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The method of averaging is discussed in terms of its possible application to the prediction of chaotic orbits in differen- 
tial equations. 

1. In the last few years, approximate methods for 
the "construction" of chaotic orbits of low order dif- 
ferential equations have begun to appear, with varying 
success. Standard amplitude expansions, as applied to 
(Hopf-type) bifurcating systems, are inappropriate, and 
other, fully non-linear, approaches are required. 
Amongst these, the method of averaging and the related 
method of Kuzmak are prominent, and recently, 
Shimizu and Ichimura [1] have attempted to explain 
chaotic motion in a weakly dissipative three-dimen. 
sional oscillator by using Kuzmak's method. For a sys- 
tem of third order which has two constants of the 
motion E, Q, and corresponding oscillatory solutions, 
when a parameter E = 0, the method of averaging, or 
the usually more elegant method of Kuzmak [2], see 
also refs. [3 -5] ,  leads one to a pair of (autonomous) 
ordinary differential equations for E and Q as func- 
tions o f t  = et, when e :~ 0 but is small. The simpli- 
fication from three to two dimensions is clear, but since 
the worst an autonomous second order equation will 
usually do is have periodic solutions, one would not 
expect averaging of third order equations to be able 
to predict anything other than quasiperiodic solutions 
on tori. Shimizu and Ichimura's idea was that the under- 
lying (fast) oscillatory solutions were of  two types, 
depending on the region of the (E, Q) phase plane one 
was in, and that the switchingbetween the two types 
would be effectively a chaotic process. The present 
note was motivated by these latter observations, and 
its purpose is to elaborate the explanation somewhat. 
It seems that all the "ingredients" for chaos have been 
identified, but exactly how they conspire to produce 
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chaos is not dear. In particular, we wish to point out 
the dominant importance of the homoclinic orbit 
which exists in Shimizu and Ichimura's system when 
e = 0: this is in line with other recent studies, in par- 
ticular ref. [6]. 

2. There have been a number of attemps to use the 
simplifications inherent in averaging in trying to de- 
duce something of chaotic type [7-14] .  One should 
also mention related ideas which use local approximate 
Poincar6 maps without the full use of  averaging, in 
order to prove the existence of strange invariant sets. 
In particular, Holmes [8] (see also refs. [15,16] ap- 
plied Melnikov's method to systems of averaging type, 
to prove the existence of  a strange invariant set of  
trajectories in the vicinity o f homocllnic or heteroclinic 
orbits. This provides an explicit criterion for the exis- 
tence of  such a set, but stops short of analysing the 
global dynamics of weakly non-conservative systems, 
and is thus unable to distinguish a strange attractor. It 
is probably reasonable to say that the use of  averaging 
has not been wholly successful at either predicting or 
explaining chaos, and the paper of  Shimizu and 
Ichimura [1 ] is a notable step forward in this direction, 
as is also the lucid discussion of the Lorenz equations 
in Sparrow's book [6]. The aim of the present note is 
therefore to indicate how averaging can be formally 
completed to accomodate the switching process [I ], 
and thus how it can (in principle) be used as a predic- 
tor for chaotic solutions. Our discussion will be fairly 
general, but also fairly qualitative. 
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dE/dt = el(x, ~, Q), dQ/dt = eg(x, fc, Q), (1) 

where we have written 

Q = l - m ,  E=} /c2+b[kx4-}Qx2] .  (2) 

E and Q are slowly varying functions of r = et, and the 
second equation in (2) is then essentially a non-linear 
oscillator, whose solutions x(t; E, Q) can be written 
in terms of  elliptic functions [17]. In particular, x has 
a "period" P = 4K, where K(k) is the complete elliptic 
integral of the first kind. By averaging (1) over the 
period P, one derives the averaged equations 

dE/dr ~. F(E, Q), dQ/dr ~ G(E, Q), (3) 

which govern the long-time evolution of E and Q: here 
r = et. 

A comment is perhaps in order. In order to obtain 
higher order terms, Kuzmak's method, as elaborated 
in refs. [4,5], for example, is preferable, since systems 
of the type under consideration are rarely given in the 
simple form to which the averaging theorem applies. 
However, at leading order, the two methods are equiv- 
alent, the only difference being that the fast time scale 
also evolves (slowly) in Kuzmak's method so that the 
period remains constant. 

Now, it is evident from (2) that the fast oscillation 
in x has a homoclinic orbit when E = 0. Consequently, 
the underlying period P(E, Q) tends to infinity as 
E ~ 0. In fact, the modulus k is related to E by E = 1 
- k 2, and thus k goes through 1 when E goes through 
zero; also P "- ln(1/IEI) as E -~ 0. It is the line E = 0 
which separates the two types of oscillatory solution 
for x(t; E, Q), and it is the crossing of this line in (E, 
Q) space which heralds chaotic behavior. 

However, all is not well. Both the method of aver- 
aging and the method of Kuzmak becomes invalid 
when the period of the underlying oscillation P be- 
comes too large [of O(1/e)]. This is exactly what hap- 
pens when E -~ 0. Consequently, averaging does not 
straightforwardly apply in the vicinity orE = O, and 
we need to extend the analysis to cope with this diffi- 
culty. It is interesting to examine the solutions of  the 
averaged equations (3) as E ~ 0. One Finds that E 
reaches zero in f'mite time [essentially dE~dr ~ 1/ 
ln(1/IEI)], but also dE/dr = 0 when E = 0. According 
to the averaged equations, E = 0 is strictly an invariant 
line, and the averaged variables behave non-uniquely, 
since they can pass an arbitrary distance along E = 0 

and then go into E :~ 0. Substantial discussion of this 
phenomenon in the Lorenz equations is given by 
Sparrow [6], and it is apparent that the possibility 
exists of "anomalous" orbits occurring, which spend 
some time "on" E = 0; a similar possibility exists here, 
too, and may be more germane to the existence of 
chaos than any switching which occurs as E crosses 
zero.  

3. The analysis of what exactly happens when E-~ 0 
is clearly necessary before one can describe, even qual- 
itatively, the relation between the averaged system and 
the full system. Some discussion of this difficulty has 
been given by Sparrow [6] and Swinnerton-Dyer [ 18], 
and we essentially follow Sparrow's prescription for 
an appropriate technique. 

The key is the realization that the averaged (differ- 
ential) equations are obtained by approximating the 
first Euler difference ([E(t + P) - E(t)]/P, say) by the 
limiting differential, dE/dt, but that though this ap- 
proximation breaks down when P ~ oo [p ~ O(1/e)], 
nevertheless, the construction of the Euler difference 
is still feasible. To be specific, let us consider a system 
of the form 

dE/dt=ef(x;E,Q), dQ/dt=eg(x;E,Q), (4a) 

dx/dt = h(x; E, (2). (4b) 

The systems in refs. [1,6], for example, can be written 
in this form. We suppose that (4b) has a periodic sol- 
ution 

x = u ( t )  (5) 

of period 

P = P(E, Q). (6) 

u will additionally have various constants of integra- 
tion (phases), whose presence, however, does not af- 
fect the slow evolution of  E and Q [4,5]. We assume 
that P -~ oo as E ~ 0. For example, elliptic functions 
have P ~ ln(1/IEI) as E ~ 0, and this will be generally 
true, since as E ~ 0, u -~ u 0 which is (assumed to be) 
a homoclinic orbit in the neighborhood of which the 
period is controlled by the linear behavior o f x  near 
the fixed point on u 0 (which we take to be the origin) 
[6]. 

We average by integrating (4) over a period of u :  
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E ( t  + P) - E( t )  -~ P e F ( E ( t ) ,  Q( t ) ) ,  

Q( t  + P) - Q(t )  = PeG(E( t ) ,  Q(t ) )  , (7) 

where F and G are the averages o f f  and g. Normally, 
one considers (7) as approximate differential equa- 
tions, but equally well, they may be considered (and 
in fact are) approximate Poincard maps which relate 
successive values of  E and Q [actually (7) is a projec- 
tion of the full map, which is sufficient, since the phase 
constants do not enter the relation]. Thus, a continu- 
ous orbit of  the averaged equations corresponds to a 
sequence of iterates of  E, Q, say {En}, {Qn}, spaced 
O(e) apart. Although (if we assume P F  is bounded and 
non-zero as E ~ 0 (as is the case here), the averaged 
variable E(r )  reaches zero in finite r, and is then in- 
determinate, it is apparent from the Poincard map that 
nevertheless En+ 1 - E  n ~ e: consequently, the iterates 
o f E  n will simply continue across E = 0 in a perfectly 
determinate manner; for the same reason, numerically 
computed trajectories will generally do so as well. 

Shirnizu and Ichimura [1] ascribe chaos to the in- 
determinancy of picking the sign of the solution (x) 
when E < 0 (when symmetric positive and negative 
fast oscillations exist). Such "phase-mixing" chaos is 
at least very "weak", since x 2 is doubly periodic, for 
example. But there is another, more dramatic, mech- 
anism of chaos present. That is, suppose that some 
iterate E n in the sequence comes so close to E = 0 that 
P ~ l[e. The derivation of(7)  is then suspect, since if 
P ~ l/e, E n is so close to the stable manifold of  the 
origin that the x trajectory will spend a time t ~ 1/e 
near the origin, and consequently, a different ap- 
proach to the problem is required. It is still possible 
to construct the Poincard map, but the argument is 
now similar to that used in constructing a map in the 
neighborhood of a homoclinic bifurcation [6]. 

We suppose 

E n = e x p [ - R / e ] ,  R N O(1),  (8) 

and Q = Qn, x = x n, let us say at time t = 0. We inte- 
grate forward in time to fred x. Since x is close to the 
homoclinic orbit, it will closely approach the origin 
for large t. At such t, x will be approximately 

x ~ a~se-Xt + bEnvueUt , (9) 

where a and b are [O(1)] amplitudes which will de- 
pend o n x  n and Qn , Us is the eigenvector corresponding 

to the least stable (smallest X) eigenvalue -X < 0 of 
the linearized system for x at the origin, and u u is the 
eigenvector corresponding to the most  unstable eigen- 
value/a > 0. We suppose X and/a are real. We can ne- 
glect all the other eigenvectors, since the ~orrespond- 
ing eigenmodes will be much smaller. With E n given 
by (8), x is going to become transcendentally small 
(x ~ exp [ -O(1/e)]  ), and its evolution is governed by 
[from (4)] 

.~= [Dh(0; O , O ) l x = L ( O ) x .  (10) 

From (9), x is going to be near the origin for a time 
t ~ lie, or r ~ 1; during this time, Q is governed by, 
from (4), 

dQ/dr = g(0; 0, Q) = go(Q) ,  (11) 

whence we determine Q = Q(r), with Q(0) = Qn" 
Asymptotic solutions of the linear equation (10) are 
[to O(e)], 

x ~ v p ( r ) e x p [ A ( r ) / e ] ,  dA/dr ~ p ,  (12) 

and p and up are an eigenpair for L0-): 

Lop = pop .  (13) 

We assume that the eigenvalue/a remains maximal as 
Q varies. For a third order system, or where x is two 
dimensional, this is necessarily the case. Thus the solu- 
tion for x which matches to (9) is 

x ~ a Vs(r) exp [-As(~')/e ] 

+ b Vu(r ) exp { [ - R  + Au(r)]/e}, (14) 

where 

As(0) = 0,  au(0)  = 0, 

Vs(0 ) = u  s , Vu(0 ) = v  u ,  (15)  

and 

d/ks/dr= X(r), dAu/dr =U(r) ,  (16) 

where -X is the maximal negative,/g is the maximal 
positive eigenvalue as Q varies. Of interest is when x 
increases to 0(1)  again, for then x leaves the origin, 
essentially along the unstable manifold of  another 
homoclinic orbit. However, as t increases, both Q and 
E will increase by O(e) again when the trejectory hits 
the return plane. What this means is that, in general 
En+ 1 will not  be transcendentally small (one leaves the 
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invafiant line), and that Qn+l will essentially be given 
by its value as x leaves the neighborhood of the origin. 
From (14), this is approximately when r = r*, where 
Au(z* ) = R. Consequently, we derive an approximate 
difference equation for Qn, 

Qn+l = O(r*),  (17) 

where Q is the solution of(11),  Q(O) = Qn, and ~'* is 
given by 

T 

R = eln( l / IEnl  ) = f /a(r)d~, (18) 
0 

/a being the largest (assumed real) eigenvalue of L (Q). 
A similar argument would seem to indicate En+ 1 
O(1), but in the Lorenz equations [6], and Shimizu 
and Ichimura [ 1 ], one finds that PF in (7) is f'mite as 
E ~ 0: equivalently 

f ( u  o, O, (2)dr 
- - o o  

is finite. In ref. [1], this is because f =  al  u2 + a2u~, 
and u 0 is essentially sech(t). This is liable to be quite 
general, e.g., for almost conservative systems of the 
form x + V V(x) = e l (x ,  ~¢, t), i f f  is well behaved. In 
that caseE remains small, and En+ 1 ~ O(e) if  E n ~ O. 

4. There is little point elaborating the quantitative 
aspects o f  the discussion, since one needs the numeri- 
cal solution of the averaged equation away from E = 0, 
anyway. We therefore proceed qualitatively. Behavior 
in any particular case will depend on the phase portrait 
of  the averaged equations. We concentrate on the sit- 
uation in refs. [1,12], where one can have a stable 
"limit cycle" of the averaged equations which crosses 
E = 0. By crossing, we mean that E n is bounded away 
from zero as the trajectory crosses (i.e., does not get 
exponentially close). We then have a phase portrait as 
shown in fig. 1, where now we take Q = Q as scalar. 
For any trajectory through a point (Q, 0) on E = 0, 
we can define the "number" of passages through the 
Poincar6 section, N as 

j~ " dr (19) N = e -1 P(E, Q) ' 
Q, 

(i.e., number of periods per unit time = lIP, where Q' 

( 
E 
J 

Fig. 1. Schematic phase portrait in the averaged (E, Q) phase 
plane, showing a limit cycle. 

and Q" are successive values of  Q on E = 0. We would 
like to construct a mapping relating successive Q val- 
ues on E = 0, using the notions expressed here. This 
is not strictly simple in general (one still needs a 2-D 
map), but it is possible to construct a 1-D map which, 
in some sense, describes the behavior of the system. 
(See also ref. [12] .) 

Suppose that Q --- Q is the point of  tangency of tra- 
jectories to E = 0. We can then pick a line C: E 0 = 
e(~(Q), ¢(0)  = 0, (Q - Q)¢(Q) > 0, and ask where 
trajectories leaving C first return there. This will define 
(since C is effectively parameterized by Q) a difference 
map Qn -+ Qn +1" If  the complications associated with 
E = 0 did not exist, this map, f,  say, would be as shown 
in fig. 2, and its second iterate f 2 would be monotone 
increasing with the larger stable fixed point at Q*, 
say. The second iterate is sketched in fig. 2. However, 
there will evidently be a sequence of values of Q, at 
intervals O(1/e), when N in (19) is such that the Nth 
iterate o f E  0' E N = 0 (see also ref. [6]). Denoting 
these values by q l , q 2  . . . . .  it is clear that i f Q  n = qr 
+ exp[ -O(1 /e ) ] ,  then E n = exp[ -O(1 /e ) ] ,  and con- 
sequently an excursion up the Q axis can occur. Thus 
the difference map will be as shown in fig. 2, but with 
some anomalous behavior near qr" To specify what 
this is, take 

Qn = qr + exp[ -R/e ]  , (20) 

then 

E N = +- a(qr) e x p [ - R / e ] ,  (21) 

(by Taylor expansion about qr), and to leading order, 
(17) and (18) are 



Volume 100A, number 1 PHYSICS LETTERS 2 January 1984 

i j .  ~ 

.... f2 / /  

/ . . / / /  t ~f. 

/ / 

Fig. 2. Schematic form of the maps f, f~, f* (see text), f con- 
sists of two discontinuous branches, as does .f2. 

Qn+l = Q(T*), R = f tt(1")dr. (22) 
0 

As an example, suppose Q migrates on E ~ 0 towards 
Q= 1, e.g., 

0 = c(1 - Q) (23) 

(this is actually the case in ref. [ i ] ,  with Q = 1 - m o ) .  
In ref. [ 1 ], we also have # = (bQ)l/2, but for simplicity, 
we shall take tt constant. Then (22) and (23) give, for 
Qn near qr 

Qn+l "~ 1 - [1 - f(Qn)] IQn - q r  lec/u (24) 

and the complete map, f* ,  is like f,  but with superim- 
posed cusps, as partially indicated in fig. 2. These cusps 
are O(e) apart, and of thickness exp [ -O(1/e) ] ,  i.e., 
very narrow. One should compare this result with that 
of  Fowler and McGuinness [19]. 

Of course, this is not entirely satisfactory, since after 
one iterate, say Q1 ~ Q2, the point labeled by Q2 will 
be out of phase, and the set of  anomalous q values will 
be different. What one must really do, is to construct 
a two dimensional map relating successive values of Q 
"at"  E = 0, and including the phase of  the E-value there. 
However, (24) is of some interest, since one can expect 
(in a numerical integration) that most iterates of Q 
will follow the envelope curve towards the tixed point, 
because on any particular circuit, the range of Q-val- 
lues which can give anomalous behaviour is very small 

(exp [ - 0  (1/c)] ). Also, numerical integrations of 
Marzec and Spiegel [.12], show that on one branch of  
an attractor in the (E, Q) plane, a map such asf is  ac- 
tuaUy numerically observed, which suggests that the 
mechanism behind the derivation of (24) is of some 
relevance. 

On the limit cycle trajectory one can define a map 
relating successive values of E in a range (0, e¢*) where 
~* = limE__,0 PF [in (7)] evaluated at Q = Q* (the 
positive timed point off2) .  One can think of this as 
essentially a rotation on the circle 0 ~ [0, 2zr), where 
E = e¢*O/2rr. Thus, provided motion on the (E, Q) 
limit cycle has a period P which is such that N in (19) 
is irrational, every so often (once every e exp [O(1/e)] 
circuits) E becomes exp [ -  O (1/e)], and an excursion 
along E = 0 occurs. This heralds a chaotic attractor of 
intermittent type, with excursions separated by t-in- 
tervals of exp[O(1/e)]. With e = 10 -3, as in ref. [1], 
this is upwards of 10400! 

5. The purpose of  this note is to show how the 
method of  averaging can be supplemented by a local 
multiple scale analysis in the vicinity of homoclinic 
orbits, to produce (in principle) a globally applicable 
Poincar6 map. For a system with an attracting toms 
(i.e., a limit cycle in the averaged phase plane) which 
intersects an invariant line ofhomoclinic orbits, we 
predict an attracting chaotic set o f  intermittent type 
with laminar bursts o fduration e exp [O (i/e)] as e ~ 0 
(cf. ref. [20] ). This is in addition to a weaker "chaos" 
associated with phase.switching across the invariant 
line. The bifurcation describing the transition from 
toms to chaotic attractor is associated with the point 
in parameter space where the averaged limit cycle is 
tangent to the invariant line. In terms o fa  Poincar~ 
map, the attracting set for points E :/: 0 intersectsE = 0, 
which is attracted to the (suitably defined) origin; this 
is a crisis for the attractor [21]. In terms of  the flow, 
the toms become homoclinic to the origin (Q = 1, E 
= 0 in our example); that is, if  there is a bifurcation 
parameter r [1] which describes the evolution of  the 
averaged limit cycle, and tangency to E = 0 occurs at 
r = rh, then the interpretation of  the results here is 
that for small e, there is a homoclinic toms in the full 
system for r close to r h. In analogy with ref. [6], we 
might expect an inffmite number o ftori to be produced 
at r = rh, and an associated infinite set of  windows of 
period-doubling tori. Thus, the chaotic attractor occurs 
as a result of a homoclinic bifurcation. 
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