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GENERATION AND CREEP OF MAGMA IN THE EARTH*

A. C. FOWLERt

Abstract. This paper describes a model representing the process of partial melting of deforming mantle
rock, and the associated melt migration due to differential buoyancy. The model is a double free-boundary
problem of degenerate type, and is typical of such slow, reactive two-phase flows. Prescription of boundary
conditions is problematical, but in some sense the model picks its own; a realistic asymptotic solution
involving rather novel boundary layer behaviour is presented, for the case of two fixed boundaries, and it
is then shown how the free boundaries can be determined a posteriori. The implications for geophysical
behaviour are discussed.
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1. Introduction. The generation and transport of molten magma in the earth’s
mantle of crystalline rocks is a problem that has aroused considerable interest recently.
Other than being interesting in its own right, understanding of this process is an
important prerequisite to the description ofmagma chamber emplacement and volcanic
eruption, as well as to a rational explanation for the chemical nature of igneous rocks.
There are many interesting mathematical problems involving phase change, two-phase
flow, free boundaries, and other exotic topics in the general area of volcanology and
petrology, and the generation and transport of magma in the mantle is, in a sense, the
grand-daddy of them all.

Solid, crystalline rock melts internally in the mantle for the following reason. The
mantle of the earth (some 3000 km deep), though solid, is in a state of continual motion
due to thermal convectionmit is this motion that is manifested at the earth’s surface
as continental drift. As mantle rock ascends (e.g., at mid-ocean ridges, or "hot-spots"
such as Iceland or Hawaii), it cools by decompression (i.e., adiabatically); the solidus
temperature, however (mantle rocks are a mixture ofmany different minerals), decreases
more rapidly with pressure (on the Clapeyron curve), with the result that the rock
reaches the solidus and begins to melt at some finite depth. This situation is illustrated
in Fig. 1, which also shows that a cold thermal boundary layer in the lithosphere (due
to "vigorous" mantle circulation, i.e., Rayleigh number >> 1) has the opposite effect--it
promotes refreezing.

The mathematical problem we wish to address is that described above. The
"heating" is internal, rather like Joule heating, and it is natural to expect a "mush"
or two-phase region, to form. In fact, thermodynamic reasons suggest that the melt
formed is interconnected at all volume fractions down to zero (McKenzie [8]), although
this may not be generally true (Nicolas [9]). Thus we envisage that porous melt
migration can take place according to Darcy’s law. Such a notion dates back to Frank
[7], and was extensively studied by Turcotte and Ahern [1], [16].

More recently, this subject has been re-opened for investigation independently by
several authors (Fowler [4], [5], Scott and Stevenson [13], [14], McKenzie I-8], Richter
and McKenzie 12]), who, rather surprisingly, all adopt essentially the same generalisa-
tion ofthe Turcotte-Ahern model. There are two possible motivations for the generalisa-
tion. First, Turcotte and Ahern assumed that the liquid (melt) pressure was locally
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FIG. 1. Schematic illustration of the mechanism ofpartial melting by pressure-release. Ascending rock first
begins to melt, and subsequently refreezes at the base of the lithosphere.

lithostatic; thus, melt flowed upward by differential buoyancy. In other words, Pl (the
local average liquid pressure)= Ps (the local average solid pressure). The justification
is that "crystal deformation can readily occur" so that any local differential pressure
would rapidly disappear via viscous grain deformation. Turcotte and Ahern [16] state
that a length scale (as mantle rock ascends) over which such deformation could occur
is of order 100 m: very small. This "compaction length" has come to play an important
part in current ideas of magma generation.

The extra complication included in theories of this decade is the explicit inclusion
of a term to represent this compaction" other than that, these theories are essentially
the same as (or simpler than) that of Turcotte and Ahern [16]. The relation of these
various theories, and their respective merits, has been discussed by Fowler [6]. In one
view (the present author’s), the deformation may be represented by a constitutive law
that relates liquid pressure Pl to solid pressure Ps. The two differ by a term derived by
a local microscopic model, which turns out to be, in essence, a bulk viscosity. This is
quite nice, since p is actually the "thermodynamic" pressure, whereas ps is the "dynamic
pressure." We shall call this constitutive relation the compaction equation. Such micro-
scopic modelling to derive macroscopic constitutive equations is common in two-phase
flow modelling.

Given that the recent models are all essentially the same, it is surprising to what
different uses they have been put. Scott and Stevenson 13], 14], Richter and McKenzie
[12], and Barcilon and Richter [2] look for soliton-like solutions, which have been
elegantly found in a laboratory analogue experiment (Scott et al. 15]). Arguably, these
may have nothing to do with the earth. Ribe [10], [11] attempted to justify Turcotte
and Ahern’s quoted assumption (above) of a small compaction length. Amid all the
flurry produced by these various authors, no one has actually attempted to solve the
model equations put forward. The closest is Fowler [5], whose analysis is, however,
wrong, as we shall show here.

Thus our aim in this paper is to study the two-phase reactive flow equations,
including the compaction equation. The problem has two free (thermally determined)
boundaries, but these play a small role in the dynamics of the partial melt region,
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which can be uncoupled. We show this by solving the partial melt dynamics for the
case of fixed boundaries, and then show how the free boundaries may be determined
subsequently. The methods are asymptotic, and we are able to analyse the solution
almost completely. The novelty lies both in the weirdness ofthe boundary layer analysis,
and in the extreme degeneracy of the boundary conditions. We seem to end up with
enough, but it is not obvious; boundary conditions for this model have not been
discussed by the other papers cited above.

2. Mathematical model. We consider the partially molten zone to consist of solid
grains (of crystalline rock), with melt present at grain boundaries. We suppose the
melt to form an interconnected network. Our variables will be locally averaged over
many grains. Then the liquid velocity is given by Darcy’s law

(2.1) v= -KxV(p + otgy),

where v is the melt velocity relative to the mean (barycentric) velocity, K is a permeabil-
ity coefficient, X is the mass fraction of fluid, pt is liquid pressure, pt is liquid density,
g is gravity, and y is the vertically upward coordinate.

Conservation of fluid mass is given by

0
(2.2) O--(px + div [px(u + v)] S,

where S is the rate of melting (mass per unit volume per unit time) and u is the
barycentric velocity of the mixture. S is not known a priori but is given from the energy
equation since latent heat is absorbed on melting. The energy equation can be written

dT
(2.3) LS + pCp--d- kV T,

where L is latent heat per unit mass, Cp is the specific heat, d/dt is the material
derivative following the centre of mass, k is the thermal conductivity, and T is the
temperature. In the earth’s context, the obvious missing term is an adiabatic heat
release, which can be shown to be moderate to small (Fowler [5]); therefore, we neglect
it. Other terms have also been neglected, e.g., viscous dissipation, for similar reasons.

If we assume thermodynamic equilibrium, then T is the solidus temperature and
is a function of pressure and composition. As a first approach, we omit compositional
effects and write

(2.4) T To + Fp,

where F is the slope of the Clapeyron curve relating melting temperature and pressure.
We do not assume that liquid and solid pressures are equal; rather we assume the
solid grains may be differentially stressed, to which they respond by viscous creep. A
microscopic model of this process leads to the (approximate) constitutive relation
relating pressures,

(2.5) p-p, (rl/X) div Xv,

where r/ is a measure of the grain viscosity, and Ps is average solid pressure.
To complete the model, we require a prescription of p and u. Since the partially

molten zone is embedded in a much larger scale flow, it is appropriate to take the
pressure as approximately lithostatic:

(2.6) p =po-psgy,
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and to assume that the flow field u is kinematically prescribed. For small X, it is
approximately incompressible:

(2.7) divu=0.

The Stefan condition can be written as

(2.8) pLXm(u+-V)

where rn and c denote molten and cold side, respectively. An additional restriction is
implied to ensure that T is below the solidus on the cold side. This wil! be the case
if the flow is fast enough (Turcotte and Ahern [16]) and is consistent with the further
boundary condition

(2.9) X =0

at the lower partially molten boundary.
At either boundary, the temperature is given both by (2.4) (in the liquid) and by

To-Fo-m (in the solid), where o-,, is the minimum compressive stress. Thus

(2.10)

at either boundary. At the upper boundary we can take rm -p., whereas at the lower,
this gives a condition on the mantle velocity field.

Nondimensionalisation. To nondimensionalise, we choose a typical mantle velocity
scale Urn, typical depth scale d, time scale d/u,,,, and a melt fraction scale Ix]. The
value of [t’] is chosen to balance the melting rate with advective heat transfer due to
barycentric motion. The corresponding dimensionless equations can be written in the
form

(2.11) AV. [xZvq] (q + ry)x,

(2.12) g-d-)--’. [x2’q] +-(q-y)

where we have defined

(2.13 Pl + PtgY Pig dq +Po,

and have used (2.1) and (2.2) as definitions to eliminate v and S. The dimensionless
parameters A, 6, e, and r are given by

(2.14) rlb[v]/ptgd 2,

(2.15) e=K/umd,

(2.16)

(2.17) r=(ps-Pt)/Pt,

where the melt velocity scale [v] is

(2.18) [v] Kp,g[x],

and the melt fraction scale [g] is given by

(2.19) IX] (CprU,,,d/LK) ’/:.
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The boundary conditions we consider are the following. At the lower boundary,
(2.9) applies in the same form. At the upper boundary (2.10) implies

(2.20) q + ry 0,

and the Stefan condition (2.8) becomes

(. xm[+(-v] (-yl

if we define T To+ Fpo+ Fog dO in the cold regions.

On

In the sequel, we shall largely be concerned with the solution of (2.11) and (2.12)
between the boundaries Ya and Yl, where, respectively, melting is initiated and refreezing
occurs. In reality, these are free boundaries and must be determined by solving the
temperature equation in y < Ya and y > Yl. To see this, we define (as after (2.21))

(2.22) T To+ Fpo + Fptg dO

in y < ya and y > Yl. Then 0 satisfies

(2.23)
dO

20
dt

We presume a constant temperature as y --> -, corresponding to a vigorously convect-
ing mantle, and by choosing the origin to be where the melting temperature at lithostatic
pressure equals this far-field temperature, we can prescribe

(2.24) 0 -+ 0 as y - -oo.

Continuity of temperature implies

(2.25) 0 q y at y y.

Together with the extra Stefan condition (2.21) at Ya, this is sufficient to solve for 0
in y < Ya and determine Ya, providing o is known.

Above the melt zone, the diffusion equation (2.23) applies, with both (2.25) and
(2.21) on y Yt, and the prescribed surface temperature gives

(2.26) 0=0o aty=yo

where Yo is the dimensionless surface, and

(2.27) -Oo= Tm T)/Fptgd,

where T,, To+ Fpo is the ambient mantle temperature and Ts is the surface tem-
perature. Again the extra boundary condition is sufficient to solve for both 0 and
providing o is known.

3. Analysis. The above model constitutes a free boundary value problem. In the
first instance, we are less interested in the nature of the free boundary than in the
structure of solutions, and whether we have enough boundary conditions. Thus, our
philosophy is as follows. Assume y and Yl are fixed, and attempt to solve for q in
Y,, < Y < Yl. This should give some insight into the behaviour of q. Using the solution
for o, we shall then see whether y and Yl can be determined passively by solving the
two temperature equations in y < ya and y > yl. This will be done later in this section.
Thus we suppose that the melting and freezing boundaries are pre-determined, and
consequently neglect (2.21).
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The basic physics can be represented by assuming a one-dimensional solution,
where now y 0 is the melting boundary, y 1 is the refreezing boundary, and u (0, 1)
is constant. We assume a steady state. Then (2.11) and (2.12) become

(3.1a) A
O(x2qy (q + ry)x,
Oy

0
(3.1b) [X XZ@y -1- @ Y] eqyy,

Oy

together with the boundary conditions (2.9) and (2.20). From (3.1), we might expect
two boundary conditions for q, and one for X; it is not entirely obvious whether (2.9)
and (2.20) will be sufficient to ensure a solution: in addition, (3.1a) is degenerate when
1’ 0. Thus it is not entirely clear what boundary conditions ought to be supplied. We
shall find that explicit solution of (3.1) indicates that the boundary conditions which
are naturally supplied are sufficient to determine a complete solution.

There are four parameters in the model" A, , r, and e. To estimate these, we use
values considered typical of mantle conditions (Fowler [5])"
3.5 gm cm-3

0r 3 gm cm-3 g 10 m s-z, d 10 km, K 10-2 cm2 s-1 U,n 1 cm y-1
K 103 m2 bar-1 y-l, ep .25 cal gm-1 K -1, F 10-2 K bar-1, L 80 cal gm-. From
these values, we compute

(3.2a) [X] .17%, [v] 50 cm y-l,

(3.2b) 6=.02, e=.3, A=.5, r=.2.

Values of r/b and urn, in particular, are liable to vary, and more reasonable may be a
value of u, of 10 cm y-1. This changes the values above to

(3.3a) [X] .5%, [v]-- 1.5 m

(3.3b) .06, e.03, Al.5.

Based on these values, it seems reasonable to suppose [1’] << 1 (as was implicitly already
done), and that -- e << 1, A---O(1). This assumption, at any rate, forms the basis of
the subsequent analysis. The value of r/b may be much lower than 1021 poise. In fact,
a lower value is to be expected for values ofp p > 10 bars (a typical mantle deviatoric
stress). A much lower value of A (together with e, 6 << 1) apparently leads to a triple
singular perturbation problem of some complexity, and for the moment, we shall be
content to examine the structure in the limit where O(1); the case A << 1 is examined
later.

--, e << 1, , 1: outer solution. A straightforward outer expansion of (3.1) yields,
at leading order, the following problem:

(3.4a) O[l’2qy] (q + ry]x,
Oy

0
(3.4b) -O--f[X2q] + q 1 O,

a first integral of which gives

(3.5a) q= 1 +(q+ ry)x/A,

(3.5b) xZqgy= qg- y-qgo,
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wherein qo is a constant of integration. Thus

(3.6) X A (Oy- 1)/(q + ry),

so that

(3.7) A2Oy(qy- 1)== (q + ry)2(q -y- qo).

Equation (3.7) is of first order for q, and can be represented as

(3.8a) (Dy =f(p),

(3.8b) p (q + ry)2(o-y-oo)/A ,
(3.8c) x =f(p) <=> p x(x- 1)2.

Now suppose q+ ry >0. Then (3.5a) implies qy> 1, since X >0. Consequently,
(3.5b) implies o > oo+y. Thus the region -ry < q < oo+y is illegal. Suppose that
(y) 1; then (3.8) implies p > 0, and hence o -y qo > 0. Thus (from (3.5b) and (3.4b))
Xqy is positive and increasing. Since q + ry =0 cannot be reached while oy> 1, it
follows that XOy cannot reach zero (even if 6, e 0), whence X 0 and o cannot have
a maximum. In particular, X(o + ry) 0 at y 1 for any trajectory in the region qy > 1.
Thus we exclude the region o + ry > 0, o oo-y > 0 from consideration.

We now attempt to satisfy (2.9). Suppose that the outer solution satisfies X 0 at
y 0. Then (3.5a) implies (for the outer solution) qy at y 0. Equations (3.8) imply
p 0, whence q Oo at y 0, or q 0. If q 0, then we go (for y > 0) into the excluded
region Oy> 1. If o(0)=Oo and qy= 1, then for small y, (3.5) implies qy < 1, and

o > Oo+ y, which are contradictory. Apparently, we cannot force X 0 for the outer
problem. Therefore we endeavour to find a boundary layer near y 0, so that X can
equal zero at the boundary.

Boundary layer at y =0. Let us assume e---6, and specifically put

(3.9) e=c6, c-- 0(1).

We put

(3.10) y=SY, q---q()+8(1)+. X-X()+
to obtain a sequence of problems from (3.1). At O(1),

(3.11)
OY

(here we have first substituted for (X2qy)y from (3.1a) into (3.1b)); the solution that
can match to an outer solution is

(3.12) p(o) constant.

At order 6, we have

o [x(o=] o,(3.13)
OY

whence

(3.14)

if we require g()= 0 on Y 0. Thus

(3.15) q

X(v) + p)- 1 -p()X()/A C(#
(1)
YY

constant O,

constant.
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From (3.12) and (3.15), matching to the outer solution requires (y-).0 as y-->0 (for
the outer solution); thus p in (3.8)=0 at y=0, whence (since q # 0 from the outer
solution), q (outer)--> qo as y--> 0. Without any loss of generality, we can take

(3.16) qo) =qo, q() 0.

Equation (3.13) now reduces to

(3.17) X(y)- 1 qoX()/A O,

whose solution satisfying X()= 0 on Y 0 is

(3.18) X()= -(A/qo)[1 exp ((CoY/A)].

(a)

0

-0-0

X=0.1= .0.15

/ \
-0’2

-025
0 0.5

(b)

0.1

2/3

I ol- 1/4

0 2
X

FIG. 2. (a) Solutions of (3.7) for various values of A. (b) The variation of Iol with A. (Here r=1/4.)
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Evidently, we require qo < 0 for matching to be possible, and the leading order boundary
conditions for the outer problem (3.5) are

(3.19) q o, x A/lol on y o.
Thus the outer solution has (at least, for small y) qy < 0, q-y- qo < 0, as well

as q + ry < 0. As long as Oy < 0, then -X2qy is positive and increasing, and this is true
(from (3.5b) irrespective of the size of 6 and e. It follows that no boundary layer
structure for q can enable (q+ ry)=0 to hold at y= 1, but that satisfaction of this
condition seems to necessitate that, to leading order, the outer solution to (3.5) satisfies
(2.20), i.e., q+ ry=O at y= 1. That is, we solve the first-order equation (3.5) with
q qo on y 0 and q =-r on y 1. The extra condition enables qo to be chosen.
That such a problem indeed has a solution is evidenced by the numerical solutions
shown in Fig. 2. It can be seen that qy < 0, q + ry < 0. Physically, this implies Ps > Pi,
with the effective pressure decreasing toward zero as y increases.

This seems fine, until we realise that although we have followed q with qy < 0,
precise prescription of q =-r at y 1, and consequently qy 0 there (from (3.8), and
since qy varies continuously with q and y) requires (from (3.5a)) that 2’ there.
Consequently, (3.5) cannot be uniformly valid near y 1, and a further boundary layer
structure is necessary to obtain finite 2".

Boundary layer at y = 1. The solution of (3.5) such that qy 0 on y 1 has, from
(3.7),

(3.20) +r--.d(1-y)3,
where

(3.21) d r2(1 + r+ qo)/3A 2,

and d > 0 since (qy < 0) qo < r. Also 2" (1 y)-l; thus we define

(3.22) q=-r+63, X=B-", Y=I-6’Z,

where c is yet to be chosen. Matching conditions are, from (3.20) and (3.5a),

(3.23) dP"’dZ3, ---A/rZ as Zoo.

A leading-order balance in (3.1b) is effected if a 1/2; thus 1-y.-- 1/, 2".. 6-1/. Then
(3.1) becomes, to leading order,

(3.24)
0 [qz]= O(2/A
OZ

and

Neglecting higher-order terms yields

(3.26)

and

(3.27)

whose solution is

(3.28)

xI)’2(I)z constant 3 d, )-/r2,

XItz rZ / A -1, xIt , / rZ as Z-oo,

= exp
r (Z2_ w2) dw.

z
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In particular, on Z 0,

Ion((3.29) = exp -21] dw=
Ar /2,

(3.30) X (ATr/2r6) 1/2 on y 1.

Thus we obtain Fig. 3. The melt fraction jumps rapidly at both top and bottom,
whereas the liquid pressure varies smoothly. The driving head o directs melt flow
upward, but the effective pressure Ps-Pl w,-(q + ry) is positive and decreases toward
zero as y tends to one.

The free boundaries y. and y. Now we return to the free boundary nature of the
upper and lower boundaries of the partial melt zone. There are two aspects. First, we
choose the origin so that (2.24) is satisfied. Thus a temperature precursor will cause
Ya < 0. If we denote the solution obtained above by q qc(y), &’ Xe(Y), and assume
for the moment we can choose Yl 1 +ya, then the solution of (3.1) with &’ =0 on
y y is just

(3.31) q -ry + qe(y- y),

and in particular, o + ry 0 on y y. Next we show that ya can be consistently found
(as O(1)) from the temperature solution in y < y. (This was also done by Turcotte
and Ahern [16].)

With the assumption

(3.32) e=c6, c-O(1), t<<l,

0 0-5

Y

FIG. 3. Typicalform ofx versus y, using the outer numerical solution together with the two boundary layers.
The boundary layer solution at y= is approximated by X A /[ r(1- y + 26A / Trr)/2) + 0( ), rather than by
(3.28), which is numerically inconvenient. The above expression satisfies both (3.30), and the matching condition
to the outer solution. Parameter values t5 .06, A .2 are used.
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and supposing u (0, 1) as before, we must solve

(3.33) 0y= e0yy in Y<Ya,

with

(3.34) 0

and, from (2.21) and (2.25)

00
(3.35) 0=-[qol-(l+r)ya, 1 onyx,

Oy

where we have used qc qo, qpy--0 on y y, together with (3.31). The solution is

(3.36) O=-e exp[(y-y)/e], y,=-[lqol-e]/(l+r),

so that 0 O(e), ya O(1).
We allowed an assumption above that Yl 1 +y,, and this can be justified as

follows. The free boundary nature of yo and Yl means that in reality the depth scale
d is unknown in advance" our assumption of d 10 km is simply a reasonable guess.
Thus we can choose Yl as we wish, provided we keep d (or more generally, one of the
dimensionless parameters) to be chosen. We do this by allowing e to be chosen at the
end to enforce the top surface condition. That is, the procedure is to suppose e--- 6 << 1,
A---1 in advance, and then determine e to be consistent with the extra temperature
condition in y > yl. We then hope that this value is consistent with our estimate. In
fact, it is evident from our analysis that we only require 6, e << 1 for self-consistency.
The distinguished limit e---6 is not necessary.

The question of what mantle velocity field u we should assume arises. In reality,
the lithosphere moves laterally in oceanic regions, but possibly not in continental
regions. Thus a simple, realistic assumption for continental lithosphere is that u 0
for y > Yl. But in this case we cannot realistically have u (0, 1) in y < yl, as before.
A better choice of (incompressible) velocity field is u (x, yl-y). However, solutions
for q and X in (y,yl) and for 0 in y<y, still only depend on y as long as the
temperature at y =-oe is spatially uniform, and we shall suppose the boundary layer
structure is comparable. There may still be a certain amount of "underplating" due
to melt refreezing at Yl. This is of order [X][v], which might typically be in the range
of 1-10 mm y- (from (3.2) and (3.3)); this is actually comparable to normal continental
erosion rates, so that it could make sense to prescribe a steady state for continental
lithosphere in which any underplating is balanced by erosion, and in which u 0. A
conductive profile is actually also appropriate to oceanic lithosphere (e.g., under
Hawaii), where rapid lateral advection ensures a high vertical heat transport.

With u =0 in y > y, we have qc(1)=-r, and thus, from (3.31), q =-r(1 + Ya).
The boundary conditions for 0 in y > Yl are thus, from (2.21) and (2.25), using also
(3.26), (3.22), and (3.21),

(3.37)
O=-(l+r)(l+ya),

Oy -( l + r + lqol)/ e on y Yl 1 + y,,

with solution (to Oyy O)

(3.38) 0= -(1 + r)(1 +y)- (1 + r+lqol)(y-y,)/e,

and satisfaction of (2.26) requires

(3.39) Yo-Yt [IOol- (1 + r)(1 +y.)]/(1 + r + Iqol).
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To estimate Yo and ]0o], we use a partial melting depth d, of 100 km. With d 10 km,
we might estimate

(3.40) yo= d,/d lO.

For 0o given by (2.27), we estimate T,, Ts 1200 K, pig F 3 K km-, and thus

(3.41) dc T, L)/ptg F=400 km,

so that

(3.42) 10o1 dc/d 40.

So long as d << d, d, (3.39) roughly gives

(3.43) e yo/IOol d,/d,

and thus our whole analysis is self-consistent, providing the depth of melting d is
much less than the "Clapeyron depth" d. With d, 100 km, we have e 1/4, correspond-
ing to (3.2), and the interval of melting d /u,,e is 10 km for Um 1 cm y-l, and less
for larger u,,.

The above shows, at least conceptually, how the partial melt problem may be
usefully uncoupled from the free boundary location, but further consideration is
necessary to give more precise information.

The case A << 1. The grain closure viscosity r/b in (2.14) is generally considered to
depend on stress as a power law material. If ft,, is a local ambient viscosity at a
deviatoric stress level of r,,, then we should properly take

(3.44) r/b rl,,[r,,/(p.--pl)] n-,
and thus replace a (= a,,) in (2.14) by ab/l + rY[ "-, where

(3.45) a a,n(rm/p,g d)"-.
That is, we replace (3.1a) by

0
(3.46) a -y(Xqgy) [q + ryl"-’(q + ry)X.

The appropriate value of A may be estimated from taking n 3, r,, 10 bars, pig d
3000 bars: then, if A,,--- 1, we have ,--- 10-5. Evidently, nonlinear creep would have
a drastic effect on the behaviour.

The solution in this case can be altogether simpler. We attempt to satisfy (2.9)
and (2.20), i.e.,

(3.47) X(q + ry) 0 on y 0, 1.

Equations (3.46) and (3.47) suggest a (uniform) approximation

(3.48)

which yields

(3.49)

and, from (3.1b)

(3.50)

with boundary conditions

(3.51)

aXy + 2rxxy (1 + r) a /"[ 8(gyy -]- (X2Oy)y y],

Xq3=0 on y=0, 1.



GENERATION AND CREEP OF MAGMA IN THE EARTH 243

Based on our experience with the case , O(1), it is now reasonable to seek a solution
to this problem as A/n 0, but with 30. Neglecting O(A,/n) in (3.49) and (3.50),
we find that X is given by

(3.52) 6X + rx2 (1 + r)y,

so that q3 (<0) is given from (3.49) by

(3.53) (-)" 2rXy 2r(1 + r)/ 6 + 2rx).

Thus

(3.54) q3----Jr(1 + r)/y] "/2, y.-- O(1),

but when y---62, then X 3, and q---6-1/. In particular, qo q3 at y 0 is given by

(3.55) fro -[2r(1 + r)/] ’/".

Thus there is a boundary layer of dimensional length 62d Lu,,/Kpg2cpF, a compaction
zone, over which Ps-Pt drops from O[ptg d(Ab/6) 1/"] to a value smaller by a factor
0(61/"). However, this solution is only found to be valid if A/" << 62+(1/", an unlikely
circumstance. If we suppose on the other hand that A/" >> 62+(1/), then we find that
there is a boundary layer of thickness A/(2"+1), corresponding to a dimensionless
thickness of

(3.56) 6c 2/2"+1)d [qz(r,,Ip,g)Z"-l)(cpFu,,K/ L)]l/2"+l),
wherein the effective pressure Ps-Pt drops from O[ptgdA2/(2n+l)] to a value
O[ptg dA ,/"]. A typical thickness of this compaction zone, with Ab 10-5, d 10 km,
is 400 m, and a typical pressure excess is 100 bars. Beyond it, the pressure excess is
a little lower, but not zero, and perhaps of order 60 bars. The equations satisfied in this
zone are just those for the outer problem (3.4) (with n 1), and thus we deduce that
within the compaction zone there is a further boundary layer in which X jumps, and
that the previous analysis for )t O(1) carries across uniformly providing Ab >> 62"+1.
In particular, we disagree with the implied results of other authors that the effective
pressure tends to zero beyond the compaction zone (McKenzie [8], Ribe [10], Ahern
and Turcotte 1]).

4. Conclusions. We have presented and analysed a model for the porous transport
of magma through partially molten rock. Various conclusions may be drawn, and
various questions can be raised as to the validity of these.

The principal conclusions we wish to draw are these. There is an effective pressure
(P-Pl) in the partially molten zone, typically of the order of 60-100 bars, with the
higher values prevailing in a "compaction zone" of some 400 m thickness at the base
of the zone. Toward the top of the zone, the effective stress tends to zero, which will
facilitate fracture of the molten rock. We then expect that such fractures can migrate
into the lithosphere, as described by Emerman et al. [3].

The model from which these conclusions are drawn represents a reactive porous
medium, subject to compaction and interphase melting. The model is to some extent
speculative, particularly in how the compaction process is modelled, but several recent
independent efforts in this direction have all derived the same form for the governing
equations (McKenzie 8], Scott and Stevenson 14], Fowler 5]), so that some consensus
is possible.

However, we can take different quantitative forms for, in particular, the porosity
and the compaction (bulk) viscosity, so that the precise quantitative results may be
debated. It is difficult to compare the present analysis with that of other authors, since
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the present analysis is the only one that consistently aims to solve the governing
equations in their entirety. Other analyses (particularly those concerning "magmons,"
or travelling wave solutions; Scott and Stevenson [13], [14], Richter and McKenzie
[12], Barcilon and Richter [2]) exclude melting (but include compaction) by, for
example, ignoring (2.3) (the energy equation) and setting S =0 in (2.2). This is an
arbitrary and, we would argue, an unjustifiable approach.

The mathematical model we obtain is a complicated double free boundary one.
Nevertheless, we are able to split the problem into two parts, since the dynamics of
partial melt migration appears to uncouple from the determination of the free boun-
daries, which can then be found subsequently in a straightforward manner. The
equations governing the partial melt dynamics are of third order (see (2.11) and (2.12)),
and we should expect three boundary conditions, one for X and the others for q.
However, because of the degeneracy, it is not entirely evident that three are indeed
necessary. In fact, we find that prescription of two (X 0 at y 0 and q + ry 0 at
y 1) are sufficient to determine the solution. The first of these is an "entropy jump"
condition to ensure that the subzone solid rock is not superheated, while the second
is a thermodynamic equilibrium assumption.

The model we analyse is curious because of its double boundary layer structure.
It has one degenerate second derivative for (the term (/’2(4y)y), one singularly
perturbed second derivative (eqyy)), and one singularly perturbed first derivative for
X (6Xy). And yet the term eqyy is actually regular, and both boundary layers involve
rapid changes in xmdespite the fact that, on the face of it, q should increase exponen-
tially out of that at y 0. We shudder to think what difficulties a straightforward
computational approach would encounter.
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