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A MATHEMATICAL ANALYSIS OF GLACIER SURGES*

A. C. FOWLER

Abstract. This paper describes the phenomena of glacier surges and presents a mathematical model
based on realistic descriptions of glacier physics, which purports to describe the main features of the flow.
The analysis reveals and predicts a variety of phenomena, many of which have been observed to occur, and
gives explicit estimates for such quantities as surge front extent, "mini-surge" propagation speed, and
oscillation period.
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1. Introduction. Glacier surges are a phenomenon of some interest, as the recent
(1986) surge of the Hubbard Glacier in Alaska indicates. A surge is a sudden, rapid
advance of a glacier beyond its normal "equilibrium" position. Following a surge,
during which ice velocities can increase by factors of about one hundred, there is a
slow, quiescent phase during which the glacier retreats" surging is thus essentially a
periodic phenomena, and as such can be viewed as a relaxation oscillation.

The ability to make a useful model for glacier surges rests on having a sound
description of the physics involved. A significant step in this direction was an excellent
field study on the Variegated Glacier, also in Alaska, and close to the Hubbard, by
Kamb et al. [12]. Pre- and post-surge aerial photographs of this glacier are shown in
Figs. l(a) and (b). To give some idea of scale, the Variegated is around 20 km long,
1 km wide, and 400 m deep. During its surges, it advances several kilometres at velocities
of up to about fifty metres a day (compared to typical quiescent velocities of around
a hundred metres a year).

It is thought that this exceptional velocity is due to sliding at the base. In a
quiescent phase, glaciers move by shearing (due to solid state creep processes) and
also by sliding over a lubricated, but bumpy, bed. Glacier sliding occurs if the ice is
temperate (at the melting point), as is the case for the Variegated, for example.

When a glacier is temperate, there is a subglacial hydraulic system which carries
water towards the glacier snout. The pressure in this hydraulic system is not necessarily
equal to the overburden ice pressure and is determined by a balance between tunnel
closure and meltback (R6thlisberger [21]). A balance of these two processes leads to
a theoretical prediction of basal water pressure which is at least comparable to
observations, although a completely satisfactory quantitative agreement is not obtained
(Iken and Bindschadler [11]).

The sliding velocity at the glacier base is considered to depend on both the shear
stress z and the basal water pressure Pw. More specifically, the latter dependence is
usually assumed to be on the effective pressure N=pi-Pw, where Pi is the ice
overburden pressure. Then we should physically expect that u increases with applied
stress r, and decreases with N; that is, if r=-r(u, N), then 07"/Ou>O, O’r/ON>O.
Theoretical "sliding laws" (Nye 18], Lliboutry 16], and Fowler [7]) and field velocity
measurements (Bindschadler 1 ], Iken and Bindschadler 11]) are consistent with this
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(a)

(b)

FIG. l(a), (b). Pre- and post-surge aerial photographs of Variegated Glacier, Alaska. These views were

taken in July 1982 and August 1983, respectively, between which time the glacier has advanced several kilometres.
Photographs are by courtesy of North Pacific Aerial Surveys, Inc., Anchorage, Alaska.
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viewpoint. However, it should be mentioned that for such a sliding law, we would
typically expect sliding velocity to vary synchronously with basal water pressure, and
in the same sense, but this is not necessarily the case (Paterson [20]).

The most significant new observation made by Kamb et al. [12] was of a funda-
mental change in the drainage characteristics of the Variegated Glacier as it surged.
During the surge, the basal water pressures were much higher (in keeping with the
sliding law referred to above), and by means of dye-tracer injection studies, it was
inferred that during these periods of high pressure, the flow velocity was much smaller.
The suggestion is that during the surge, most water drains through the cavities, the
tunnel system essentially shutting down. Observations on Variegated Glacier strongly
support the idea that this is in fact what happens. Theoretical descriptions of the
drainage through such a network of linked cavities (Kamb [13], Kamb et al. [12],
Walder [22], and Fowler [7]) support the view that water pressure is higher in such
a drainage system, and furthermore suggest that drainage through linked cavities only
is unstable to formation of a tunnel-drainage system if u is small enough (Kamb), and
that, conversely, a combined tunnel-cavity system is unstable to collapse of tunnels if
u is large enough (Fowler). The models are different, but presumably the physical
processes are the same, and it seems reasonable that these various instabilities occur
at the same sliding velocity.

2. Mathematical model. We consider the flow of a "shallow" glacier (depth<<
length) down a valley in the x direction. We suppose the flow is predominantly by
sliding, so that u u(x, t) represents the downstream flow. A dimensionless set of
model equations has been derived by Fowler [6] (see also [5]):

(2.1a) Ht+(uH)x=S’(X),

(2.1b) H[1 -/xH,] + a[Hu,luxl(’/")-l], Nf(A),

(2.1c) eNt+N=g(A),

(2.1d) A=u/N".

In these equations H is the glacier thickness, u is the velocity, and N is the effective
pressure. The first represents conservation of mass, where the source term s’(x)
represents accumulation or ablation at the glacier surface. The left-hand side of (2.1b)
is the basal shear stress, -. The expression is composed of three parts" " H represents
the fundamental balance between the downslope force due to gravity, and the resistive
shear stress: it is just a force balance for slab flow. The terms in/x and a are small
corrections, both well known in glaciology. The /x term represents the effect of
deviations of the surface from a parallel flow; an additional term representing basal
topography has been suppressed, equivalent to assuming the base is y 0. The term
in c represents a correction due to longitudinal stresses, which will be significant if
velocity gradients are large (Paterson [19, p. 100]). Typical estimates for a and/x are
a---- 10-2, /x--- 10

-1 (Fowler [6]).
The equation (2.1b) is in fact the sliding law, that is, ’= Nf(u/N"). This form

arises from theoretical reasons (Lliboutry 16], Fowler [7]). Consequently, the drainage
characteristics really depend on A uN n. As discussed in 1, for A > Ac (a critical
value), tunnel drainage is unstable and linked cavities are stable, whereas (we suppose)
the opposite is the case for A < Ac. In equilibrium, the drainage characteristics would
be given by N g(A), where for A < Ac, g NR, and for A > Ac, gN < NR. We
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denote the ratio by

(2.2) 6 NK/NR.

The semi-empirical term in e is inserted to indicate that there is of course a relaxation
time in passing from one drainage system to another. This time, tdrain, is the time scale
for flooding the bed from a pre-existing tunnel, or for converting a linked-cavity system
to a tunnel system. Then e is the ratio tcrain//conv, where the convective time scale tconv
is of the order of 20 years or more.

Fowler [6] estimated e--- 10-5, on the basis of a tunnel collapse time (by viscous
closure) of more than one day. This is possibly rash, as the flooding of the bed would
lead to a longer time scale, possibly train one month, and then e-- 10-2 or so. A
word of caution is necessary here and will be repeated at intervals. We are seeking to
understand the large scale features of surges, in particular the periodicity and the fast
and slow phases. Such a relaxation oscillator will interact in a complicated way with
time-varying inputs on a seasonal basis, such as annual variation in water production.
We are not specifically concerned with such short-term variability, since it is considered
peripheral to the main purpose. Equally, our model for the drainage characteristics is
simplistic and neglects such effects as subglacial water storage and winter initiation
of surges. Consequently, the model lacks realism in this respect and cannot be expected
to simulate such features as "mini-surges" (Kamb et al. [12]); nevertheless, it is
suggested that the present model can serve as a useful basis to which further complica-
tions can be added.

For the sake of completeness, let us summarize what the nature of these complica-
tions may be, in regard to the drainage system. There are at least four possible time
scales governing the adjustment ofbasal drainage conditions to changes in water supply.

(i) The convective time scale for propagation of kinematic waves along tunnels
(waves of perturbed cross section): with length "104 m, velocity ---1 ms-1, this is
104 S three hours. However, in practice this may be irrelevant, since propagation of
changes in S (cross section) requires deformation of ice on the slower viscous closure
time scale.

(ii) Viscous closure time scale. This is about a day, although it depends on what
choice of flow law constant is appropriate.

(iii) Bed leakage time scale. As discussed above, this may be about one month.
(iv) Cavity adjustment time scale. The importance of transient cavity behaviour

was emphasized by Iken 10]. The relevant time scale is the convective one. For bumps
of dimension 10 m, sliding rate 100 m y-l, this is also about one month.

Only when a basic hydrological model represents all these processes can one
confidently go looking for explanations (in this model) of mini-surges, short-term
"events," and so on.

There have been various more or less ad hoc models to explain surging behaviour.
Prominent among these is the paper by Budd [2], whose model may be compared with
that presented here. In a sense, the approach is the same. Conservation of mass is
invoked, the definition of the basal shear stress is the same, and only the sliding law
is very different. Budd’s "sliding law" (his equation (14)) is entirely empirical, and in
fact not a local sliding law as such. More reasonable might have been a multivalued
sliding law -=f(u) as proposed by Lliboutry [15], but a numerical model for that
would have failed, unless some relaxation mechanism for transition from slow to fast
velocities were present. Although R6thlisberger’s [21] hydraulic theory had been
published, the crucial switching behaviour of the drainage system was not observed
until the Variegated surge, and in the present model, this provides the relaxation
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mechanism (the term in e in (2.1c)), which is itself crucial: if we put e =0, then (2.1)
does not have continuous solutions, and a straightforward numerical approach will fail.

3. Analysis. There are some theoretical reasons (Fowler [7]) for adopting the form

(3.1) f(A) ca1/’, m > n,

for the sliding law in (2.1b); at any rate, the schematic forms off and g versus A are
as shown in Fig. 2(a) and (b). Where necessary, we will assume (3.1) for f, and a step
function for g, as indicated before (2.2). The parameters a, e, and in (2.1) are all
small, and it makes sense, to leading order, to ignore them. Then

(3.2) N g(A), H Nf(A), a uU",
and it is not difficult to see that elimination of N gives a multivalued relation between
H and u, as shown in Fig. 3. The resultant relationship between Q- uH and H is
thus also multivalued, and is shown in Fig. 4. For the choice of functions f and g
above, the sliding law in Fig. 3 is given by

(3.3a) H CNR"-"/" lg 1/rn, lg < AcNR,
(3.3b) H Ct(m-n)/m N(R"-")1’’ U l/m, U> t AcNR,n
these being connected by the unstable transition branch, u AN".

The description of a surge cycle has been given by Fowler [6], and is briefly
summarized in Fig. 5. Here the aim is to exhibit the mathematical detail necessary to
cement the constituents of this picture together. We denote the two transition values

f(A) (a)
g(A) (b)

FIG. 2(a), (b). Schematic illustration of the sliding and drainage functions f(A), g(A) (see text).

U

FIG. 3. H as a multivalued function of u.
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H_ H/ H

FIG. 4. Q as a multivalued function of H.

of H in Fig. 4 as H/ and H_. The equilibrium profile of a glacier (solve (2.1a) for Q
with OH/Or =0) is just Q s(x), so that, neglecting a and , we have H given from
Q(H) s(x), Q(H) being given from Fig. 4. Now if the lower branch value of Q at
H/, say Qc, is less than the maximum value of the balance, Smax, then an initial profile
such as Fig. 5(a) will relax towards an intended "equilibrium" with Q > Qc. When the
maximum value of H, Hmax, reaches H/, this slow adjustment cannot continue, and
neither can the reduced model" at least one of the parameters a, /x, e, must become
important in small scale transition regions. We argue below that in this activation
stage, two activation waves propagate rapidly up and down glacier, and in so doing
transfer the part of the glacier with H_ < H < H/ from the lower branch to the upper
branch (see Fig. 5(b)). At the end of this activation stage, the central portion of the
glacier is activated, moving at high velocities, and ready to slump (Fig. 5(c)). We thus
need to show that rapidly propagating activation waves of the type described above
exist, and that they can travel in either direction. These waves demarcate the moving
boundary between the activated (linked-cavity) drainage system and the quiescent
(tunnel) system. If 6 in (3.3) is small enough, the upper branch has much higher
velocity than the lower branch, and the activated region will slump forward rapidly
(Fig. 5(d)) towards a new quasi-equilibrium. Mass balance is irrelevant to this state
(Fig. 5(e)), which is thus one of constant Q (hence H H_ in our model). The rapid
propagation of the surge front requires a shock structure analysis. In particular, Kamb
et al. 12] observed an oscillatory decay behind the shock (alternating tensile/compress-
ive zones), which we would like to explain. At the end of the surge, we then expect
deactivation waves to propagate inwards from the boundaries, and the glacier resumes
its pre-surge quiescent build-up.

Our purpose is then the following: taking the model (2.1) as given, we will first
show that activation waves, deactivation waves, and tensile/compressive surge fronts
exist and have characteristics at least comparable to observations on Variegated Glacier.
In 4 we will formulate a set of surge criteria, based on this model, and see whether
they compare reasonably to surging glaciers’ characteristics, and also whether periods,
etc., are of comparable size. We also mention some of the problems which may be of
quantitative importance in this analysis.

(i) Activation waves. We seek a traveling wave solution which connects an acti-
vated region (N 3NR) to a quiescent one (N NR). We expect H to be approximately
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FIG. 5. (a) Pre-surge, quiescent. (b) Activation: rapidlypropagating drainage transitionfronts. (c) Activated

stage.
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FIG. 5. Continued. (d) Propagation of surge front. (e) Deactivation; post-surge phase.

constant across such a shock, and that the region is thin. To be specific, consider a

backwards traveling wave. The equations are (2.1), (3.1), and the drainage law (see
(2.2)). By a suitable rescaling, we may choose NR 1 and Ac 1, so that

(3.4)
g(A) 1, a<l,

=6, A>I.

We put

(3.5) H H* + e3X; x + Vt e2
and expect V>> 1, 82, 83 << 1. A leading order balance can be effected in (2.1a) and
(2.1b) by choosing

(3.6) E3--I/V e2--.V
and then we find, to leading order,

(3.7)
whence

(3.8a)

(3.8b)

H*(1 + t2,ue) +  {luel ‘’/")-lue}e cNl-(n/m)ul/m,

Ne + N.--. g(A),
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where

(3.9) =aH*/(eV)’+(’/", i=txH*/eV2.

If x+ Vt is replaced by x- Vt in (3.5), the effect is to change the sign of the first
derivatives in (3.8). Since for forward traveling waves, the boundary conditions at
are reversed, the same model will therefore also describe forward traveling activation
waves.

Wc choose V in orde to brin in the largest of the terms and in (.8). Takin
a 10-2, /. 10-, and if we guess eV 10-a, then c (for n 3) is 10-/3, whereas
/2 is 1/V--- 10e. Even for e as large as 10- (drainage response time of one month),
this is quite moderate; thus we suppose t >>/2 (the precise value must be found as an
eigenvalue from the solution), and will presuppose that/2 << 1. At leading order, we
therefore have

(3.10) d(u/"} cNl-(n/m)tl 1/m H*,

where we anticipate u > 0, and where the solution of (3.8b) gives N as

(3.11a) N=I, u<l,

(3.11b) N= [6+(1-tS) e-], u> 1.

We wish to solve (3.10), using (3.11), with

(3.12a) uo(H*/c)" as :--o,
(3.12b) u --> (H*/ c)"/ 6"-" as -and we expect that satisfaction of these boundary conditions requires special choice
of

One of the features of surging glaciers is the large velocity difference between
surging and nonsurging states. This corresponds to the assumption that 6 is small in
(3.12). With this assumption, an asymptotic solution is possible, in which c is small.
To see this, choose the origin so that 0 corresponds to the critical value of u,

(3.13) u=u=l.

For : < 0, the solution of

(3.14) d(ul/") cu 1/" H*,

with (3.12a) and (3.13) on : =0, yields

(3.15) u=u[/$z"/("+l)], u= l, u=p/n/(n+) one:=0,

where p is an O(1) constant, which can be computed. For > 0, and while ---O(1),
we have N e-. We put

(3.16) u=/’’/(’-’,

so that

(3.17) (a/")e" cl/m e-E-("/’)le + 0(8,

matching conditions to the solution in : < 0 require

(3.18) a, ae---0 as -->0.
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(3.19)

where

(3.20a)

Neglecting the small terms, the appropriate solution satisfies

a--- a:’, :- 0,

"),= m(n + l)/(m + n) > l,

(3.20b) a
1

as : -> ,
(3.21) ff D:,

where D can be determined from a numerical solution of (3.17). For so>> O(1), we put

(3.22) a U ,, Z ,,
and now choose , and c so that all three terms in (3.10) balance (note when : >> 1,
N t so long as sc is algebraically large in ). Specifically, we define

(3.23a) , C’/(m+l),(m-’)/(’+l),
(3.23b) =(b/H*)(m-1)/mc(’-")/(m+l)(’-")2/(’+l),
where b is O(1), to be chosen; then U satisfies, for Z O(1),

(3.24) U’)z U1/’ b,

with the matching condition from (3.21) giving as initial conditions"

(3.25) U=0, Uz=D onZ=0.

Notice from (3.17) that D can be written as

(3.26) D-- D1cmn/(m-n),
where D1 can be computed from (3.17) using c= 1. We thus integrate (3.24) using
(3.25); the extra condition

(3.27) U --> b as Z --> eo

determines the value of b, and hence (3.23b) gives c.
A first integral of (3.24) is

(3.28) U(z’+l)/’/(n + 1) mU("+l/’/(m + 1)- bU+ B,

where the constant of integration B satisfies, from (3.25) and (3.27),

(3.29) B D("+)/’/(n + 1) b’+l/(m + 1),

whence

+ 1
D(n+l/n

We have c(’-2/(m(’+l). For example, if m=4 and n=3, then (m-
n)/(m(m+ 1))= 1/20. Thus the dependence on is very weak. We then choose V
(the shock speed) from (3.9), that is,

(3.31) V=
1 (aH,/),/(,+
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The shock width is really (from (3.6) and (3.22))

(3.32) Ax eV/6(m-")/("+,
and this is practically O(a"/("+). For c 10-2, n 3, this is 10-3/. On a 20 km long
glacier, this is about 600 metres, or, in round figures, one kilometre. The velocity of
these waves depends on 1/e. Based on a tunnel collapse time of ---one day, Fowler
[6] suggested e 10-5, and thus V--- 103.5 3000, which in terms of a velocity of 0.4 rn
day- is equivalent to 50 metres an hour. This is ofthe order ofmagnitude ofpropagation
of mini-surges, which may thus correspond to such pressure waves. However, the
unstable transition from tunnel to cavity via leakage to the bed may well occur over
a much longer time scale, and until a more complete model than (2.1c) is available,
the appropriate estimate of e can only be guessed.

(ii) The surge. After propagation of the activation waves, the activated zone has
(neglecting ce,/x and e) velocity given by (3.3), that is,

(3.33) u=Hm/(m+l)u,

where

(3.34) , tm-ncm/(m d- 1)<< 1.

We rescale with ,; thus

(3.35) t= ’,

so that to leading order

(3.36) H, + HmHx 0

for x_<x<xy, where x_ (constant) is where H=H_ (upstream), and xy(r) is the
position of the surge front. The solution can be written implicitly in the form

(3.37) H= Ho(x- g"’),

for x > x_ + H-, which is the characteristic emanating from x_, and which bounds
the disturbance region. A shock forms at xf (see Hutter [9] for further discussion of
nonlinear waves on glaciers)" the advance of xy is governed by

(3.38) dxy Hm+(Xr-, "r)
dr (m+ 1)[H(xy-, ’)-Ho(xy)]’

since the mass flux is 0(,) in front of the shock. When the front passes the terminus,
we have

dxf,-- Hm(3.39) d-7" (xf-, r)/(m + 1)

so that the characteristics behind catch up with the front. However, we see from (3.38)
that this is not so initially, and (3.38) would predict infinite shock speed, whereas we
require dxy/dr <-_ Hm_, so that characteristics from xy- can reach the shock. We surmise
that until such time, the front grows unstably, and carries with it the drainage transition
region (see below for further discussion). The characteristic diagram is shown in Fig.
6. We could integrate (3.39) using (3.37) to find Xc(t). The duration and extent of the
advance can be computed by inspection, however. The total advance of the front is
given by A, where

x++A
(3.40) H_(x++A-x_)= Ho(() d.
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X_ X+ X

FIG. 6. Characteristic diagramfor the solution of (3.36). A shockfirstforms by intersection ofcharacteristics
in x_ x+ on the (dashed) characteristic from x/ at some " ’ > O. However, for " < re, characteristics

from x+ intersect thatfrom x+. We surmise that there is a transcritical period when thefast incoming activation
wave at x+, with small depth change, is transferred to a slower wave front advance with large depth change. A
very similar analysis appears in Fowler [5]. It is consistent with this description that the activated region first
exhibits a bulge (at xf ), which subsequently propagates as a front. This is consistent with the descriptions of
the Variegated surge in phase one and phase two (Kamb et al. [12]).

If we suppose A is quite small, and that x+ is near the terminus initially, then this is just

(3.41) A(AH)(x+-x_)/H_,

where (AH) is the mean decrease in thickness, approximately (H/-H_)/2. The
duration of the advance is then given by

r (x+ + A- x_)/H

_
(x+- x_)(H_ + (AH))/H_+

(3.42)
(x+ x_)I/ gin_ +,

where H is the mean thickness during the surge.
In order to justify the description of the shock front, we need to examine the

shock structure. This is conceptually quite similar to the analysis of transcritical shocks
by Fowler [5]. We seek a traveling wave solution to (2.1) in the form of functions of
X, where we put

(3.43) x- Vt X,

and g and V are to be specified (we expect V to be equivalent to (3.38)). Then
(neglecting s’(x) in (2.1a), which will be relatively small), we have

(3.44a) H( V- u) constant,

Cb/1/m,
(3.44b) H[1 t2Hx]+ [Hu,lul(/")-’], ,m_.)/.CU/m

where the upper and lower functions apply in front ofand behind the drainage transition
region, respectively. Here

(3.45) c O/’l+(1/n), /.L/.
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Notice that d, and V are defined differently than in (i). We can locate the drainage
transition at X 0 without loss of generality. For X < O, we put

(3.46) u U/5 m-’,

and will expect boundary conditions U, Ux 0 at X 0. We put

(3.47) V /m-,;
thus (if H+ and H- are the values of H downstream and upstream of the shock)
(3.44a) implies

(3.48) 9-- H-U-/(H--H+), U-=(H-/c)’.

It follows that

(3.49) H( 9- U)--- U+ 9 C, say,

and (3.44b) is

(3.50) H[1 IJHx]+ (/(’/")-’)[HUx[ Ux I(’/")-l]x cU’/’’.

We must choose the dimensionless shock width so that one or the other derivative
term in (3.50) is important. Let us choose c (’/")-, that is,

(3.51) g [a"/6m-"]’/(’+’"

a typical value, for n 3, a 10-2, 3m-n= 10-2 (a hundred fold increase of velocity),
is g---10-1, corresponding to two kilometres on a 20 km length glacier. Then also

2 O(1), so that we can expect both terms to be important. Thus the problem is to solve

H(1-1Hx)+[HUxl Uxl(1/’)-1
x cUl/m,

(3.52)
H=C/(P-U),

in X < 0, with

u U- as X-*
(3.53)

U=Ux=0 onX=0.

The problem in X >0 can be simplified somewhat, since H H/+ O(8"-), X
8(m-,v(,+l, U.. 8,- there; however, we do not pursue this further (see Fowler [5]
for a similar analysis.).

Equation (3.52) must be solved numerically, by picking C and V and integ.rating
backwards towards -eo. U_ and hence H- are then determined in terms of V and
H/. For large values of -X, let U U- + v. Approximating (3.52) for small v, we find

(3.54) [vxlv,,l(1/")-’],, vx / /v o,
where

(3.55) /3 I2B_/C, 3,=(mH_U_-C)/mU_C.

It is not difficult to see that v necessarily tends to zero as X tends to -o, only if 3’ > 0
(consider the "energy" relation dE/d(-X)=-SVx, where E=lvxl("+l)/"/(n+ 1)+
yv2/2), whereas if 3’ < 0, then v 0 is a saddle point, which suggests that (3.52) cannot
be satisfied with both boundary conditions at X 0. We therefore expect solutions to
exist to (3.52) with (3.53), providing 3’> 0, that is, using (3.48) and (3.49),

(3.56) H_ H+ > H+/m,
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and in this case the decay as X- of the velocity profile will be oscillatory when
y >/32/4, for the particular case n 1, that is, if

(3.57) H_- H/> H//m + 2H2_(H_- H+)2/4H+H_.

In practice (e.g.,/2 1, H/ 1, U_ 1, m =4), oscillatory decay can be expected, and
is indeed observed (Kamb et al. [12, Fig. 4]). For n > 1, it is more likely, since when
v<< 1, then the energy E---v2, so Ivxl-v//’, and dE/d(-X)---v2x---vn’/(n+l)<< E,
so that an oscillatory decay is assured.

The restrictive criterion for the existence of the waves discussed here, (3.56), is
exactly equivalent to the condition that characteristics from xy- reach the shock, and
implies that some other analysis is necessary in the initial stages of the surge, 0<
H_-H/ < H/! m. This is not too surprising, since the arriving activation wave has
width O[oln/(n+l)( -(m-n)3/m(m+l)(n+l)] and speed O[oln/(n+l)t--n(m--n)2/m(m/l)(n+l)e--1],
whereas the surge front has width O[an/(n/l)-’-)/n/l)] and speed O(-"-")). We
surmise that the transition between these two regimes occurs in a transcritical regime,
where both the change in drainage and jump in depth occur over the same length
scale. A mathematically similar problem was considered by Fowler [5], but we do not
attempt to pursue the analysis here. The physical suggestion is that in the initial stages
of a surge, a surge front grows in height unstably until it satisfies (3.56) (which it must
eventually do).

(iii) Deactivation wave. It can be seen from Fig. 6 that the active surge phase
is terminated by the passage of a characteristic from x_, which propagates with
speed (from (3.37)) dx/dt O(--(m--n)). It is reasonable to suppose that a hydraulic
deactivation wave accompanies this characteristic. We write

(3.58a) x /m-, X,

(3.58b) H H_ + gX,

(3.8c) u u-",

so that to leading order (2.1c) becomes

(3.59) -Q(e/,’-"g)Nx + N g(A).

We anticipate that >> e/6"-", so that the hydraulic switch occurs on a length scale
X << 1, and f(A) is then given by (cf. (3.44))

(3.60) f= (’-")/mcul/", X > O,

where we may take the switch at X 0 without loss of generality. To leading order,
(2.1) then gives

(3.61) X’--H_U/f’,
(3.62) H_ + H_[ Uxl Uxl(/")-]x cUl/m,

for X > O, bearing in mind/z << 1, and putting

(3.63) [aS-("-")/"] "/(’+).

Our assumption that N switches on a scale X << 1 is then tantamount to assuming

(3.64) e << 6"-" [a"6("-")] /(’+).
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If 6"-n= 10-2, ce-----10-2, and n 3, this is e << 10-2, which is feasible. The boundary
conditions for U are

U=0 on X =0,

(3.65)
U U=(H_/c)" asX,

and the flow behind uncouples. Equation (3.62) may be written as

(3.66) U’)x U Uo)/" 1,

from which Ux O(1) at X 0 may be found. In order to satisfy continuity of u and
Ux at X 0, the outer solution for u in X < 0 of

(3.67) H_-txn2_ux + m-nn_[uxlUxl(1/n)-l]x cu /m,

that is, u--- U_ (H_/c)’, must be modulated by a boundary layer near X 0. We do
not pursue the details. Again, comparison can be made with Fowler [5].

4. Discussion. The model equations (2.1) which we have used in describing surge
phenomena are based on real physics, but are nevertheless not necessarily quantitatively
accurate. The primary purpose of this paper is to suggest that a rough overall description
of the flow as a spatially-varying relaxation oscillator, as portrayed in Fig. 5, can be
mathematically validated by detailed analysis of the connecting traveling-wave struc-
tures. It remains to consider the possibility of making testable predictions (e.g., surge
criteria) using this model. As we shall see, this is not likely to be a very profitable
exercise.

There are two sets of predictions we would like to make. First, what parametric
criterion distinguishes surging from nonsurging glaciers? Although there are various
side issues, the principal criterion is that in a positive steady state, drainage transition
should be able to take place, that is, A > Ac (see the discussion preceding (2.2)). In
order to interpret this in terms of physical parameters, we use the following definitions
(Fowler [6], [7], and where for comparison we do not rescale A with A, as in (3.4))"

(4.1a) r--- C d,

(4.1b) S"-, C2.11/8n1/4n,

(4.1c) ud --,,
(4.1d) "r-- c4Nl-"/mul/’,

(4.1e) A---cu/N’,

(4.1f) A 6-9m/{2(m+2)}N3mn/(m+2).

The dimensional variables are z (shear stress), N (effective pressure), u (longitudinal
velocity), and d (depth); A and A have the same meaning as previously. , and are
scaled values of mean bedrock slope X and subglacial drainage q, where we have put

(4.2) , 10X, t= q/[10 m s-l],

so that typically , t--- 1. The flux is a measure of climatic accumulation, typically
in the range 104-105m2 y-1. The different relations in (4.1) have the following meaning:
(4.1a) is the shear stress balance, (4.1b) is the approximate steady tunnel drainage
characteristic, (4.1c) is conservation of mass, (4.1d) is the sliding law, (4.1e) and (4.1f)
reflect the stability characteristics of tunnel drainage. Estimates for the parameters in
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(4.1) that can be made, so as to be consistent wkh observations, particularly of
Variegated Glacier (Kamb et al. [12], Bindschadler [1]) are as follows:

(4.3a) cl 10-2 bar m-1,

(4.3b) c2 10 bar,

(4.3c) C4. 10-1+n/, barn/, m-1/, yl/,,

(4.3d) c5 10n-2 bar m-1 y,

(4.3e) C6"" 10-3mn/(m+2) bar-3"n/’+2),

and we find that the surge criterion A > Ac reduces to

(4.4) dp 104+2/m[(ll/8n)+3/{8(m+2)}][l+(1/4n)-3/{4(m+l)}] m2 y-1.

Now in reality, we would expect the discharge t to depend on via the width W;
thus we put

(4.5) t= /’[/(105 m2 y-)],

where the scaled width if" W/(1 kin) (so $7... 1 for Variegated Glacier). Approxi-
mately, (4.4) is then

(4.6) > 105,Pff"q m2 y-,
where

ll(m+2)+3n 4n(m+2)
(4.7) P= 2(3n-m-2)’

q
3n-m-2

1.

For values rn 4, n 3, we find p 12, q 23. Consequently, (4.6) is essentially (when
p, q>0)

(4.8) ’ < O(1), =q/p-2,

if -- 105 m2 y-, and is essentially independent of .
There are two main comparisons to be made to this result. The first is to Budd’s

[2] surging criterion, which is

(4.9) > O(105 m2 y-),

and evidently completely different. Budd’s data for surging glaciers suggests In [,]
constant for the seven examples he chooses. His data, or that of Meier and Post [17],
is also consistent with (4.8), with approximate equality for/3 0.8. In this connection,
notice that use of Bindschadler’s [1] values m 3, n---2 for Variegated Glacier give
/3 1.3.

The second comparison is to the statistical analysis of Clarke et al. [4]. Their
conclusion was that surging behaviour correlated with length, but not (independently)
with surface slope. However, since long glaciers are also less steep, this could equally
well be interpreted as meaning that gently-sloping glaciers tend to surge, consistently
with (4.8), but in contradiction to (4.9). Clarke et al. [4] did not report the widths of
the glacier in their data set. It would be very interesting to test for the validity of a
criterion such as (4.8), which involves purely geometrical criteria.
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The second set of predictions which we could make from this model are those
concerning depth reduction, period, advance, and duration of surges. From the results
of this paper, we could estimate the dimensional values of these as follows:

(4.10a) depth reduction: Ad d+- d_--- dAH,

(4.lOb) period: P- Ad/ V,

(4.10c) advance: Al--. l(d+- d_)2/ d+d_,

(4.10d) duration: At AI/ u+,

where d+, d_ are pre- and post-surge depths, and u+ is surge velocity. A reasonable
variety of these quantities can occur (Meier and Post [17]), but there is a problem in
using the present results. Using (3.3), we would predict

(4.11) H_IH+ ,, u+l u_ ll 6"-",
neither of which is consonant with the data from Variegated Glacier, which would
suggest 6 1/4, u//u_--. 100, and H_/H+ .--. It is specifically the large drop in depth
which cannot be reconciled with observation. Indeed, (4.10c) suggests that typically
Ad/d << 1 (since Al/l< 1 is observed). We are forced to conclude that, whereas the
description of the mechanics of the flow may be sound, the detailed forms of sliding
law and drainage transition criterion in (3.3) cannot be used to make specific predictions.

There are a whole host of reasons why this may be so. Most obvious is the neglect
in our analysis of transverse variations in the flow. Glaciers are of finite width, and
they flow in valleys of nonhorizontal cross sections. Therefore depth, overburden
pressure, and effective pressure will all vary across the valley width. This variation is
often taken account of by a "shape factor" (Paterson [19]), which, for example, is
used in computing the mean shear stress. However, it is more complicated to take
account of the effect of lateral variations in N and H, when a switch in drainage occurs.

Apart from this, we may question the quantitative validity of the two fundamental
features ofthe model, i.e., the sliding law " oc Nau b, and the drainage switching criterion
u > cN n. Both of these prescriptions rely on a detailed sub-model of conditions at the
glacier bed, and whereas there is some agreement on the qualitative form, the quantita-
tive details must be considered uncertain. The sliding law is based on a theoretical
consideration of lubricated flow over a rough bedrock (Fowler [7]), whereas it is
thought that many glaciers actually slide at their bases on layers of deformable debris
(glacial till), which is eroded from the underlying bedrock. A notable example is
Trapridge Glacier (Clarke et al. [3]). Although in this case the form of the sliding law
assumed here may be appropriate (cf. Bindschadler 1]), there is no obvious justification
for supposing that the exponents, or coefficients, are the same. In particular, the
drainage switching criterion is likely to be different. Even within the context of the
present model, Walder [22] and Kamb [13] have given two radically different criteria
for drainage transition: N < constant (Walder), or Nu < constant (Kamb).

Our conclusion must be that, whereas the qualitative mathematical description
given in this paper may be appropriate, nevertheless the detailed prediction of such
features as surge duration and advance, etc., must await more conclusive studies of
the sliding and drainage processes at the bed.

5. Conclusions. Despite the caveats advanced in the preceding section, the model
proposed here is realistic in the sense that it is based on reasonable physics. The
description of basal sliding and drainage is consistent with observations on Variegated
Glacier. Given this model, we have shown how it will predict surging to occur if the
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drainage switching criterion is satisfied, and we have shown how a surge consists of
fast and slow flow phases, separated by activation and deactivation waves, where the
hydraulic drainage system is altered. There are further qualitative tests to which this
model may be subjected. It should be able to explain seasonal shut-down of surges,
seasonal waves (Hodge [8]), by including a seasonal variation in N, and it should be
able to explain the propagation of "mini-surges" (Kamb and Engelhardt [14])
analogously to wave propagation in excitable media, for values of H such that
0 < H/- H << 1. Analyses of such phenomena are reserved for future work.
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