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An industrial problem concerning segregation in carbon paste is described. Billets
of paste, which are a mixture of coke and pitch, are fed into a steel tube in a
furnace, and the tube is lowered at a rate of about 0.75 m day"1. In the tube, the
pitch is deformable, and the paste is essentially a very viscous two-phase
paniculate medium. The grain size distribution is essentially bimodal, consisting
of coarse (—10 mm) particles in a distribution of finer (100 urn) particles.
Segregation occurs near the walls of the tube, leading to a lower content of coarse
particles; such segregation is unwanted, and so the length of this segregated
region is required to be minimized. It is suggested that segregation is due to the
stiffness of the coarse participate mixture, which is less able to deform than the
pitch/fines mixture. Consequently, the length of the segregated region is
controlled by the coarse mixture viscosity, and an expression is derived for the
segregation length.

1. Introduction

THE PROBLEM to be discussed here was presented to the Mathematical Study
Groups for Industry at Oxford University by Elkem a/s R & D Centre of
Norway, during the workshop in March 1987. Further discussion took place at the
corresponding workshop in Edinburgh, in March 1988. Elkem apply carbon paste
in the Stfderberg electrode for smelting furnaces. Typical conditions in the upper
part of an electrode are shown in Fig. 1. Billets of solid paste (of diameter up to
1 m) are fed into the top of a cylindrical steel tube (of diameter up to 2 m). Heat
is supplied by fans blowing hot air along the walls, and is also induced in the steel
tube by the current supplied to the contact clamps. The billets, a mixture of coke
(calcined anthracite) and pitch, become deformable as the temperature increases
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FIG. 1. A sketch of the paste in the electrode, with the segregated region indicated. This is the
experimentally observed situation.

through the softening point of pitch, about 50°C. Thus, in the cylinder, the paste
is a two-phase particulate viscous medium, which can deform under the applied
load (typically some 5 m height of billets is stacked on top). The confining tube is
lowered at a rate (typically) of 0.75 m day"1 (in distinct steps, though we shall
consider this to be continuous), so that the flow can exist in a steady state (the
input rate of billets exactly matching the consumption of baked paste at the
bottom). As the paste descends, it becomes hotter, and bakes in the contact
clamp area at a temperature of about 500°C, and is thus a solid electrode
conducting current to the furnace process.

A segregation zone is indicated in Fig. 1. The initial paste composition is a
mixture of about 75% coke particles and 25% pitch. The distribution of coke
particles (as measured) is indicated in Fig. 2a, which shows that normal paste is
bimodally distributed, with a sizeable fraction (about 40% of the coke) of coarse
(10 mm) particles, and the rest being much finer (~100uin). By contrast, in the
segregated region, the distribution is as shown in Fig. 2b: essentially, the coarse
particles are absent.
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Fio. 2. Coke partide size distribution density function: (a) normal; (b) segregated. The area under
the curves up to a given partide size give the total volume of coke particles less than that size. Solid
lines are from measurements; dashed lines are extrapolation. Note the logarithmic scale. More
specifically, if <p(R) is the fraction of particles less than radius R in dimension, then these figures
portray d#/d(ln R) versus hi R.
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Fio. 3. Viscosity variations: (a) pure pitch, viscosity variation near softening point T,•» 50°C (Sortie,
1984); (b) pitch plus fines (sludge), for different coke fractions, versus temperature (Tflrklep, 1988);
also shown is the viscosity of a 67% anode paste including coarse particles, but of slightly different
properties; (c) sludge viscosity versus coke concentration at a fixed temperature (Stfrlie, unpublished
data). All viscosities in Pa s.
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The problem is to understand the cause of this segregation, and to quantify it.
Evidently, there is relative flow involved, and it is of some interest to examine the
rheology of the paste. Some data on this is shown in Fig. 3. In Fig. 3a, we see that
the pitch viscosity is extremely temperature-dependent near its softening point.
This corresponds to the transformation from solid billet to deformable paste.
Figure 3b shows some measured values of viscosity versus temperature at
different concentrations of fine coke (no coarse particles). Notice that the
temperature dependence of the pitch-plus-fines sludge decreases with increasing
coke concentration, with a tendency at the highest concentrations to level off.
Figure 3b also contains data on the viscosity of a paste (pitch + fines + coarse)
with 67% solids, somewhat less than the 75% quoted above. This data is for an
anode paste, with rather different properties to an electrode paste, and is
included in Fig. 3b to emphasize the strong temperature dependence of the
mixture viscosity. It is tempting to compare this 67% paste viscosity with
corresponding pitch/fines viscosities, which seem to indicate that inclusion of
coarse particles makes little difference to the rheology. This is misleading for the
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following reasons: (i) the anode paste is not directly comparable to the electrode
paste; (ii) the real paste has so much (75%) coke in it that it is almost locked (see
Fig. 3c, where it is shown that the effect of increasing concentration of fines is to
increase the viscosity dramatically), so that it is reasonable to expect even 30%
coarse particles to experience significantly increased resistance, compared with
the fines; (iii) the simple fact that pitch plus fines does segregate from the coarse
matrix suggests, ipso facto, that the Theological behaviour should be distinct. This
data is taken from T0rklep (1988).

In reality, we do not expect the paste to behave like a Newtonian fluid. It is
more like a saturated soil, and as such can be expected to exhibit cohesion, a
yield stress, and non-Newtonian properties. Sakai (1977a,b) has measured the
viscoelastic properties of carbon paste. More suggestively, Covey & Stanmore
(1980) measured the Theological properties of wet, brown coals: they found that
the behaviour could be represented as that of a (possibly nonlinear) Bingham
fluid.

It is not difficult to understand how such behaviour can arise in a dense
particulate paste. When there is grain-to-grain contact, then part of any external
stress (e.g. overburden pressure) is taken up by intergranular contacts: this part
of the stress is called the effective pressure, and will be denoted by pc. Now, if a
shear stress is applied, the paste will not deform until the stress is sufficient to
overcome the internal friction due to intergranular contacts. Thus, a yield stress
will exist, which we expect to depend on thi effective pressure. For a densely
packed particulate, it is also reasonable to associate shear deformation with
dilatancy - the coarse particles have to move round each other. These and other
typical behaviours are discussed by Clarke (1987).

The mechanism of segregation involves the separation of the pitch/fines sludge
from the coarse particulate paste. It is easy to visualize this as being due to the
ability of the less viscous sludge to be squeezed out of the particulate matrix,
much in the way water is squeezed out of wet sand when one stands on it. The
temperature rise in the contact clamp area will (dramatically) enhance this effect.
The applied load here would be the solid billets, and in this view the apparently
intuitive way to reduce the segregation length would be by reducing the load.
However, as we shall see, the opposite is the case. Whereas the idealization of
the paste as a two-phase (sludge plus coarse particulate) medium seems
appropriate, it is not so much the ease with which the sludge can be squeezed out
which controls the flow, but rather the difficulty with which the coarse matrix is
deformed.

The viability of this description of the paste stems from the data presented in
Fig. 3. As well as the segregation of coarse from fine coke, there is also a lateral
differentiation in the concentration of fine coke (possibly for similar reasons), so
that the segregated sludge is about 50% fines. Although data is not available for a
75% paste, we can infer from Fig. 3b that a realistic value of paste viscosity at
150°C must be larger than KfPas, possibly (by analogy with Fig. 3c) much
larger, whereas at the same temperature, 50% sludge has a viscosity of ~102 Pa s.
The differential viscosity implies a blocking action of the coarse particles, and
hence, ipso facto, a differential flow mechanism.
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2. Mathematical model

We consider a 'two-phase' participate flow. The interstitial 'liquid' is the
pitch-plus-fines sludge. Suitable equations for the slow two-phase flow are then
(with zero Reynolds number) (Drew, 1983)

"it ) (21)
w-u = -K[Vp - pegi], VP = V • x +

where a is the void fraction (volume fraction of sludge), w is the sludge velocity,
u is the coarse paniculate velocity, p is the sludge pressure, and P is the total
pressure. We have taken the unit vector / pointing vertically downwards, g is the
acceleration due to gravity, p( is the sludge density, pm is the paste density, and x
is the deviatoric stress tensor for the mixture. These equations represent
conservation of mass and momentum for the two phases, and we have assumed
Darcy's law for the flow of the sludge through the particulate.

Some comments on the pressures p and P should be made. In writing (2.1), we
think of the pressure p as an averaged phasic pressure (cf. Drew, 1983). That is,
the total pressure P would be given by P = ap + (1 — a)pm, where pm is the
matrix phase-averaged pressure. However, in measuring effective and water
pressures in soils, soil engineers actually measure the quantities ap and
(1 - a)pm, and it is these which they designate the interstitial pressure and
effective pressure, respectively. They then determine Darcy's law experimentally
in terms of the interstitial pressure. Thus, although (2.1)3 is consistent with
two-phase flow theory (Drew, 1983) if p is the phasic pressure, it is conventional
to think of it in measurements as being the interstitial pressure, and we shall
follow this convention below. The distinction may in practice be academic
(though see the discussion in Section 4), since p should be related to a (see
below).

From the above discussion, we relate P and p by

P-p=Pc. (2.2)

To complete the model, we need constitutive relations for the permeability
coefficient K, the effective pressure pe, and the matrix rheology (i.e. x). The
permeability coefficient K is defined by

K = d2/Xfie, (2.3)

where d is a typical coarse particle dimension, \i( is the sludge viscosity, and % a
numerical tortuosity factor of order 102 (Bear, 1972). In general, K would vary
with a.

Common practice in soil mechanics is to measure pc as a function of a (Hillel,
1980) and for dynamic situations we might generalize this to

pc = pe(a, Vu), (2.4)

as has been done for boulder clays by Boulton & Hindmarsh (1987). We expect
dpc/da<0 (as in the static case). The dependence of pe on Vu represents the
effects of dilatancy. Thus, dpjd ||Vu|| > 0 represents a dilatant material. Clarke
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(1987) suggests a similar relation (his equation (52)). A general nonlinear
Bingham (or Herschel-Bulkley) fluid satisfies the flow law

e = 0 (x<xc), e = Ax"p;" (x>xc), (2.5)

where xc is yield stress, and x and e ait the square roots of the second invariants
of the stress and strain rate tensors (e.g. 2 ^ = XyXy, in normal tensor notation).

It is as well to be aware of these kinds of data, but for the present purpose of
practically modelling the paste flow, all we require is a flow mechanism which
includes a differential viscosity between the coarse matrix and the finer sludge.
Consequently, we shall henceforward suppose that a (possibly variable) viscosity
\im can be defined for the paste, and we shall suppose the dependence of pc on a
and ||Vn|| is irrelevant; that is, we take pc to be constant. Notice that this may
change the order or type of the equations. There is no accepted rule as to
whether the strain rates in the paste flow law should refer to the coarse matrix
velocity u, or to an averaged value um = (1 — a)u + aw (or to some other, e.g.
the barycentric velocity). While the latter may seem more satisfying, we feel that
the use of u is more intuitively appropriate, as we visualize the coarse matrix
retaining a coherent form. (Actually, for this problem, it will make no difference
to the result.) It then follows that (2.1) can be written in the form

tt, + V-(<w) = 0, - a , +V-[( l-<*)«] = 0, |
w - u = -K[VP - pfgl), V/> = V • [/im{Vn + (V«)T}] + Pmgi. I K • }

These equations describe flow in the unsegregated paste. In the segregated
region, coarse particles are absent, and the viscosity is much smaller. Thus the
segregated region is like a pure fluid by comparison with the porous particulate
matrix. Therefore, appropriate boundary conditions of continuous stress at the
interface are well approximated by requiring the matrix stress to have zero shear
component, and the normal stress to balance the hydrostatic pressure in the
sludge. The situation is shown in Fig. 4, where we adopt cylindrical coordinates
(x, r) with x pointing downwards. The free surface is denoted by r = R(x, t). The
boundary of the matrix consists of three parts on which we apply the following
boundary conditions.

At the billet: x = 0, 0 < r < b,

a = a0, u = u0, v=0, -I a,, dS = 7ib2(P0 + pA). (2.7)

Here, (u, v) are longitudinal and transverse velocity components of the coarse
particulate flow, b is the billet radius, on is the (total) longitudinal stress in the x
direction, pA is atmospheric pressure, and Po is the applied pressure due to the
billets (Po = pgh, where h is the height of the billet stack).

On the free surface: 0 <x </„ r = R{x, t), where /, is the segregation length,

a«, = 0, aM = -(pA + pegx), v = R, + uRx. (2.8)

The last relation here is the kinematic condition, which states that the free surface
is a material surface for the coarse particles, which is reasonable if there is some
cohesion of the matrix.
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On the wall: r = a, x > /„ where a is the tube radius,

u = uw, v = 0.

Here uw is the wall velocity, and to operate a steady state, we choose

b2u0 = a2uK.

(2.9)

(2.10)

The above boundary conditions relate to the matrix flow. Several others (e.g.
wn = 0 at the wall) would be needed for the complete problem, but we shall see
that the above suffice for the present case.

3. Analysis

First, we reduce the equations to dimensionless form. We put

r = ar*, x = ax*, R = aR*, u

t = (a/uo)t*, P = pA + pfgx + P0P*, /
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where the asterisks indicate dimensionless quantities. On substitution, the
equations become (omitting the asterisks)

-or, + V • [(1-«)«] = 0, 1
)T]} + yi, J K ' 'w - u = -dfiT'VP, VP = /3V • {/z2[Vu + (V«)T

where
6 = d2P0/Xli*eau0, p = n*mu0/aP0, y = ( p m - pe)ga/P0. (3.3)

The boundary conditions (2.7)-(2.9) become

or = a0, u = l, v = 0, — I a n dS = Jir2, at x = 0,
^billet

<r« = 0, aw ,=0, v = R, + uRx on r = R, f (3.4)

u = /-Q, u = 0 at r = 1,

where (dimensionlessly) a = —Pi + /3/i2[Vu + (VB)T], 6 is the unit tensor, and

ro = b/a. (3.5)

To estimate the parameters fi, 6, y, we use the following rough estimates:
a ~ l m , u 0~lmday~ 1~10" 5ms" 1 , d~10mm = 10"2m, X~l
(i*~ 1010 Pas (at 50°C, extrapolated from 50% curve in Fig. 3b),
p ^ - l ^ x l f ^ k g r n - 3 , p m ~1.8xl0 3 kgnC 3 , g~10ms~2 , / i ~5
Hi, > 1012 Pa s (at 50°C, extrapolated from anode paste curve, Fig. 3b).

(3.6)
From these we compute, with Po~ pgh,

P o - l ^ P a , (3.7)
and hence

<5~1(T5, y~0.02, pl*\tf. (3.8)

The inequality reflects uncertainty in /i*. Realistically, 8 could be even smaller
and P could be much larger.

Over a (segregation) length scale of order 2 m (see Fig. 1), the temperature
rises from 50 to ~150°C, and we can expect (ix and fi2 to decrease from O(l) to
O(10~8). We postpone such complications for the moment, and consider first the
effect of the estimates in (3.8): these suggest that we neglect 6 and y to leading
order, and then adopt an expansion procedure for large p\ Thus, at leading order,
we have

w~u, (3.9)
whence from (3.2)1>2 we have

V-u = 0, (3.10)
a, + u-Va = 0, (3.11)

and so
a = a0 (3.12)

in the matrix (since a = a0 at x = 0 for all time). The problem thus reduces to
solving the slow flow equations

V • u = 0, VP = fiV- {/̂ [Vu + (VB)T]}, (3.13)

with the boundary conditions (3.4).
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It may be seen that the problem has an extra boundary condition due to the
applied load. Nevertheless, the problem is well posed, since without this extra
condition, the dimensionless segregation length

c = lJa = R~\\) (3-14)

is arbitrary. To see this, visualize a slow viscous jet emptying from a tap into a
vessel which is being lowered at a commensurate rate (so that there can be a
steady state). It is physically obvious that a solution to this problem exists for any
(segregation) length c, depending on the initial conditions. In our case, c will be
determined by the applied load condition.

We seek to analyse (3.13) for large p. Our ansatz is that the jet becomes long
and thin, so that lubrication theory is appropriate. In cylindrical coordinates,
equations (3.13) are, writing u2 = u,

ux + -(rv), = 0,

(3.15)

dv _2v — i3u dv du
dr r dx dx dr

and the boundary conditions, in component form, are

R, + uRx = v, = o2n = 0,
that is,

-(-P + 26,iu

u = rl, v = 0

We rescale the variables as

Then (3.15) becomes

1(
r

r drK

Pr = ~(2itr\

X)RX + Bn(ur-
lx + (-P + 2f:

at r = 1.

follows:

0X. , - ,

*
i a

, r ) + ; - 0 z r V

f vx) = 0,
iivr) = 0 on r = R,

T, v = VI p.

d
dX

— 2fiV/r2 H—r — (nVx),

(3.16)

(3.17)

(3.18)
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with boundary conditions

u = \, V = 0,

RT + uRx = V,

on r = R,

(3.19)

u = r2
0, V = 0 on r = 1.

We seek series expansions in powers of 1//32:

« ~ K < 0 ) + 4 « ( 1 ) + - - - , V ~ V ( 0 ) + - - - , P~P ( 0 > + - - - . (3.20)

(Strictly, we should expand R as well, but it is not necessary here.) From these we
find, successively,

u(0) = U(X, T) (3.21)

(from (3.18)2, and prescribing regularity at r = 0), and thus from (3.18)i

V<°> = -\rV, U' = Ux. (3.22)

At leading order, (3.18)3 then yields

(3.23)
and (3.18)2 leads to

= P(X, T) - nU',

3 fr _d_
T Jn dX

(3.24)

Therefore, at leading order, the stress conditions on r = R give

(P-3(iU')Rx + fi(ui1) + V^) = 0, P-nU'-2V™ = 0, (3.25)

where p is evaluated at r = R; these imply, using (3.22),

P" = 0, (3.26)

and hence from (3.25),, using (3.24) and (3.22),

3 ' (3.27)

Integrating (3.27), together with the applied load condition

-3U' I r\i dr = \ri when R = r0,

we find (with constant Po)

(3.28)

(3.29)

More generally, the right-hand side may be a function of time proportional to the
load. The boundary condition for (3.29) is

U = l o n * = 0. (3.30)
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In addition, application of the kinematic boundary condition on r = R yields,
using (3.22),

RT + URX = -\RU', (3.31)

with boundary condition
R = r0 whenx = 0, (3.32)

and an appropriate initial condition. The segregation length /, is now determined
from x = PX = IJa when R = \, that is,

R(ljap, T) = 1. (3.33)

Transient solutions to these equations can be found numerically. However, the
steady-state solution is easily reduced further. Conservation of mass gives, with
Rr = 0,

R2U = constant = ri, (3.34)

and thus (/' = -2rlR'/R3, whence

f

= £• (3.35)

Defining fi = (2/R2)f$ r/i dr to be the cross-sectionally averaged viscosity, we find

R/r0, (3.36)

so that (3.33) gives the segregation length as

[ dX/fi = 6lnl/r0, (3.37)

using X = x/fi. To be specific, suppose that temperature is roughly proportional
to x, so that

ji = e-x* = c~AX, A = kp, (3.38)
and hence

/. = 7 In (1 + 6A0 In l/r0) = ^ In (1 + 6A In l/r0). (3.39)
A A

For constant viscosity, /, ~a/3, whereas, when A » l , this is reduced to
/, ~ (a/3 In A)/A = (a In /3A)/A. Our previous estimates suggest that A ~ 10 and
A ~ 103, and one might suspect that such high values of A render the lubrication
approximation invalid at least in the region where the paste rapidly thickens and
attaches to the cylinder wall. However, the nonuniformity in this region is likely
to make only a small correction to the attachment length given by (3.39), and we
do not pursue this matter further here. In any event, the lubrication approxima-
tion breaks down near the attachment point, where the jet boundary conditions
change from no stress to no slip: however, we do not expect the leading order
result for /, to alter.

If fi is constant, we see that R is an exponential (rather as shown in Fig. 4),
whereas, if fi is rapidly varying, then R is almost constant until the critical
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segregation length, when the paste spreads out rapidly. This is consistent with
Fig. 1. In fact, we can do rather better than (3.39) since, if p. is rapidly varying (as
it is observed to be), then a direct application of Laplace's method to (3.36) gives

K~roexp[-l/60(d/i/dx)] = roexp[-l/6(d/i/cUO], (3.40)

and thus /, is determined from the condition

dp
dc

1
6/31nl/r0'

dp
dX~ 61nl/r0 '

(3.41)

(i.e. IJa is the value of x where this relation first applies). Furthermore, data
(Fig. 5) indicate that the temperature T in a cross-section is coolest on the inside
for small x, but coolest on the outside nearer the baking zone. (This is because
the electrode is not at the centre of the furnace; it does not affect our analysis.)
Roughly, p is given by the viscosity at the coolest point of the cross-section,
which is thus in the interior for points above the contact clamps. The rapid rise in

4.0

m

3.0

2.0

1.0

-Contact
clamp

-1.0

Furnace
centre

Fio. 5. Measured temperatures inside a 1.7 m diameter Soderberg electrode. (The temperature is not
axisymmetnc because the electrode is situated away from the centre of the furnace.)
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temperature gradient near the clamps is consistent with the termination there of
the segregation zone. One can also treat non-Newtonian viscosity; for example, a
material with viscosity function

, (3.42)

where e is the second strain rate invariant, leads, as before, to (3.35). In the
present approximation, e« \U'\, so we can again derive (3.36) in the form

Ab(R'/R*)R'/R = l (3.43)

where b<*B. For example, a power law such as (2.5)2 (with pe constant) leads to

bviR'/R3)-^-1*", (3.44)

and R can be found by quadrature.

4. Discussion

The specific conclusion of this analysis is that segregation occurs because of the
inability of the extremely viscous matrix to deform from the incoming billets. The
rate of segregation is given by (3.2)3, which determines the differential velocity
w-u. In a steady state, assuming /z, = /i2 = fi, (3.23) and (3.26) imply, with the
rescalings in (3.17),

w - u ~ -6n-\Px/p, Pr) ~ 6[(nux)x/pn, ~(jtux)r/n]. (4.1)

The dominant component (if /x varies laterally) is w2~ 6((ir/fi) \ux\- This tends to
drive a weak inflow when the walls are hot, and a weak outflow when they are
cold, but the effect is marginal. The point is, however, that while (3.2)3 is
responsible for segregation, it may be nevertheless insignificant when the steady
segregated state has been set up. Thus, the real mechanism of segregation occurs
as the viscous jet relaxes to its steady state.

A proper understanding of this requires a numerical solution, and, in passing,
we mention that the problem of the numerical solution of slow viscous jet
extrusion raises issues involving die swell (Middleman & Gavis, 1961; Batchelor
et al., 1973; Tanner et al., 1985) and contact line dynamics (Davis, 1983). These
problems have not arisen in our analysis, partly because of the extra loading
condition we have, and partly because of the lubrication theory approach we have
used. Numerical techniques for problems of this type are discussed by, for
example, Saxelby & Aitchison (1986). However, we can expect the viscous jet
satisfying (3.29) and (3.31) to relax on a dimensionless time scale of O(l). If we
take, as initial state, a uniform paste occupying x > 0, r < 1, then, if RT ~ O(l),
conservation of mass must imply w ~ 1. This is inconsistent with (3.2)3 unless P
changes rapidly near the free boundary r = R. This really suggests that the full
equations (3.2) need to be reconsidered.

Our approximate viscous jet analysis successively had V • « = 0, a = a0, and
then Stokes's equation. If these results were exact, then (3.2),^ would imply
V-H' = 0, and thus V • (/if'VP) = 0. It is only the assumption that d—>0 is a
regular perturbation that allowed us to ignore a and w. However, the above
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Laplace-type equation for P suggests that a further boundary condition for P (or,
originally, p) might be necessary. This is in line with the last sentence of Section
2, where it is pointed out that one should have wn = 0 at the walls. The natural
condition to suggest on r = R for p is (if p is scaled like P in (3.1))

p = Q on r = R (4.2)

and possibly also (continuity of pressure at x = 0)

p = constant on x = 0. (4.3)

We now have at least two possible choices. We have previously referred to the
need for a constitutive relation relating P and p. The simple choice pe = P -p =
constant is not exactly consistent with a = a0- If we instead choose our
constitutive relationship to be a = a0, corresponding to an incompressible matrix,
then we regain the previous jet approximation, with pc =t constant, and p satisfies

p = constant (>0) on x = 0, p = 0 on r = R,

dp/dn=0 onr=l, x>lja. (4.4)

By use of the maximum principle, p = 0 is the minimum interstitial pressure in
the jet; however, this implies that the segregating flow is directed everywhere
outwards from the jet boundary, which is inconsistent with the assumption of a
steady solution, which requires f n~l(dp/dn) dS = 0 along the jet boundary. In
fact, this integral constraint together with p = 0 (minimum) on the jet boundary
requires also dp/dn=Q there, and the problem has no solution. Actually,
differentiation of the interstitial sludge requires compaction of the coarse
particulate, so that a = constant is unlikely to be a good model. A simple (static)
assumption (cf. (2.4)) is

pc = P-p=pe(a) (p'e<0). (4.5)

Simplification of (3.2) (with p in (3.2)3) then yields the equation for the sludge
fraction a:

(4.6)

For 6 #0 , (4.6) is diffusive and we require p{or pc or a) to be prescribed at the
boundary. We have a = a0 at x = 0; thus p = P-pc(a0) > 0 there, while p = 0 on
r = R. The sense of extrusion is therefore out of the paste, as we expect. We can
take a = 1 on r = R. It then follows from (4.6) that the viscous jet with a =*» a0 is a
valid approximation, except in a thin boundary layer of thickness ~(6/i~')J, in
which a jumps rapidly, p drops sharply, and in which

)l. (4.7)
Furthermore,

V-« = (5V •(/*-'o-Vp), (4.8)

so u can be uniformly approximated in the jet by an incompressible flow field.
However, it follows from (3.2)4 that, since V • u ~ 0(1) in the boundary layer, the
total pressure P has an O(f$n) jump across the layer, and thus the preceding
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viscous jet analysis must be adapted in this case to account for a nonzero normal 
stress near the boundary. This thickening boundary layer may be the partially 
segregated zone which is observed (see Fig. 1). 
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