 
the salt migration problem is uncoupled from the interior flow, and 
consequently is not of primary interest: it is conceivable to have a 
pure glacier. 

In studying the hydrology of glaciers, it is not clearly feasible to 
construct a detailed continuum mechanical model for situations in 
which water-filled crevasses, moulins, etc. dominate the nature of the 
flow; in such cases, a more ad hoc approach might be more useful. 
On the other hand, many “Arctic” type glaciers which maintain an 
average surface temperature below 0°C. have been found to have 
temperate zones adjoining the base (Clarke and Goodman, 1975; 
Jarvis and Clarke, 1975), and the dynamic nature of such temperate 
zones should be well represented by the kind of model considered 
here. In particular, this is of interest in the examination of possible 
thermal runaway type instabilities in cold glaciers (Clarke et al., 
1977), which if relevant, could have important consequences for ice 
age dynamics (Schubert and Yuen, 1982). 

For these reasons, we will primarily focus on the situation shown 
in Figure 1. We will consider an (Arctic) glacier whose annual mean 

occumulot ion 

I 
cold 

temperote 
melting 
s u r f a c e  
Y = Y M  

FIGURE 1 Schematic representation of an Arctic-type polythermal glacier. 
Streamlines are indicated by arrows. In this figure, boundaries of temperate ice are 
aV, at the bedrock, a& at cold ice. If the temperate surface extended to the surface, 
the boundary at the atmosphere is denoted by aV,. 
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102 A. C. FOWLER 

surface temperature is less than zero centigrade: the near surface ice 
is therefore cold. Ice accumulates upstream from packed fallen snow, 
flows downhill under gravity, and ablates downstream near the snout 
(due to summer insolation). Although cold near the surface, heat is 
supplied to the deeper ice by a geothermal heat flux at the base, and 
by viscous dissipation within the ice. It is quite possible that this 
heating will be sufficient to raise the temperature T to “the” melting 
temperature T =  T,, so that a temperate ice zone appears, as shown 
in the figure. The problem which now presents itself is to formulate 
the field equations for the temperate zone. In this zone T =  T,, and 
the energy equation now describes either the moisture content (if ice 
and water coexist at T = T,), or the water temperature (if water 
alone is present). It is this problem which we will address in the 
following sections, although for completeness, a discussion of the 
fully temperate case is also given. 

2. GOVERNING FIELD EQUATIONS 

(a)  Cold ice 

Models for the motion for cold ice ( T <  T,, where T is temperature 
and T, is melting temperature) have been given by Fowler and 
Larson (1978), Grigoryan et a/. (1976) and Hutter (1982). In essence, 
we can write 

divu=O, V - a+p,g=O, 

prcp[T, + u - V T I  = kV2T + oi e, j ,  (2.1) 

for an incompressible ice mass, where u is velocity, oij  is the stress 
tensor, e j j  is the strain rate tensor, and 

where the effective viscosity y is generally assumed to be a function 
of T and the second stress invariant zijzij (=2z2). Also, T is 
temperature, pr  is ice density, g is gravity, cp  is specific heat, and k is 
thermal conductivity. The Eqs. (2.1) must be supplemented with the 
usual stress, velocity and temperature boundary conditions. 
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POLYTHERMAL GLACIERS 103 

(b) Temperate ice 

Before proceeding, we discuss the nature of the heating terms in 
(2.1). The term c i j e i j  in (2.1)3 represents a heat source within the ice 
due to viscous frictional heating. In addition, the thermal boundary 
condition at the base of the ice is usually considered to be one of a 
prescribed geothermal heat flux. A scaling of the equations (Fowler 
and Larson, 1978) reveals that typically both these heating terms are 
non-negligible (and thus can lead to T reaching TM), with viscous 
heating being typically a factor of two to three larger. 

The relevance of this is that one can expect physically different 
situations to occur, depending on which heating term is the 
dominant one. It is now well-known (Atthey, 1974, 1975; Ockendon, 
1975; Tayler, 1975; Elliott and Ockendon, 1982) that in heat flow 
problems involving a change of phase, in which the heat is supplied 
from an internal source, a “mushy” zone will develop when melting 
is initiated, in which the temperature remains at the melting point, 
and both phases co-exist. On the other hand, if heat is supplied 
externally from a prescribed heat flux, then a layer of melt forms at 
the boundary, and the solid temperature is the solution of a classical 
Stefan problem. 

The upshot of this is that we can consequently expect internal 
temperate zones to form when viscous heating is significant, and that 
these will consist of an ice-water mixture, in which one can define a. 
moisture content w (mass fraction of water). In situations where 
geothermal heat is significant, one would expect the appearance of 
sub-glacial lakes, as at Grimsvotn in Iceland, and underneath the 
Antarctic ice sheet. The appearance of such lakes reduces shear stress 
(and hence, essentially, viscous heating) to zero, and so it seems 
reasonable to consider these two phenomena separately. On the 
other hand, when a temperate zone appears, then sliding occurs at 
the base, and it is well-known that the study of this process involves 
the transport of heat in the bedrock: in this case the interaction of a 
temperate zone (mushy zone) with a basal water film (or layer or 
cavity) is properly a subject for study in connection with the theory 
of sliding (for reviews, see Weertman, 1979; Lliboutry, 1979), or 
subglacial drainage (Spring and Hutter, 1982). 

We shall therefore suppose that a temperate zone exists, as 
indicated in Figure 1, in which ice and water co-exist at the melting 
temperature. The field equations are then properly those describing 
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104 A. C. FOWLER 

two-phase flow (Drew, 1983), in which case one has two mass and 
two momentum balances; one can alternatively use mixture theory 
(Hutter, 1982), in which case the diflusion velocity of water through 
the ice requires a constitutive relation to specify it (rather than being 
found from a solution of the appropriate phasic momentum 
equation). In the general case, inclusion of an energy equation is 
extraordinarily complicated (Ishii, 1975), and indeed the whole field 
of two-phase flow is fraught with problems of appropriate boundary 
conditions, well-posedness, etc. In view of this, our philosophy will 
be to try and establish a simple, yet reasonable, model by which one 
might compute the dynamical state of a temperate ice zone, bearing 
in mind the difficulties that have transpired in other related studies. 

We define the void (volume) fraction of water to be cc; the mixture 
density is then 

where we immediately assume that ice and water phases are 
separately incompressible: pw and p I  are the (constant) specific water 
and ice densities respectively. The mixture water and ice densities are 
then 

and the mass fraction of water is given by 

w = p w / p .  (2.5) 

If the (average) ice and water velocities are uw and uI, respectively, 
we define the barycentric velocity u and the moisture transport 
velocity v by 

pu = pwuw + p w ,  v = uw - u; 

ur = u - wv/( 1 - w), uw -u'=v/( 1 - w); 

these relations are given by Hutter (1982). 
Conservation of mass for the mixture gives 

dpldt + p div u = 0, 
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POLYTHERMAL GLACIERS 105 
where d/dtrdfdt+u - V, and that for the water phase is 

p dwJdt = - div j + C, (2.8) 
where 

j=pwv (2.9) 

is the moisture flux of water through the ice. The term C in (2.8) 
represents volume production of water, and is liable to be non-zero 
in temperate ice due to the viscous heating. 

For the momentum equation, averaging yields, for zero Reynolds 
number (Drew, 1983) 

V - a + p g = O ,  (2.10) 

where 

d = anw + (1 - a)& (2.11) 

is the mixture stress tensor, ow and a' being the (phasic) average 
water and ice stress tensors, respectively. 

We now consider an energy equation for this mixture. To do so, 
we make a constitutive assumption that ice and water phases co- 
exist at the melting temperature, which we take in the form 

T = T M  = To - p p -  A'c, (2.12) 

where p is the local pressure, and c is the salt concentration. Since 
we allow p and c to be different in each phase, the melting 
temperature may vary on a microscopic scale. Lliboutry (1976) gives 
values of the order of /?-10-2Kbar-1, A'-2Kmol-'kg. They 
represent small variations of the essentially constant melting 
temperature, which we retain in order to examine their effects on 
heat transport due to thermal gradients. 

The specific internal heat content H per unit mass of the mixture 
may be written in the form 

= p[c,T, + W L ] ,  
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that is. 

A. C. FOWLER 

H=c,TM+Lw, (2.13) 

where L is the latent heat of melting, and TM is the average melting 
temperature of the mixture: however, T L  and T; are the average 
melting temperatures of each phase, which are not necessarily equal, 
since we do not assume that the average pressures are equal; (2.13) 
simply comes from adding the heat contents of ice and water in a 
volume element of the mixture, together with the definition of the 
latent heat. Since kinetic energy is negligible (zero Reynolds number) 
a balance of energy equation for the mixture is 

d(pW)/dt+div [(l -a)p,c,T&u"] +div [clp,(c,T;+L)uw] 

= v -  [kVTM]+W+E,  (2.14) 

where W represents the (bulk) viscous heating terms, and E is the 
interfacial energy source. The bulk thermal conductivity k can be 
determined by averaging (Ishii, 1975), or one can think of it as a 
constitutive term, but it hardly matters in any case, as it will 
eventually be neglected (being small). For convenience, we assume 
the specific heats of ice and water are essentially the same. 

The bulk viscous heating term is given by Ishii (1975) as 

w = clew: VU" + ( 1 - cl)c': vu", 

which after some manipulation takes the form 

W = C  VU + OW": V[( 1 - W )  ~ 'v] -G:  V[( 1 - w)- 'wv] .  (2.15) 

Using (2.3)+2.7), and taking k and cp  as constant, we can write 
(2.14) in the form 

p d H / d t  = pd(c, TM + Lw)/dt 

= - div Lj - div [pw( T;  - TM)c,v/( 1 - w)]  + kV2TM + W + E,  

(2.16) 
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pLdw/dt+div[L*j]=E+ W+kV2TM-pcpdTM/dt, 

L* = L + cP( T;E; - TM)/( 1 - w). (2.17) 

The other energy equation (for the water phase) is taken care of 
by the assumption that water and ice temperature are locally equal, 
which at least seems plausible. We also require a momentum 
equation for the water phase, or a constitutive relation for v (or j). In 
the present situation, if moisture exists in temperate ice in an 
interconnecting system of veins (Raymond and Harrison, 1975), then 
one can treat the ice as a porous medium (Nye, 1976), and it seems 
reasonable to “constitute” the “diffusion” velocity v of water relative 
to the centre of mass by Darcy’s law, 

v =  - uwvcpw + PwgYl, (2.18) 

where gravity points in the negative y-direction. The permeability u 
may be written in the form (Nye and Frank, 1973) 

= Pr12/PwXYlw (2.19) 

(see also Roberts and Loper, 1982), where I is grain diameter, qw is 
the viscosity of water, and x is a geometrical parameter of order lo3. 
It is very important to realise that the adoption of (2.18) refers to the 
moisture velocity, averaged in such a way that the microscopic 
details of the flow are unimportant. In particular, a time average is 
applied, so that the instantaneous velocity field may not resemble the 
averaged velocity field. It is useful to ideaiise (2.18) as representing 
the flow of water through a connected set of pores, but it would be 
unwise to assume uncritically that this may be identified at any 
instant with the vein system. In a temperate glacier, most of the 
water is contained in pockets (Lliboutry, 1976), whereas as little as 
lop4% may be held in the veins (Raymond and Harrison, 1975). 
This latter figure would yield negligibly small permeability of the ice 
(instantaneously). However, recrystallisation and flow of ice will 
allow the vein system to sweep through the glacier (Glen et al., 
1977), and for time scales greater than a day (e.g. ice velocity 
-5cm.day-’, crystal size 10cm) the vein system will encounter 
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108 A. C.  FOWLER 

water pockets, and empty them (if they are at higher pressure, as 
would be expected from surface energy considerations). Thus, the 
effective "pore" system for longer time scales includes the water 
present in pockets, and the instantaneous permeability of a block of 
temperate ice would be much lower than the effective permeability. 

It would be preferable in a two-phase flow theory to "derive" 
(2.18) from the corresponding averaged momentum equation, 
without needing recourse to the assumption that the average 
behavior is that of a porous medium. Luckily, this is easily done in 
the present situation of negligibly small Reynolds number. In this 
case, the averaged momentum equation for the water phase is (Drew, 
1983; Ishii, 1975) 

o=v * [ ~ ~ " ] f a p , g + M ,  (2.20) 

where the interfacial source term M arises from interfacial transfer of 
momentum and stresses. We can write 

M=p".'Va +Md, (2.21) 

where p",' is the average interfacial pressure, and Md is the 
interfacial drag. One now has to choose constitutive forms for p",' 
and Md. In keeping with the assumption of lubrication theory, as 
applied to the pore flow, we take 

P",' = p w ,  (2.22) 

and 

Md z - A(uw - u'), (2.23) 

which simply uses the statement, that the drag exerted by a laminar 
Poiseuille flow is proportional to the flow velocity, in building a 
plausible constitutive law. M should properly include a term 
( -c"* - Va), rather than pW,'Va, but this is not commonly done, and 
in any case has no effect below. Applying (2.22) and (2.23) to (2.20) 
and (2.21), we obtain 

4 u w  - u') = - @V[pw + p,gy] + v - (az"), (2.24) 
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POLYTHERMAL GLACIERS 109 

where zw is the deviatoric part of the stress tensor. Inclusion of an 
average interfacial stress would lead to a term ( - z w * i  . Va) on 
the right hand side of (2.24), presumably of the same order of 
magnitude as [V - (orzw)]. However, we claim that typically 
IA(uw -u')l % IV - (caw)] ,  because the first term represents the variation 
of stress across the pore radius, whereas the second is due to a large 
scale secular change in the average stress. By assumption, these 
average variables change much more slowly than the small scale 
microscopic flow properties; consequently we can ignore them in the 
limit implicit in the averaging. Finally, from (2.6), we find 

identical to (2.18) if we define 

IcpwA= 1 -w .  (2.26) 

Lastly, we consider the r81e of salts. These are of some importance 
in glaciology, but are less so in the mathematical model (which 
could equally well be formulated in the absence of impurities). We 
include a discussion for completeness, but will retain the maximum 
simplicity in the formulation. Salt concentration is a further 
thermodynamic quantity, whose variation in both phases is generally 
required, but much simplification ensues by taking diffusion in the 
solid phase to be zero, and by requiring the phases (on auerage) to 
be in equilibrium; this is not really true, since melting and freezing at 
grain boundary intersections will lead to a variation in the solid 
phase concentration. However, it is feasible that recrystallisation may 
serve to yield an average solid concentration in equilibrium with the 
pore concentration (Glen et al., 1977). If we assume solidus and 
liquidus temperatures to have constant slopes as functions of 
concentration (Chalmers, 1964) [e.g. A' in (2.12) is constant], then at 
a given temperature, one has 

C S / C L  = CI f c, = A, (2.27) 

a constant, where cs and cL are corresponding solidus (ice) and 
liquidus (water) concentrations: A is called the distribution coefficient. 
The equation of conservation of salt for the mixture is then 
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110 A. C. FOWLER 

[analogously to (2.14)] 

a 
at 

1 - [( 1 - a)p,c] + A div [( 1 - a)p,cu’] 

(2.28) 
a 
at 

+-[pwc]+div[pcw(u+v)] = -divj,, 

where cw=c is the salt concentration in the water, and j, represents 
any flux of salt due to processes other than advection: for example, 
the Soret effect, Fickian diffusion, Taylor dispersion. We shall come 
to a discussion of these terms in the next section. 

(c) Boundary conditions 

Those for cold ice have been treated in detail before (Fowler and 
Larson, 1978; Hutter, 1982); for the present model, we have 
additionally to specify conditions at the cold-temperate interface, at 
the base, and at the surface if the average surface temperature is zero 
anywhere. We consider first the appropriate conditions at a cold- 
temperate interface. 

Across an interface, we would generally expect (a) continuity of 
mass for each phase, (b) continuity of the stress tensor for each 
phase, (c) balance of heat transport for each phase (including latent 
heat terms if there is a jump in phase), (d) a balance of total salt 
concentration. One simple way of obtaining such jump conditions is 
from conservation law‘s (Ishii, 1975) and we see that indeed, bulk 
conservation of momentum and energy, which apply (in different 
forms) on both sides of the cold-temperate transition will determine 
(b) and (c) above, for the bulk mixture; similarly, the conservation of 
total mass equation determines a balance of mass statement in (a), 
and the salt conservation law can be used to determine (d). 
However, it is not immediately apparent that the moisture balance 
equation (2.8) or the momentum equation (2.25) can be so used, 
since there are no corresponding balance laws in cold ice: in fact, w 
is then determined (as zero) from the thermodynamic statement (or 
assumption) that moisture is absent when T <  TM, and not from a 
conservation statement. Nevertheless, one can try and formulate 
balance laws from (2.8) and (2.25) by using these equations in cold 
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POLYTHERMAL GLACIERS 111 

ice, with the source terms [C and A(1- w)v] set equal to zero. Even 
this gives problems, unless we realise that these source terms arise 
from volumetric (interfacial) terms in the averaged equations, and 
that they do not have any effect on the corresponding balance laws. 
If conservation of water phase is written in the form 

(pw), + div [pw(u + v)] = C, (2.29) 

the corresponding balance law is 

[pw(u + v-V) -n]? = e, (2.30) 

where c is a surface production term, and V is the velocity of the 
cold-temperate transition surface. This relation is given by Hutter 
(1982). The surface term c must be constituted. 

If we apply a similar procedure to (2.24) [where the left hand side 
is a volumetric (interfacial drag) term], then [neglecting viscous 
stresses, as in (2.25)] the corresponding jump condition would be 

WPW = f i ,  (2.30a) 

where fi  (a surface term) must be chosen constitutively. We return to 
a discussion of c and fi  in Section 4. 

Finally, if we neglect zw in comparison with p w  (following (2.25)), 
we can write, using (2.15), 

W = div F +volumetric terms, (2.31) 

where 

F = o * [U - ( 1 - W) - WV] - (1 - W) ~ C X P ~ V ,  (2.32) 

and it seems reasonable to use (2.31) in writing a balance law for the 
bulk energy equation. 

At this point, we summarise the six conservation laws to be solved 
in conservation form, from which the jump conditions can be read 
off (Hutter, 1982) as follows: if 

4r + div (f) =volumetric terms, (2.33) 

then 
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112 A. C .  FOWLER 

v - n[4] 7 = [fen] ? - $ (2.34) 

in the notation of (2.30), where 6 is a surface term. The equations 
are 

(pw),+div[pw(u+v)]=C, 

pr + div [pu] = 0, div [a] = - pg, 

(pH), + div [Hu + J] = W +  E = div F+ . . , , 

+(pwc), +div[j,+pcw(u+v)]=O, 

div [w(p,, + pWgy)hi j ]  = - V/K . . . ; (2.35) 

here 

H=c,T; w=O; J =  -kVT; j, =0,  (2.36) 

all for cold ice ( T <  TM). For temperate ice ( T  = .TM), 

T=TM, H=c,TM+Lw, J=L*j-kVTM, j=pwv; (2.37) 

j, and E remain to be constituted, and C is to be determined 
consistently with (2.35),. 

A discussion of the appropriate conditions at the bedrock and at 
the top surface is postponed until later. 

3. CONSTITUTIVE RELATIONS 

We have already defined j=pwv via (2.18). In addition, for temperate 
ice, we must prescribe j,, p w ,  and the flow law; C is determined so 
that (2.35), reduces to (2.35),. 

The simplest assumption for j, is simple Fickian diffusion 

j: = - pwDVc. (3.1) 
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POLYTHERMAL GLACIERS 113 

A typical value of D is about 1 0 ~ 5 ~ m 2 s e c ~ ' ~ 3 . 1 0 ~ 2 m 2 y ~ 1 ;  to 
estimate the significance of this when the equations are appropriately 
scaled (Fowler and Larson, 1978), we compare D to V*d,  where V* 
is a typical accumulation rate and d is a typical depth. For 
I/*- 1 my-', d -  loom, D/V*d-3.10-4, and can safely be considered 
insignificant on glacial time scales. 

A more effective spreading mechanism in Poiseuille flow at high 
Peclet number is that of Taylor dispersion (Taylor, 1953; Aris, 1956). 
We take the Taylor dispersion flux in the form 

where Q =diag(vf, v;, u:), appropriate to a porous medium in which 
the water occurs at grain boundary intersections. Here 1 is grain 
diameter, and b is a geometrical parameter of order 50. With 
l-2cm, D-3.10-' m2 y-l, b=50, w = 1% (i.e. = loe2), IvI = lo5 my-' 
(corresponding to the NyeFrank drainage flux), (3.2) defines a Taylor 
dispersion matrix D, (i.e. jT= -pD,:Vc) of order 2.104m2y-l, 
which is evidently quite substantial. 

We assume that the interfacial energy source E is due to viscous 
dissipation in the (locally) Poiseuille flow in the pores. From 
Batchelor (1967) [or Nye, (1976)l the viscous dissipation per unit 
length is QG, where Q is the volume flux, and G is the magnitude of 
the pressure gradient. Translating this to the present geometry, we 
define the (dissipative) interfacial energy source 

Now we turn to the flow law. The bulk (average) stress oij is 
determined from (2.35),; we have to relate this to the average strain 
rate e i j  = ui, +u j ,  i .  We define the bulk pressure p ,  and bulk stress 
deviator z i j ,  by 

c r k k =  -3p, oij= - p 6 i j + z i j .  (3.4) 

We neglect zw in comparison to p w ,  thus 

p=apw+( l -a )p , ,  z=(l-a)z'. (3.5) 
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114 A. C. FOWLER 

The simplest flow law one could have is 

where y=y(w,z )  to take account of the dependence of viscosity on 
moisture and stress (Hutter, 1982; Lliboutry, 1976). The only 
experimental results (Hooke, 1981) are those of Duval (1977), who 
showed that l /y  increased roughly linearly with w at constant z. 

More generally, one could propose the constitutive form 

z = ye + A[div u]S, (3.7) 

where Stokes’ law would give A= -2y/3. Apart from a lack of 
experimental indication of a need for such a law, if div u z 0 (as will 
be the case for small w, see Section 4), this reduces back to (3.6). 
Ishii (1975) proposes, somewhat more formally, 

z =( 1 -a)z’= yr[e +m{(Vw)v +v(Vw)}], (3.8) 

(where m = l )  for small w (Drew, 1983) and yI(z) is the viscosity of 
ice. It would seem difticult to provide any evidence for (3.8). 

We also need a constitutive statement relating pw and p. This is 
often taken as p = p ,  (Drew, 1983) in two-phase flows, despite the 
fact that this leads to certain ill-posedness problems in the 
formulation (Drew, 1983; Stuhmiller, 1977; Klebanov et al., 1982). 
The more realistic pw-p=arl, where a is surface tension, and rl is 
essentially the average mean curvature of the water channels, does 
not offset the problem, and in fact appropriate values Ic- l / l ~ ” ~ ,  
w-10p2, l-2cm, 0 - 3 * 4 . 1 0 ~ ~ J m - ~ ,  give a t -  bar, which is 
insignificant. Of course T?+CO as w-0, but only for values for which 
the assumed connected pore geometry becomes disconnected. 

With p = p w  and p approximately hydrostatic (through the ice, Vp 
+ p g z O ) ,  (2.18) yields a net drainage flux per unit area which for 
w -  1% [a typical value, (Lliboutry, 1976)], Nye and Frank (1973) 
would calculate as 90my-l .  This excessive value led Lliboutry 
(1971, 1976) to query Nye and Frank’s assumed geometry. Frank 
(1968) and later Turcotte and Ahern (1978) and Turcotte (1981) 
employed the same constitutive relation ( p ,  = p )  on the basis that the 
solid matrix could collapse by creep processes on the appropriate 
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POLYTHERMAL GLACIERS 115 

(geological) time scales (Ahern and Turcotte, 1979). This notion 
relates to an old result of Nye (1953), that a borehole (tunnel, vein) 
in ice of radius a has a relative closure rate given by 

where 

e =  Az” (3.10) 

is Glen’s flow law (Paterson, 1981) (notice A here is different to that 
in Section 2); in our notation, the viscosity is given by 

l / y = A F 1 .  (3.11) 

Implicit in Ahern and Turcotte’s analysis is the assumption that vein 
closure can occur on a time scale short compared to the long term 
(solid) viscous flow time scale. However, (3.9) states that the strain 
rate of closure is comparable to the bulk flow strain rate, at least 
when p-p,,,  is comparable to the bulk shear stress: thus, the time 
scale of closure is the same as that of the bulk flow: consequently, 
this effect must be included in the large scale $ow dynamics. 

This point of view was partially adopted by Shreve (1972), who 
considered (3.9) as a constitutive law for p , .  One can do this in 
terms of macroscopic variables by following Nye (1976). We define 
S* to be the (average) cross sectional pore area per unit area. 
Assuming that surface averaging is equivalent to volume averaging 
(Nigmatulin, 1979) yields 

s* = a. (3.12) 

Now consider an averaging surface S through the two phase 
region. This will intersect numerous pores at various angles x (to their 
axes) in elliptical cross-sections. We suppose x # 0, that is no (or very 
few) pores lie along S, as is reasonable. We suppose also that a 
typical pore radius a is much less than grain diameter I ,  so that 
pores are “very far apart”, and consequently we suppose that each 
pore individually contracts according to (3.9). Now notice that if 
A = zaZ is the cross-sectional area of a pore, a-’ daldt =( 1/2A) dA/dt. 
Further, for a pore intersecting S at angle x, the intersection of S 
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116 A. C. FOWLER 

with the pore has an area A* = A  sec x; consequently a- ' daldt 
= (1/2A*) dA*/dt. Now we simply add all the contributions to closure 
in S; the result is 

where dldt, is the material time derivative following the ice. To 
obtain a constitutive law for p, ,  we simply use Nye's (1976) 
condition on "geometry and flow of ice" by appending to (3.12a) the 
rate of creation of pore space by melting: this is C/p,; this condition 
for single channel flow was rigorously derived by Spring and Hutter 
(1982). With (3.12), we have 

qb is a viscosity computed from (3.10) using p - p w  as the stress, and 
multiplied by a factor tn"z13  for n=3. By multiplying by p,, and 
using (2.4), (2.5), d/dt,= a/& + u' . V, and (2.6), (3.13) can be written 
more compactly in the form 

In what follows, we will concentrate on (3.14) and its 
mathematical consequences. However, since the microscopic pore 
contraction is a consequence of viscous behaviour, it seems 
reasonable that this phenomenon might be included in the flow law 
rather than as a constitutive relation between p and p , .  That is, 
whereas (3.14) really determines an extra relation for dw/dt in terms 
of p - p , ,  one would try and incorporate the microscopic (3.9) into a 
macroscopic flow law. It is not very obvious how to do this, and we 
will not try. Further study of this problem is of interest in view of 
Duval's (1977) experimental results, which show an approximately 
linear increase of eij with w at constant zij. Duval did not discuss 
any possible effect of pore pressure on his experiment. In the 
analogous case of crystalline rock viscosity in the presence of partial 
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melt, Shankland et al. (1981) suggest the effect of w on the viscosity 
will be very small. We shall suppose the flow law is given by (3.6), 
and note that in spite of Duval's (1977) result, the cold viscosity 
(3.11) may still be relevant. For concreteness, we shall take the 
constitutive relation for pw as (3.14); the case q b + O  then corresponds 
to pw = p .  Note that (3.14) represents an equation expressing 
conservation of pore space, or equivalently, conservation of 
interfacial surface area. 

4. APPROXIMATE ANALYSIS: we1 

Our purpose in this section will be to give some preliminary idea as 
to the nature of the equations presented in Section 3, and in 
particular to study the structure of the equations in the temperate 
zone. To facilitate this, we first suppose w <  1, as is generally held to 
be the case (e.g. w- 1%). Then, since 

p is sensibly constant for most purposes, and continuity and 
momentum equations give, approximately, 

div u = 0, div CT = - p g ,  (4.21, (4.3) 

which are to be solved together with the constitutive law (3.4) and 
(3.6) 

If we assume 4 is (effectively) independent of w, then the flow 
problem essentially uncouples from that of determining w. 
Particularly, in view of (2.34) and (2.35),,,, nijnj  is exactly 
continuous, and uini is approximately continuous across a cold- 
temperate interface. The point of this is that the determination of w 
can now be carried out, on the basis that the flow field u has been 
calculated. It is our purpose to study the structure of these moisture 
field equations. From (2.35),,,, using (2.15), (2.17), and (3.3), and 
neglecting terms of relative order w, we have 
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118 A. C. FOWLER 

(piv), + div [pw(u + v)] = C, (4.5) 

=o: V{u- wv] - p i  ' p W  divj + K -  lvI2 -div [cp(T& - TM)jJ 

+ kV2TM-pc,dTM/dt 

= p L S  (defining S). (4.6) 

A typical distribution coefficient (Hallet, 1977) is A-0.02. If we 
assume w ~ i 4  1, then (2.28) can be written, with (3.2), and the 
approximations already introduced in this section, as 

(d/dt)[(A+w)c] +div[cWv]=V * [D,:Vc]. (4.7) 

Lliboutry's (1976) assumption cw = n, a constant, appears in the limit 
i, IvI, D,-+O, but not generally otherwise. 

The final two equations are Darcy's law (2.18), 

and the constitutive law (3.14), which can be written, using (4.5) and 
neglecting terms of relative O(w), as 

- p w  div u-div [pwv] = (p,  ' p W  - l)C- qblpw(p-pw). (4.9) 

It is reasonable to assume that p is hydrostatic (through the ice, i.e. 
cryostatic), that is 

(since p z p I ) ,  where y is vertical. Further, it is apparent that (4.5) 
and (4.6) are essentially identical in form, and thus determine C: 
however, we retain (4.5) for the purpose of extracting a balance law 
(2.30). If y=h,  is the top surface of the glacier, then 

(4.1 1) 
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POLYTHERMAL GLACIERS 119 

(4.12) 4 = - 4 P w  + P wg.Y); 

then 

v = wv4, (4.13) 

and (4.9) can be written (with p=pPr), 

where S is defined in (4.6). The moisture equation (4.6) can be 
written [using the “Boussinesq” approximation (4.2)] 

w, + div [w(u + v)] = S.  (4.15) 

With w-lO-’, A-lO-’, and c-n/A, ~1-10-~molkg- l ,  
A’-2Kmol-’kg, a- K bar-’ (Lliboutry, 1976), then (p- 10 
bar, assume Ip-pwI 5 10 bar) 

&-1O-’K, fiIp-pw(-lO-’K, A’c-lOP3K, (4.16) 

and consequently (2.12) suggests 

(4.17) 

whence the terms in T L  and T, in (4.6) can be written in terms of w 
and 4. 

Let us now discuss the question of boundary conditions, with the 
present approximations. The equation for w, (4.15), looks hyper- 
bolic; consequently we should expect a single boundary condition 
for w at those parts of the temperate boundary where u+v-V 
points into the temperate zone (where V is the temperate boundary 
velocity). Equation (4.14) for 4 looks elliptic, and we should expect 
boundary conditions for 4 over all the temperate boundary, except 
possibly on those parts where w = 0, since the equation is degenerate 
there (and consequently boundary data may not be required) 
(RadkeviE, 1967). 

We first consider jump conditions at the cold-temperate interface, 
dV,. Having (implicitly) solved the flow problem, the conditions 
which remain are the moisture flux condition (2.30), which in the 
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120 A. C .  FOWLER 

present scheme of approximation can be written 

~-n[w]Z=[w(u+v) -n]?-S, 

where V is the velocity of the interface, n points from the 
the + side, the energy balance condition, from (2.35), 

V.n[pH]'=[(pHu+J-F) - n]', 

and the pressure jump condition (2.30a), 

w+pw=p". 

(4.18) 

side to 

(4.19) 

(4.20) 

(We treat the solutal jump condition later.) Let us for convenience 
denote by + the temperate side and by - the cold side. We assume 
[ T] T = 0 (bulk temperature is continuous): then, using the 
constitutive definitions (2.32), (2.36) and (2.37), and the 
approximations introduced in this section, we find F - n is effectively 
continuous, and (4.19) is then 

(V a n)pLw+ = [pLw+(u+v) - kVTL + kVT-] n. (4.21) 

Since w -  =0, (4.18) is just 

- 
w+[u+v-V] - n=S, (4.22) 

whereas (4.21) is (neglecting dT&/dn, as will be justified in Section 5)  

pLwf[u + v  -V] - n + k dT-/dn =O. (4.23) 

If s"=O, then the condition (4.22) represents the classical jump 
condition across a kinematic shock (Kynch, 1952). 

The question now arises, how best to constitute the surface terms 
s" and p". [Notice that we assume that no surface terms occur in bulk 
balance laws, e.g. (4.19).] Firstly, observe that (since TST, in cold 
ice) dT-/dn 2 0, thus if (u + v - V) - n > 0, then (4.23) implies 

dT-fdn =0, s"= p" = 0, w = 0. (4.24) 
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POLYTHERMAL GLACIERS 121 

The first of these, together with T - = T M ,  determines the unknown 
cold-temperate boundary y = y M  (by solving the cold ice temperature 
problem). No other condition arises, or is necessary. 

However, if (u + v - V) - n < 0, then (4.23) may still be thought of as 
determining y M ,  but a condition on p,, i.e. on 4, is required at )I,. 
Candidates are (4.20) and (4.22), and a prescription of either p” or s” 
is necessary. We will take the following point of view: (4.22) serves to 
define s” [from (4.23)] in exactly the same way that C is determined 
by the energy equation. Then (4.22) is redundant, and we choose fi  in 
(4.20). The only sensible choice is 

w + p w  = p” = w +PI, (4.25) 

that is ice and water pressures are locally equal at the interface. In 
terms of 4, this can be written as 

It is completely unclear why one should be able to prescribe 
continuity of stress for both phases at an interface, and one can 
argue strenuously that a reasonable procedure is to choose s”=O in 
(4.22), and neglect (4.20). None of the various arguments that one 
can think of seem to be very sound, and adoption of (4.25) was 
finally made on the basis of a related investigation, which amounts 
to this. The conductive term kV2TM is strictly kV * [uVT“ 
+(1 -a)VT’] (assuming equal ice and water conductivities). Use of 
(2.12) for each phase (and a hydrostatic bulk pressure) implies that 
this conductive term is proportional to V - [ ( p ,  -pI)Vw], and such 
a (small) term should probably appear in (4.15). Strictly, this renders 
(4.15) elliptic, requiring a boundary condition for w, except where 
pw=pI (RadkeviC, 1967). It is easy to see that (4.25) satisfies this 
requirement naturally, whereas (4.22) cannot. This. is the empirical 
reason for choosing (4.25), but a logical explanation is not available. 
(Since the coefficient of this conductive term is small, the w equation 
is effectively hyperbolic anyway, and the previous discussion is stdl 
appropriate.) 

The boundary condition on (4.7) is obtained by writing it in the 
proper conservation form (2.33), and applying (2.34). Using (4.22), 

G.A.F.D. -B  
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122 A. C. FOWLER 

assuming zero flux in cold ice, and that the ice concentration 
Ac- = cI ,  we find c satisfies 

- 
[,ic-c,](u-V) - n=f;-cS, (4.27) 

where jnT= [DT:Vc],,. 
On parts of aV,, where w=O, i.e. (u+v-V) * n>O, we have 

- 
j $  = S = 0, (4.28) 

since 

D, = wQ(12/bD), (4.29) 

and so (4.27) gives 

c = cl/n, (4.30) 

where cI is the (known) salt composition from the firn composition 
(Lliboutry's n). When w # O  on a&, then we assume that the cold ice 
concentration is determined by the solidus-liquidus distribution, that 
is 

cl=nc+; (4.31) 

then (4.27) implies 

D, &/an = c$, w # 0. (4.32) 

In summary, the boundary conditions for c can be written as 
- 

c=co, w=o, jn==CS, W Z O .  (4.33) 

Typically, co - molkg-' (Lliboutry, 1976). Using (4.22) and 
(4.23), we have (c$/flI - ( I C ~ / D ~ ) ( C ~ A T / L ) ,  where t i ,  is the thermal 
diffusivity, and AT a temperature scale. With DT-2.104m2 y - l  
[following (3.2)], tiT-38m2 y - l  (Fowler and Larson, 1978), and 
cp&T/L-0.2 [with AT=20K,  and c,/L from (5,1)], this is 
lcS/ jFl ,5 In this case, (4.33) is effectively approximated by 

c = c0, w = 0, aclan = 0, w + 0. (4.34) 
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POLYTHERMAL GLACIERS 123 

Boundary conditions at the bedrock really require a discussion of 
basal sliding in the presence of moisture. We can ask, what the 
analogues of (4.22) and (4.23) for the large-scale flow might be. 
Conservation of moisture at the bedrock, in which there is sub- 
glacial water flow/drainage through films/channels, would suggest an 
(average) moisture flux at the base given by 

w+[u+v] - n =  -r on av,, (4.35) 

where V - n = 0, and r > 0 represents positive net drainage. 
On the other hand, an energy balance such as (4.23) is probably 

not directly relevant, since the incoming energy fluxes due to 
moisture and geothermal heat both contribute to the determination 
of the subglacial regelation film thickness, and hence the basal water 
pressure. Considerations of the sort given by Fowler (1981) suggest 
that the sliding theory for wet ice will serve to determine (as well as 
the sliding law itself) the actual basal water pressure p b  and hence r 
in (4.35) as a functional of p w  and w. Here we distinguish between 
the water pressure at the bed, p b ,  and the effective water pressure p w  
“felt” by the large scale flow (Fowler, 1981) (not Terzaghi’s effective 
pressure). We therefore tentatively suggest that sliding theory will 
provide a single boundary condition for the large scale flow of the 
form (4.35), in which T=T(g5, w , x )  is determined in a manner 
analogous to the sliding law z,=f(u,). This one condition at the 
base is sufficient to help determine pw and w in the temperate zone, 
for the same reasons as discussed before. 

Finally, we mention the appropriate pair of energy and moisture 
conditions at the upper free surface of a temperate glacier. These are 
given by Hutter (1982) and in our notation are 

pw(u+v-V) - n=M, (4.36) 

pLw(u+v-V) * n=E, on dV,, (4.37) 

where M is surface moisture flux and E,  the net atmospheric energy 
budget transferred to the ice. Evidently E ,  and M are related in such 
a way that (4.36) and (4.37) are the same; we suppose 

M = PWV,, (4.38) 
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124 A. C. FOWLER 

if n is the unit inward normal (pointing towards the ice), and v,>O 
is the net percolating velocity of water (as opposed to surface run- 
off). To relate (4.36) and (4.38) to the kinematic condition, observe 
that if F(x,  t )  = O  is the top surface, then 

F, + V * V F = F ,  + V  - n / V F / = O  (4.39) 

by definition of V. Also 

consequently 

(u - V) - nlVF( = dF/dt ,  (4.41) 

and thus (4.36) and (4.38) can be written 

(4.42) 

Additionally, mass balance of the mixture (or approximately, of the 
ice phase) yields 

p(u-V) - n =  - P'A, (4.43) 

where the source term pu,>O represents the part of the ice surface 
which is melted by the incoming atmospheric energy budget. One 
cannot easily relate uA to v A ,  as run-off, rainfall, etc. complicate 
matters. Equation (4.43) can be written 

(4.44) 

and is the kinematic condition at the free surface ( - a  is ablation, or 
u is accumulation rate): then (4.42) gives the moisture flux condition 

wv * n = w(uA + vA) s f A  (4.45) 

(remember, n points towards temperate ice). 

surface is essentially 
Finally, the stress jump condition for the water phase at the 
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P w  = P A ,  (4.46) 

where p A  is atmospheric pressure. Consequently, if this surface is 
given by y =  h, ( F  = h, - y) ,  (4.46) is 

b,=-lcp,gh, on S,  (4.47) 

where we subtract the ambient p A .  If fA is considered known, then 
(4.45) determines the seepage velocity vA. The condition (4.46) tacitly 
assumes that the water table (Shreve and Sharp, 1970; Nye and 
Frank, 1973) extends to the surface of the glacier, whereas this is not 
necessarily the case. If we suppose the water'table is at y = h , s h , ,  
then (4.46) should be amended to read 

and (4.47) is then 

b, = - Icpwgh, at y = h,; (4.49) 

h, is not known a priori, but can be determined by assuming that in 
this case, the surface percolation (4.45) is a given quantity: the extra 
condition then fixes the free boundary h,. If h, (as thus calculated) 
is less than h,, it makes physical sense to take fA as given, whereas if 
h, = h,, then the glacier only admits "as much as it can", and the rest 
runs off. Extra physical constraints are that O < p ,  < p ,  i.e. that 

the first of these is always required: if the second is violated, 
particularly at the base, then glacier flotation becomes possible, and 
the assumptions at the bedrock need reconsidering: this may well 
occur during glacier surges. 

To complete the boundary conditions, we need analogues of (4.45) 
and (4.35) for salt concentration c at aVA and W,. The flux of salt at 
an interface is, from (4.7), 

c(A+w)(u-V) - n+cwv - n-j",=J,. (4.51) 

G.A.F.D.-C 
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126 A. c. FOWLER 

If we assume that drainage concentration c is equal to that of the 
pores, then (with V - n=0), J,= -cT at aV,, whence (4.35) gives 

jnT+/Icu. n=O on aV,. (4.52) 

A condition analogous to (4.45) on aV, is 

c(A+w)(u-V) . n + c w v .  n-j+=cAfA, (4.53) 

where the effective surface concentration is not necessarily the same 
as cI in (4.30). 

5. APPROXIMATE ANALYSIS 

There is now some purpose to evaluating the expected orders of 
magnitude of the various terms in (4.14) and (4.15). The terms -6: 
V(wv) - ( p w / p w )  div j in (4.6) are of order O(z, p - p r p w / p , )  div [wv]. 
Since pL-3000 bars (Lliboutry, 1976) p j l 0  bars (typically) it is 
plausible to neglect these terms in pLS in comparison to pLdiv(wv), 
both in (4.6) and in (4.14). To estimate the remaining terms, we use 
the following approximate scales (Fowler and Larson, 1978; 
Lliboutry, 1976): 

qh - 1 bar y (approximate viscosity of ice), t -  lo2 y, 

p-10 bars, IuI-102my-’, z-1 bar, 

pw, p r -  103,0. 9.103 kgm-3, 

g - 10 m s f2 ,  pc, - 30 bars, pL- 3.103 bars, 

h,,y-102m, ~ - 1 O ~ r n ~ b a r - ~ y - ‘  [from (2.19)]. (5.1) 

It should be emphasised that the scale of w should be deduced from 
the equations: the estimate of - lo-’ follows observation, and 
should (we hope) be consistent. Then, using (4.1), 
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[a: Vu]/pL-31w divul+ 3.10-4 y - I -  3.10-4y-'; 

if we suppose 

and that 

then 

From (4.17), 

then 

4 - [4] rn2 y -  ' (to be chosen), 

ldiv [c,( T L -  T,)j]/pLI - div (wv), 

lkV2TM/pLI - y-l, 

lpc,(dT,ldt)/pLI- y-1. 

127 

(5.3) 

(5.4) 

(5 .5 )  

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

Accepting the implications of these scaling, then of the various 
terms in the definition of S in (4.6), (5.10) is negligible in comparison 
to div(wv) [on'the left hand side of (4.6)], (5.11) and (5.12) are 
negligible by comparison to (5.3). This implies that only the 
interfacial energy source term E (3.3), and the bulk viscous heating 
term (5.3), are of significance in S. Thus 

S= S,+ s,, (5.13) 

where S, is given by (5.3), S, by (5.6) [or see (5.19) below]. It is 
plausible to choose [4] to balance the net downward pressure 
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128 A. C.  FOWLER 

gradient in ( p - p , )  in (4.9): thus, from (4.12) and (5.1), we choose 

c41- 4 P w  -P&Y lo9 m2 Y - l. (5.14) 

With this choice of [4] ,  and with w- lo-’, we find 

hence 

(5.15) 

(5.16) 

and is thus (perhaps) an order of magnitude greater than bulk 
viscous heating. This is consistent with the balance suggested by Nye 
(1976) for the intergranular vein system. Examination of (4.14) now 
yields 

wdivu-10-7y-1, [from (5.2)], 

div[wv]-lOy-’, [from (5 .8 ) ] ,  

which suggests that only the term div (wv) is of any significance (with 
these scales). Furthermore, /u - Vl/lv - V/ 5 10- 3, so that dw/dt z aw/& 
on time scales of interest here. We now gather the equations for w 
and 4, retaining terms in (5.17) except wdivu for a moment. 

w, + div (wv) = S, + S,= S, 

div(wv) = - [ I ~ P , - P p r ~ / P ~ I ~ + ~ ~ ~ - ~ w ~ / ~ , 7  (5.18) 

where 

S, = [c: Vu]/p,L, s, = /v12/p1lCL, v = wV6, (5.19) 

and where [in terms of axes (x’,y’) inclined at an angle 8 downwards 
from horizontal] we can write 

p - p w  =pIg(hs-y’)cos 8+pwg(y’cos8-x’sin8} + ~ / I c ,  (5.20) 
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where y’=hs(xr) is the .top surface (y=h, ) :  (x’ ,y’)  are natural 
coordinates for a valley glacier whose mean bedrock slope is tan0. 
We assume u is (in principle) known. The temperate domain V,. is 
determined [in view of the extra boundary condition (4.23) on TI,  
and we suppose its boundary may consist of three parts: dV, (cold- 
temperate), at which 

W ( P  - P w )  = 0; (5.21) 

dV, (bedrock), at which (with u - n=O) 
w2 d4/dn + r(4, w, X) = 0; (5.22) 

and piezometric free surface dV,, at which pressure and flux are 
given: 

4 = - Kpwg{hw cos 0 - X’ sin 02, w2 = f A .  (5.23) 

If the calculated hw>hs, we take hw=hs, and omit the second 
condition in (5.23). 

We now choose explicit scales for w and 4 based on the rough 
balance of terms in (5.18) indicated earlier. We first rewrite (5.18) as 

From (5.20), as already suggested, we define 

then w is scaled to balance the two terms on the right hand side of 
(5.24),. Thus with S N S,-  ~ ~ [ 4 ] ~ / p , ~ L d ~ ,  this suggests w - [ w ] ,  
where 
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130 A. C.  FOWLER 

Roughly, [w]  N loLd/vbfcg. With the values given in (5.1)7 we 
compute [w]-3.10-’, i.e. 3%. Obviously, this result is only an order 
of magnitude, but it is heartening that it seems to correspond to 
observation. It is perhaps of interest that [w] decreases as K 

increases, i.e. as grain size increases, corresponding to observations 
of Vallon et al. (1976). From (5.17), we neglect the right hand side of 
(5.24),, and thus we propose the following reduced (still dimensional) 
set of equations for w and Cp (at least for the present glacial scales): 

v * [W’VCp] =o, (5.27) 

This can be written in dimensionless form, by defining 

w = [w]w*, Cp = [4]4*, t = [t]t*, (x’, y’) = d(x*, y*), (5.29) 

where [w] and [4] are given by (5.25) and (5.26), and 

We find 

v - [W*’V+*] =o, 
W$ = w * ’ ( V ~ * ( ’  + sW- w*[4*  + G(x*, y*)], 

(5.3 1)  

(5.32) 

where 

sw=p,KLd2Sw/[W]2[~]’ 50.1, (5.33) 

G(x*,y*)=y* -BX* +Rh:(x*), (5.34) 

with 
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For reasonably smooth bedrocks, one can expect Es to vary on a 
length scale N 102d, consequently h,*-0(1), but is a slowly varying 
function (h:’- lo-’). Boundary conditions for 4* are 

on aV,: 4* = - rhz  + px*, w * ~  &$*/an* = f f ;  

on av,: w * ~  a4*/an* = -I-*(@$ w*, x*); 

on dV,: w*(b* + G*) =O. (5.37) 

Here, we define 

The positivity and w non-flotation conditions in (4.50) can be written 
in the form 

4* + y* - px* + Rh,* > 0 (non-flotation). (5.39) 

Equations (5.31) and (5.32), and boundary conditions (5.37) provide 
a reduced set of equations for w* and 4*. We shall discuss some of 
their properties in the following section. 

It is an easy exercise to scale the solutal equation and boundary 
conditions similarly. Since D,- lo4 m2 y - l  (with w- lo-’, 
Iv1- lo5 m y-’), it dominates the boundary conditions, which are 
essentially 

on av,: &/an = 0; 

(5.40) 

The approximate (dimensional) form of (4.7) is then [using (5.31)] 

a[(n + w)cydt + wv . vc = v . [D,: V C I .  (5.41) 
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132 A. C. FOWLER 

Since the calculation of salt concentration uncouples from the 
determination of w and 6, we shall not consider it further here. 
Unless additional approximations are made, (5.41) is a difficult 
equation to solve. 

6. DISCUSSION 

Let us first summarise the physical meaning of (5.31) and (5.32). The 
equation for $*, (5.31), can be thought of as a statement of 
conservation of water phase (=conservation of moisture), as given 
by Lliboutry (1976), except that (with w-lo-’), the driving 
differential pressure gradient [G in (5.32)] will be such that typically 
IvI - lo5 my -’, and is so large that other source terms are negligible 
in comparison with it, including source heating due to viscous 
heating. The Eq. (5.32) is an averaged version of Nye’s (1976) 
postulated balance equations for intergranular . vein closure, 
w*’/V$*/’ is the interfacial energy source due to viscous heating in 
the pores, sw is the bulk viscous stress heating, and - w*[$*  + G] is 
proportional to the pressure excess ( p - p , )  tending to close the 
pores. Scaling the terms indicates that s, is “small”, and also that 
interfacial viscous heating can balance pore closure (w,*‘ = 0), as 
suggested by Nye (1976). In a steady state, and neglecting s,, 

where we now drop asterisks on w*, $*, and t*. The equation for $ 
is then the nonlinear elliptic equation 

with the various boundary conditions indicated by (5.37). Equation 
(6.1) is invalid if IV$l+O, in which case (5.32) shows that w=O is the 
appropriate value in a steady state, provided $+ G > O  (i.e. p>pw), as 
is physically plausible (this is just the non-flotation condition). 

In fact, (5.32) with s,#O but small has two non-trivial steady 
states, approximately given by (6.1) and 
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(if 4 + G > 0), and the general question of stability of either solution 
arises. For constant 4, (6.1) would be unstable [as shown by Nye 
(1976)], but the general stability problem when 4 also can change is 
more difficult. Nye suggested that his analogue of (6.1) could be 
realistically stable. If the equations presented here are of relevance, 
then stability of the (at least) two steady state solutions is of some 
interest. 

The derivation of the model presented here relies fundamentally 
on the ability of temperate ice to behave like a porous medium. 
Provided we accept the concept of a two-phase flow, some relation 
such as (2.18) can be deduced, provided the water phase is mobile. 
The fact that calorimetric measurements of temperate alpine glacier 
ice yield values w-1% (Lliboutry, 1976), as opposed to direct 
microscopic observations of veins (Raymond and Harrison, 1975; 
Nye and Mae, 1972) (which suggest w - is not in contradiction 
to this concept, provided we assume that continuing strain and re- 
crystallisation (Lliboutry, 1971) will provide access to the vein 
system for all the water contained in isolated pockets on a time scale 
of a day (or less). Whether the resultant effective permeability KW 

will be realistically computable on the assumption of a steady state 
porosity is debatable, but it certainly seems that the effective 
porosity will be larger than that due to instantaneous transport 
through the actual veins: perhaps w in (2.18) should be replaced by 
w‘, where O< a < 1. This will, of course, affect the precision of the 
numerical values of the parameters, but not the concept of the model. 
Ideally, a more precise study of the interaction of pockets and veins 
(on a local, microscopic scale) would lead to a more realistic 
assumption than (2.18), but a “porous” medium provides a plausible 
first effort. 

Some of the problems which this theory may be useful in 
addressing are the following: 

i) on a small scale, what are the effects of rapid changes in 
pressure on temperate ice cores: what do field experiments tell us? 
(Harrison, 1972, 1975) [we can expect some dynamic effect, based on 
analogous effects in soil mechanics (Rice and Cleary, 1976)l; 

ii) can we explain Carol’s (1947) observations at the bedrock, and 
Robin’s heat-pump mechanism (Robin, 1976; Goodman et al., 1979)? 

iii) can we give a theory for a wet sliding law, and relate this to 
other sub-glacial hydrological studies (Weertman, 1972; 
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134 A. C. FOWLER 

Rothlisberger, 1972), and ultimately to the study of surges (Robin 
and Weertman, 1973)? 

iv) can we give a quantitative explanation of short-term (diurnal) 
variation in sliding velocity (Cbllins, 1979; Hodge, 1974) and basal 
water pressure (Hodge, 1976, 1979)? 

To conclude, we will present two simple solutions of the 
equations, to illustrate the kind of problems one might solve 
analytically. A general solution would inevitably require a numerical 
solution. The equations under consideration are 

V * [w’V~]=O, w , = w ’ ) V ~ ) ~ - W [ ~ + ~ - B X + R ~ ~ ] + ~ ,  (6.4) 

(s = sw), with boundary conditions 

on aV&=h,): w2a4/an= -r, 

on aV,(y = y M ) :  ~ ( 4  + y - BX + Rh,) = 0. (6.5) 

For a nearly parallel flow, 8/ay% a/ax, and there are approximate 
solutions of the form 

where w and $ satisfy 

$ [ w2$]=0, W ,  = [fi’ + $y2]wZ - w[$ + y+Rh,] + S, (6.7) 

and related (x-independent) boundary conditions from (6.5). For a 
temperate zone adjoining the base, 

where r is the basal drainage (and may depend on t, and slowly on 
x). Consider first a nearly parallel flow of temperate ice beneath cold 
ice, i.e. h6 < y < y,. Take h, = 0, and suppose r = O  (as is plausible, if 
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the drainage system is plugged by cold ice at the snout). Then 

so that 

1cI = - [ Y M  + &I.  

$ + y + W =  - c Y M - Y l ,  

Then 

and 

(6.10) 

w, = B’W’ + [y&f - y ] w  + s; (6.11) 

evidently w increases indefinitely with time (in fact W--+GO at finite 
time). This is a highly unstable situation (notice, also, that the non- 
flotation condition (5.39), is violated). It is possible that such a 
regime may have a bearing on the build-up of water at the glacier 
bed which (possibly) heralds surging behavior. However, notice also 
that (4.23) can be written (dimensionlessly) as 

aT-/an= -Aw2 ad/&= -lr, (6.12) 

where 

1 = pL[d] [w]’/k[T] - 2.1 05, (6.13) 

taking [TI =20K, k (thermal conductivity) =700m2 bary-’ K-l,  
and (cold) ice temperature is scaled with [TI.  Even for very small 
drainage, lr can be large, which may affect the location of y,. 

Secondly, consider a purely temperate parallel glacier flow. From 
( 6 4 ,  we have (provided = f) 

h 

$ = - rh + l-J w-’ dw, h = h,, (6.14) 
Y 

using (64,.  Hence w satisfies 

(6.15) 
h 

w, =p2w2 + w-’P  - 
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where 

A. C .  FOWLER 

A =  Rh, -rhzO. (6.16) 

If the drainage r is r(4,x), then (since f is given) the consistency 
condition r = f determines h implicitly by the condition 

(6.17) 

It is not particularly clear what kind of function r should be. It is 
not necessarily just the drainage determined by flow in 
Rothlisberger's (1972) network of channels through the ice. One can 
visualise basal water as occurring in (regelation) sheets, cavities, etc., 
whose pressure is determined by the sliding process, together with a 
network of R-channels, whose drainage is determined by the induced 
pressure: some drainage could take place through the sheet system. 
A Rothlisberger type calculation (Paterson, 1981) yields a drainage 
flux of the form 

where (e.g.) m, E 12, m2 'v 5.5. In the present instance this would be 

h m 

(6.19) 

where y is some constant. If a typical melt rate at the surface is 
taken as 10 m y  ~ I, then the scales introduced in Section 5 (w - 10- 2 ,  

IvI - lo5 my-') would suggest f -  and thus r- in (6.19). 
With A-  1, this means that a reasonable value of y is y - and a 
first approximation of (6.19) is 

l- - yA", (6.20) 

where m E 12 for Rothlisberger drainage. Consequently, (6.17) 
determines A as 

A-(f/y)l'mzl, (6.21) 
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if f - y .  If we take r- then (6.15) is approximately 

W, =p2wZ + W - ’ r ’  - {A + y ) w +  S. (6.22) 

For sufficiently small r (and each y), there are two steady states, the 
higher value [w - (A + y)/p’] being unstable. If r = 0, the lower one is 
w-s/(A+y)-  if s- lo-’ (corresponding to a moisture level of 
10-4-remember w is here a scaled variable). But if r#O, the term 
T2/w2 becomes comparable to s if w - r/sl/’. Thus, the lower steady 
state w-s/(A+y) can be increased by non-zero r to a higher level, 
for example 

w x r’l3/(A + y)l i3  (6.23) 

if r$s3/’, as for example if T-s- lo-’. In this range, this stable 
solution continues to exist up to some critical r (at which the right 
hand side of (6.22) is always positive). If p is small (very gentle valley 
slope) then (6.23) continues to hold as long as T 4  l/p3, so that 
moderately large moisture levels can be attained in this way. 
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