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SECONDARY FROST HEAVE IN FREEZING SOILS*

A. C. FOWLER-

Abstract. A mathematical model of secondary frost heave in freezing, gravelly soils is presented. This
model is due to O’Neill and Miller Water. Resour. Res., 21 (1985), pp. 281-296], who sought numerical
solutions. Here, their model is made nondimensional and is analysed using asymptotic analysis. Based on
the successive formation of ice lenses within the partially frozen fringe, a heave criterion for such soils is
deduced.
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specific heat
soil-ice-water characteristic curve
gravity
ice volume fraction
dimensionless hydraulic conductivity
hydraulic conductivity scale
hydraulic conductivity
thermal conductivity
latent heat
pore volume fraction
total pressure
pore pressure; also used for the dimensionless water pressure, from
(2.26) onward
effective pressure
water pressure
ice pressure
basal pressure
rate of freezing
time
temperature
surface temperature
basal temperature
water flux
ice flux
ice (regelation) velocity
water volume fraction
vertical coordinate
surface position
base of (lowest) lens position
base of frozen fringe position
base of sample
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dimensionless parameter
permeability exponent
dimensionless parameters
thermal dittusivity
osmotic pressure
water density
ice density
average density
solid density
dimensionless surface temperature
dimensionless basal temperature
weighting factor for pore pressures

1. Introduction. Secondary frost heave (O’Neill [6]) is that phenomenon that
occurs in freezing soils when the surface is forced upwards by the accumulation of
horizontal ice "lenses" in the soil; see Fig. 1. The mechanism by which the ground is
forced upwards is that water is drawn from below to the freezing front where it freezes.
It is the upward motion of excess water that causes the heave, rather than simply the
expansion of water on freezing. The water flow upwards is driven by a pressure gradient
(or free energy gradient) that derives from the well-known fact (Hillel [3]) that in a
moist soil, the water "pressure" is below the overburden pressure by an amount (the
effective pressure) that depends on water content. The physical cause of this is a suction
due both to capillary forces and to adsorption forces that cause an electrical double
layer of water to form at the surfaces of clay particles. Thus the water pressure Pw is
lower where the water content is lower (i.e., where freezing occurs), and so the water
flows upwards. The problem is to quantify and predict the amount and rate of heaving
that can occur.

Soil is a complex medium which has complicated physical properties. Soils vary
in texture from coarse sands and gravels to finer silts and the finest clays. Clay particles
have typical dimension less than 2 p.m. Compressibility, permeability, and effective
pressure can vary enormously depending on the texture, and so do the heaving
properties. Our approach will therefore be to adopt the simplest model we can. In
addition, soil is a multiphase medium. Dry soil is soil and air; saturated soil is soil
and water; partially frozen unsaturated soil is then soil, water, ice, air; and if we
included the important effects of solutes, we should have four phases with five com-
ponents-or six, if ice and water solute concentrations are both included.

There are two modes of frost heave. Primary frost heave occurs when all freezing
takes place at an interface between pure ice and wet soil below. The water flows
upwards through the soil and freezes due to a discontinuity in heat flux at the interface,
just as in a Stefan problem. This phenomenon has been investigated by Jackson,
Uhlmann, and Chalmers [4], for example. Secondary frost heave is of more interest
(it heaves larger loads), and in this case the water freezes over a finite region below
the ice lens, termed the partially frozen fringe. It thus resembles (in this) the mushy
zone in a dendritically freezing alloy, and in a similar way the freezing temperature
varies through the frozen fringe: in an alloy it is because the freezing (liquidus)
temperature depends on solute concentration. This may also be important in soils, but
additionally the freezing temperature varies with water pressure, which provides a
similar effect.

The concept of effective pressure in soils is quite subtle, and even more so in
partially frozen (or unsaturated) soils. Basically, a soil is a connected granular medium
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FIG. 1. Secondary frost heave. Ice lensesform in the soil due to a waterflux upwards, driven by a capillary

pressure gradient.

whose pores contain water (and/or air and ice), and this granular skeleton will in
general support only part of an externally applied stress (e.g., overburden pressure).
This pressure is the effective pressure Pe. The remainder must be supported by the
pore fluids and thus

(1.1) P=p+p,

where p is pore pressure, P is overburden pressure. O’Neill [6] extends the concept
of effective pressure to the case where there are two pore constituents, either water
and air (saturated water vapour) or water and ice. The case of coexisting water, air
and ice is discussed by Miller [5], who shows that it tends to be mechanically unstable,
so that in that case, we might expect a sudden transition in pore constituents from
water/air to water/ice, although this transition also might occur over a finite range of
depth. The generalisation of (1.1) offered by O’Neill and Miller [7] is then

(1.2) p=XPw+(1-X)Pi,

where Pw and Pi are water and ice pressures, and X is a weighting factor, which in a
simple approach we would take as

(1.3) X= W/n,

where W is the water volume fraction, and n is the porosity (pore volume fraction).
O’Neill and Miller [7] suggest that theory and experiments are consistent with the
assumption

(1.4) pi-Pw=f(W),

where f> 0 represents capillary effects between ice and water.
Since the equations we shall propose are appropriate to those for a two (or multi-)

phase medium, it is important to be clear on the nature of the pressures described. In
particular, two-phase flow theory commonly refers to phase-averaged pressures, which
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are the local averaged pressures, taken over the relevant phase (Drew 1]). In contrast,
we have here defined total pressures, where the local average is taken over the whole
control volume. If we denote the phase-averaged pressures by an overtilde, then we
have, for example, that the total pore pressure p is related to the phase-averaged pore
pressure/ by p n/. The particular pressures Pw and Pi introduced by O’Neill and
Miller [7] to satisfy (1.2) are then related to the phase-averaged values, which we take
to satisfy/= Xw + (1- X)/i, by Pw nfiw, p ni.

The point is that we might expect the characteristic relation (1.4) to apply to the
phase-averaged pressures, since it refers essentially to a local interfacial property. For
example, the effect of capillarity could be represented by/i-/w rwY, where o-w is
surface tension, and Y is the local averaged ice-water interface curvature. Then p-Pw
nO’wY(W), which is consistent with (1.4). In any case, the function f(W) is inferred
from the soil-moisture characteristic curve, which is experimentally measured (see
O’Neill [6]). In particular, f’ <0, fc as WO, f(n) =0: see Fig. 2.

f(w)

w

FIG. 2. Typical form for the frozen soil moisture characteristic curve.

There is an extensive literature on frost heaving and models thereof, which has
been reviewed by O’Neill [6], and we do not wish to repeat such a survey. In the next
section we recall the model of O’Neill and Miller [7], and only add here that it seems
to be the most complete model for secondary frost heave yet to be presented. Although
the model proposed consists of 10 equations (two mass, two momentum, one energy,
plus five constitutive relations) for 10 unknowns, we shall find that a great degree of
simplification ensues. The basic variables are the water pressure Pw, and the water
fraction W. These are related through Darcy’s law, which gives a first-order differential
equation for Pw. The energy equation essentially gives a convective diffusion equation
for W, since internal energy is essentially proportional (via latent heat) to W, while
heat conduction is related to W through temperature via p (using the thermodynamic
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Clapeyron freezing curve and the soil-moisture characteristic curve). Despite this
simplification, the boundary conditions are relatively complicated" there are two free
boundaries, and one unknown coefficient in the equation for W, so that five boundary
conditions are attached to it and these couple pw with W.

2. Mathematical model. We consider a situation such as that shown in Fig. 1. We
suppose that the heat and mass transport is essentially one-dimensional, with z the
vertical coordinate. Let zs denote the ground surface, let Zl be the base of the (lowest)
ice lens, and also the top of the frozen fringe, let zy be the base of the frozen fringe,
and let Zb be the base of the sample under consideration. In the laboratory Zb is finite;
in the field Zb might be at the level of the water table, or might be appropriately taken
as -oe. In the frozen fringe, O’Neill and Miller’s [7] model can be written in the
following form:

(2.1) w,+u=-S/pw,

(2.2) I, + V S/p,

these represent conservation of mass for water and ice phases. U and V represent
water and ice fluxes, W and I are water and ice volume fractions, and S is the rate
of freezing (which will be determined from the energy equation). The water flux is
determined by Darcy’s law"

kh [OPw+ J(2.3) U -gk--z Pwg,

where kh is the hydraulic conductivity. The ice is considered to form a rigid, solid
body, which is nevertheless able to flow relative to the soil skeleton by thermally
induced regelation (see O’Neill and Miller [7]). The velocity of this flow will be
determined from the boundary conditions. Thus we put

(2.4) V= Iv,,

where v(t) is a function of time only. The energy equation can be written in the form

dT
(2.5) -LS + pcp-= kT=,

where L is latent heat, c is specific heat, and k is thermal conductivity. We have
assumed k and c are equal for the two phases, otherwise averaged values must be
used. The density is also a weighted average, which we shall however take as constant.

In the frozen fringe, we assume thermodynamic equilibrium. This implies

(2.6) L( T- To)/ To= (pw-II)/pw-p/pi

see O’Neill and Miller [7] for a discussion of this generalised Clapeyron equation. It
includes both the Clapeyron effect and the Gibbs-Thomson effect, as well as the effect
of solutes via the osmotic pressure II. The capillary relation is

(2.7) p,-pw=f(W),

and the total pressure balance is

(2.8) P=Pe+XPw+(1-X)pi

where

(2.9) X X(W), e.g., X W/n.
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With these pressures, we require two constitutive relations to fully determine the
problem. One is (2.7); the other depends on the characteristics of the soil. For a gravelly
soil, which is relatively incompressible, we assume

(2.10) I + W n

is constant. In future work, we shall seek to use a characteristic relation to relate Pe
to n, as applicable to clays, for example, since these are more susceptible to frost heave
(as we shall see this is because they are less permeable). That will also raise the thorny
issue of soil hysteresis during freezing and thawing.

Equations (2.1)-(2.8) and (2.10) are nine equations for the 10 unknowns W, U,
S, I, V, Pw, vi, T, Pi, Pe, providing P and II are prescribed. We will hence forward
neglect H, i.e.,

(2.11) H=0,

and assume that P is determined from (quasi-) static equilibrium. The simplest assump-
tion is that P is hydrostatic, i.e.,

(2.12) P Po- pg(z- z),

where p is the soil density (considered constant here). We assume that the permeability
kh is given by

(2.13) kh ko(W/n) v

(O’Neill and Miller [7]). Thus, we are missing one equation to determine vi" this will
come from an extra boundary condition.

The model above, which applies in the frozen fringe, must be supplemented by
the temperature equation in the frozen region above and equations of temperature and
water flow below. We denote the boundaries of the frozen fringe by Z (at the top) and

zf (at the bottom). As illustrated in Fig. 1, we assume that an ice lens forms the upper
boundary Z (and may be one of several above the fringe). Therefore, above the fringe:
in z > Z1,

dT
(2.14) T,

dt

where k/pep is the thermal diffusivity. Also, below the fringe: in z < zy,

(2.15)

kh [Opw+ JW, + Vz =0, U= -wgt.-z Pwg

dT
<Tz, P Pe +pw, W n.

dt

The boundary conditions that we will seek to apply to these equations are the
following:

at z= zs:
(2.16) T=T
(the surface temperature is prescribed);

at z= Zl:

Di(Di- ,)(1 I) Pw( U W.I), p, P,
(2.17)

pwL(U w,)[-k] +

IT]+ =0;
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global conservation of mass"

(2.18) pwUIzb pit)i;

at z=zi:

(2.19)
W=n, [T]+_=0,

[01/=0,[t]/=0,_ [u]+_=0;

at z Zb,

(2.20) T=Tb, P=Pb (see below).

These conditions represent applied surface temperature (2.16), conservation ofmass
(2.17)1, stress continuity (2.17)2, energy conservation (Stefan condition) (2.17)3, ther-
modynamic equilibrium (2.17)4, conservation of mass (2.18), definition of fringe base
(2.19)1, thermodynamic equilibrium (2.19)2, energy conservation (2.19)3, stress con-
tinuity (2.19)4, mass conservation (2.19)5, applied basal temperature and pressure
(2.20). They are straightforward, except (2.19)1, which is an extra boundary condition
necessary to close the problem. It is a common procedure in two-phase solidification
problems that such an extra condition has to be postulated (cf. Worster [9]). The
boundary condition (2.20) at the base of the domain merits some further discussion.
In the laboratory, Zb represents the actual base ofthe sample, and (2.20) would certainly
be appropriate. The same is reasonable in the field, if Zb represents the location of the
water table, although this really requires the soil to be unsaturated. We might also be
tempted to consider Zb --o0 (as we shall in fact do in 3), but we must be careful
about how this is done (see the further comments after (2.37)).

Proceeding, we now nondimensionalise the equations. We do this by writing

U=[U]U*, V=[U]V*, z=[z]z*, S=[S]S*, t=[t]t*,
(2.21)

Pw PoP*w, Pe PoP*e, P, PoP* T= To+[T]T*,
where the scales in (2.21) are chosen as follows. We anticipate that latent heat is large,
and thus from (2.5),
(2.22) L[S] k[ T]/[ z]2.
We also choose a convective time scale

(2.23) [t]=[z]/[U],
and balance (2.1) by choosing

(2.24) [S] pw[ U]/[z].
Equation (2.6) suggests

(2.25) [’T] ToPo/
and we take the length scale [z] as prescribed, e.g., [z] _<- 1 m for laboratory tests.

The equations can be written in dimensionless form, where we henceforth drop
the asterisks (having written f(W) Pof*(w)):

(w,+Uz)=-s,

(2.26) U
"op ] dT

.--z + 8, T -f( W)- 83 p, -S + 82 --d-[ Tz,

1-84(z-zs)=pe+xp+(1-x)pi, p,-p=f(W), I+W=n,
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in the frozen fringe, where

81= pwg[ z]/ Po, 82=[U][z]/K, 83 =1- p,/
(2.27)

64 pg[z]/Po, p,koLZ/gTok,
and we have written pw p. The dimensionless hydraulic conductivity is

(2.28) K =(W/n)L

In z>

dT
(2.29) 82 T=,

while in z < zs

(2.30)
=o,

1--84(Z--Zs)=pe+p, W=n.

The boundary conditions are:
at z zs,

(2.31)

at z

(2.32)

T= -0s;

1 83) f)i- #,)(1 I) U

(U- W,)= [ a] +

[T]+=0

global mass conservation

(2.33)

at z zs,

(2.34)

pi 1 84(z gs)

Ulz- (1 83)Vi

n, [T] / O, r q/o_51 +W

[p]+_=o, [u]+_=o,
on Z Zb,

(2.35) T Oh, P Pb,

where

(2.36) O, To- T)/[ T], 0, T, To)/[ T].

To estimate the values of the parameters, we take Po--1 bar, pi--900 kg m-3, p---
1000 kg m-3, L--- 3 x 105 J kg-1, k--- 2 W m-1 K-, cp 2 kJ kg- K-. Values of ko can
vary from 10-2 cms-1 for sand to 10-8 cm s-1 for clay. We use [z]---10 cm, a value
used in some of their numerical tests by O’Neill and Miller [7]. We then find

[U]--- 10-6 cms-1, [T]---0.1 K, 81, 84"-- 10-2,
(2.37)

83 10-1, 82 (L/cp[ T]) -1--, 10-3, 106 >. >. 1.

The velocity scale here is representative of a significant rate of heave. The values of
/3 are large for gravelly soils and smaller for clays. We now simplify the model by
seeking to adopt the approximations suggested by these estimates, namely that 81, 82,



SECONDARY FROST HEAVE IN FREEZING SOILS 999

83, 84 are all small. We retain/3 for the moment, since it can be either large or moderate
for different soils. Our previous remarks following (2.20) may now be amplified. If we
try and apply (2.35) to (2.30) with Zb---o, then if 82(( 1, We shall find T-Ob on
z zy, in apparent contradiction to (2.26)4, which implies T0 there. In fact, the
order of the limits 82-0, Zb --c is important. For this reason, we consider Zb as
finite, at least until 82-* 0 has been considered. This is evidently appropriate, since in
practice we expect [Zbl<< 1/82.

Let us neglect terms of order 8 in the equations. Global conservation of mass
(with Zb constant) is approximately

(2.38) Ulz=V,;
it further follows from (2.30) that Ulz U[z. Using (2.38) together with (2.26).2, we
obtain

(2.39) U v,(1 n + W)

in the frozen fringe. Thus equations for W and p in the fringe are, approximately,

(2.40) U=-ilK 0..___p 0

0z
v (1 n + W), W + vW

0z--7
f(W).

We require two boundary conditions for W, one for p, together with two relations for
z and zy and one for v. The solution of (2.29) (with 82 0), using (2.32), yields

(2.41) T-.--O+G(z-z), z> z,

where the surface z is given by

(2.42) z vi dt

(this follows from the assumption that the frozen soil in z> Zl is incompressible:
conservation of mass then implies that (d/dt)(z-zl)= v-.u whence (2.42) follows);
G follows from (2.32)4 and (2.26)4"

(2.43) G=(O-f)/(z-zt).

Substitution of (2.39) into (2.32) gives, approximately,

(2.44) i 0, Zl constant.

Conditions (2.32)2 and (2.32)3, using (2.26)v, (2.44), and (2.43), give the following
conditions at Zl"

(2.45) U -fz + ([.to vi dt- zt} P +f( W) 1.

Solution of (2.30) in z < zy (with 82 84--0) gives linear profiles for T and p there;
then the boundary conditions (2.34) give

Ob Op Pb --P(2.46) W= n, f zy- Zb OZ Zy- Zb

where we have assumed f(n)= 0 (see Fig. 2).
Finally, we define a criterion for lens formation. Ice lenses can form if the effective

pressure decreases to zero anywhere (because there is then no stress to keep soil grains
in contact). From (2.26), the criterion for this may be written as

(2.47) p+(1-x)f(W)=l.
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If this criterion is satisfied at some point in (zy, zl), then a lens is considered to form
there, and the value of Zl is shifted to that place (in the computations of O’Neill and
Miller).

3. Analysis. Our aim in this section is to analyse the model to the extent we can,
and in particular to provide some explanation and interpretation for the results obtained
by O’Neill and Miller [7]. In particular, we wish to focus on the following ideas:

(a) "... gravels are not susceptible to heave. Silts can produce spectacular heave,
but only if the load.., is small.., clays never produce spectacular heave, but can...
heave very large loads indeed" [7].

(b) Fig. 4 of [7] shows a "typical" freezing sequence of a 10 cm soil column. A
sequence of very thin ice lenses forms at intervals of---104 s and at distances apart of
0.1 cm, these values increasing as time increases.

(c) Fig. 3 of [7] shows a "typical" variation of p and f(W) (here: Uw and T in
their figure). The fringe thickness is ---1 cm, while p jumps from its value at Zl to the
far field value (Pb: taken as zero in the figure) over a "boundary layer" of thickness
---0.2 cm. The profile for f, however, is almost linear.

(d) Fig. 5 of [7] shows cumulative heave profiles h(t) of 0(2 mm). There is an
initial rapid rate of change of h (over a time --105 s) followed by an almost linear
increase of h with for < 106 S. The rate of heave depends very sensitively on the
applied load Po, varying from about 3 x 10-6 cm s-1 for Po0.9 bar, to about 0.1 x
10-6 cm s- for Po 1.1 bar.

For convenience we collect together the approximate model equations (2.40),
(2.45), and (2.46) derived in the previous section. These are:

(3.1) -ilK
Op 02

v, (1 n + W), W, + v,W f(W),
Oz Oz2

in the frozen fringe zl > z > zy, with boundary conditions

0s -f(3.2) p +f(W) 1, vi 1 n + W) -fz + H

on z zt (constant), and

Ob p
(3.3) W= n(f 0), fz P

Zf- Zb Zf Zb

on z z, where we have taken Pb 0 without loss of generality (so Po represents excess
load). We assume K =(W/n), as in (2.28). The depth to the lowest lens is H,
given by

(3.4) H -zt + h,

where h Zs(t)-zs(O) is the total heave, and

(3.5) l vi.

The relationship of H, h, and z is illustrated in Fig. 3. After the onset of freezing, zs
will increase with time. From (2.42), the rate of heaving/ is simply vi. Although 0
as heaving occurs, secondary lens formation causes z to be relocated at the base of
the new lens. In this way we will have Zl < 0 in general. Thus the depth H to the lowest
lens, given by (3.4), will not in general be given by the total accumulated heave h.
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FIG. 3. Illustration of the relationship between H and h.

We solve the above problem with Z constant, and h ho at 0, until the lens
formation criterion (2.47), i.e.,

(3.6) p + (1 x)f(W) 1,

is satisfied for some z*< z, at t*, At this point, following O’Neill and Miller [7]
we would begin the calculation again, with new values of z z* and ho ho + to* vi dt.
The new initial profile for W is just that at the end of the previous calculation (t t*-).
We can see that the third-order system (3.1) with two unknowns vi and zy has five
boundary conditions, as appropriate. For the parameters considered by O’Neill and
Miller [7], we have 0s-’- 0b 10. They do not report values of/3, but refer to measure-
ments appropriate to a silty soil. Miller [5] reports measurements of Williams and. Burt
[8], which suggest that ko-10-4 cm s-1, which would give/3---104. It is important to
anticipate that the fringe permeability (which is rate-controlling) will be low at the
lens, where W W, say. Then K (W/n)r there, and if W-< 0.2 (consistent with
f> 1, see Fig. 2, or Fig. 2 of [7]), we have K---2x 10-3 for y =9. Thus /3K,---1 for
/3 10 (ko’ 10-5 cm s-1) and will be lower for smaller W. On this account, we do not
yet consider any approximations based on the size of/3.

We will restrict our attention to cases where similarity solutions are appropriate,
that is, small time or, equivalently, letting zy and zy-zb become infinite in (3.3). (See
the comments after (2.37).) Initial conditions consistent with such a solution are those
for step freezing, i.e., an initial sudden surface cooling. The boundary conditions (3.3)
are replaced by

(3.7) Wn(fO), pO, as z-o.

(i) Large permeability exponent: y >> 1. The permeability exponent 3’ has measured
values of order seven or nine, according to O’Neill and Miller. This implies that the
permeability K changes rapidly, by several orders of magnitude, as K increases below
the lens. To take account of this, we use the idea of large activation energy asymptotics.
Thus, for small Zl-Z, we can write

(3.8) w w,- z),
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where Wt W(Zl, t), W}=OW/Ozlz,; hence

(3.9) K (W//n)v exp [A(Zl z)],

where

(3.10) A 3’1W}l/WI;

notice that A will generally depend on t. Defining B by

(3.11) B =/3K/A/(1 n + W/),

where

(3.12) Kl Wt/ n),
we can rewrite (3.1)1 approximately

v, exp [-A(z- )](3.13)
Oz

when Zl-Z is small. Evidently, the solution of (3.13) gives a uniform approximation
to p (with A >> 1):

(3.14)

We denote

p -(-) exp [-A(Zl- Z)].

(3.15) j =f(W/);

then (3.2)1 implies that the rate of heave is given by

(3.16) v, B(J- 1),

thus requiring f > 1, and the problem is now reduced to solving

(3.17) Wt+v,Wz=-fz,

with vi given by (3.16), and

(3.18) v,(1-n+ W)=-fz+(Os-f)/H onzl,

(3.19) Wn (f0) asz-o.

At this point we have not involved similarity, and more generally, (3.1)1.2 could
be used instead of (3.19). Furthermore, no assumption on the magnitude of B has
been made. As a rough guide, we would associate B << 1 with clay, B--- 1 with silt, and
B >> 1 with gravel. The two extreme limits B << 1, B >> 1 yield the following. If B << 1
(clay), then v--- B, t-- 1/B, W is approximately linear, and the solution can be easily
written down from the boundary conditions in (3.3). If B >> 1, a self-consistent approxi-
mation has vi O(1), and 1. In this case (3.14) implies that Ipl<< 1.

(ii) Similarity solution. A similarity solution to (3.17), with (3.18), (3.19), (3.16),
(3.11), (3.10), (3.4), and (3.5) (with z=0) has

(3.20) W g(), -z/2x/-i, B b/x/-i, vi a/x/i, H 2ax/-i,

and g satisfies

d2f 2( +)
dg

(3.21 dr/ dn
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with

(3.22)

and

(3.23)

g=g onr/=0, gn asr/,

a b(j- 1), b {2gl(
1 0s-j

a (1- n + g, -f +
a

1-n+gt)

where we have defined

(3.24) g*= hi(fly)l/v:

we assume g* < n. In (3.23), we have written g, g,ft,f for g(0), g’(O),f(g), df/dr I,=o.
To analyse this system, we again make use of the fact that y >> 1. Note that g* is

not numerically much ditierent from n. For/3--- 1, it is close to n, for large/3, it may
be smaller by a factor of two. There are three cases to consider:

(a) gl < g*. Then b<< 1, a << 1, and (3.23) is approximated by

(3.25) G -f/.
For a >0, and to be self-consistent, we require >f* -f(g*) (since df/dg <0), thus

(3.26) G >f*, G > 1.

(b) gt= g*. In this case (3.23) gives the precise value of gt, (3.23)1 gives b, and
a is determined from (3.23)3, which requires solutions of the differential equation.
Self-consistency implies (since f < 0)

(3.27) 0 >f* > 1.

(c) gt> g*. This is similar to (b), except that (3.23)2 implies b >> 1, and hence
(3.23) gives

(3.28) fl, glgl

where f(gl) 1, and a is again determined from the equation, but with g g at r/-0.
Validity of this case requires

(3.29) 0.>1 and f*>l.
The regions of validity (3.26), (3.27), and (3.29) overlap in 1 <f* < G, where all three
solutions are possible. Thus the similarity solution we seek is not necessarily unique.

Explicit solution of (3.21) is not possible in general. Various possibilities occur"
we can write down the solution if f(g) is linear; we can prove what we need about
the variation of f with a, by just supposing f(g) is monotonic. Equivalent results
occur by approximating (3.21) by

dg
(3.30) dZf

dr/2 dr/
which is in fact a reasonable approximation for large loads or fine soils, and we choose
this method as the results are most easily understood. The solution of (3.30), with the
boundary conditions (3.22), is

If df(3.31) 2ar/= [n-g(f)]"
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In particular,

(3.32) fl -2o(n g),

so that (3.23)3 gives

(3.33)

We approximate (3.23)2 and (3.23)1 by

(3.34) c c(j- 1)(f*/j) r,
which for c O(1) adequately represents the behaviour of c as a function of j.
Equating (3.33) and (3.34) enables us to eliminate j and find a explicitly. The three
cases (a), (b), (c) lead to the following"

(3.35) (a) gt<g*, b<<l;

(b) gt’g*, b-l;

(c) g>g*, b.>>l;

O <f*, 0> 1" a c(O- 1)(f*/O)’;
O >f* > l’a (O-f*)l/=;
0>1, f*>l’a(O-l)1/2.

It is easy to trace the qualitative bifurcation structure by graphically portraying
(3.33) and (3.34). It is less easy to show the a, 0s, f* solution surfaces in three
dimensions, however. In Fig. 4, we show slices of this surface, at fixed f* or 0s, and
we attempt to draw the three-dimensional version in Fig. 5.

(iii) Lens formation. Successive lenses will form if the criterion (3.6) is satisfied
anywhere. Now p increases rapidly to zero near Zl, while beyond this W increases, so

f
f*<

(c)

f*" f 0s0S

FIG. 4. (a)-(d)’ Bifurcation diagrams for the heaving coefficient a versus surface cooling O.for the case

offine soils (a), intermediate soils (b), and coarse soils (c); (d) ce versus f* at fixed 0.> 1.
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1

FIG. 5. A three-dimensional view of heave parameter a versus surface cooling Os, and texture parameter

f*=- o*/s (see 4).

f and 1-g decrease. Thus lens formation will occur in the pressure boundary layer,
and this happens at z*, where using (3.14) and (3.16),

-(fi 1) exp I-A(z zg)] -[ I]/lf 1 ],

where we have written I//1 1-/’1-- 1- X(W/), that is,

(3.36) z, z*
1

In [ fi T! l
A L q,f 1 J"

Since (cf. (3.34)) f > 1 for a > 0, we require qj > 1 for successive lens formation to
occur, and this happens "instantaneously." In practice, the interval between lens
formations will presumably be controlled by the freezing relaxation time between
lenses, t--- O(1/A2). With U]--- 10-6 em s-1, [z] 10 cm, [t] 107 s, then [t]/A2,-- 103 s
if A 102, consistent with Fig. 4 of [7]. The lens spacing is then O(1/A)---10-, or
dimensionally 1 mm.

Lensing is suppressed if fi 1, which is case (c) (b >> 1), corresponding to coarse
soils (since g* is low). In this case, we should suppose that step freezing with a frozen
fringe can only possibly lead to a surface ice layer. But with a superimposed load,
even this first lens would require satisfaction of (3.6), and it seems reasonable to
suppose that secondary heaving simply does not occur in this case. Heaving is also
suppressed if q << 1, i.e., W n, but this again is typically case (c) since if W(=gl) n,
then gt > g*.

4. Discussion. Our main result is shown in Fig. 5. To try and understand it, let
us recollect some important parameters. The main one is/3, proportional to the saturated
hydraulic conductivity, and varying from ---106 for gravel to ---1 for silts or clays. The
critical water fraction g*= n/(3")/ plays an important role in the analysis: with
n 0.4, g* varies from about 0.08 for gravel (with 3’ 10) to about 0.32 for clay. The
parameter f* is actually f(g*), where f is the dimensionless characteristic function.
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Now the dimensional version of this function is Pof(W), that, however, contains an
imposed dependence on Po. To include the overburden as an explicit parameter, we
write

(4.1) s Po/ tr, Pof( W) mp(W),

where tr is a stress scale; thus f-/s, and is a dimensionless function, dependent
only on soil type. A simple assumption is that p is independent of soil type, which is
manifested only through the stress scale tr. Then tr is low for gravel, high for silt and
clay. The parameter f* is thus actually f(g*)= p(g*)/s. It is convenient to represent
Fig. 5 in terms of the independent parameters *-(g*) representing soil type, and
s, representing loading. The result is shown in Fig. 6, which is drawn by sketching Fig.
4(d) at various values of s. The critical "knees" of the curve occur at f*= 0 and
f*= 1, that is, p*= p* and p*= s, where qc* is given by

(4.2) p* sO (pL/ To)(A T/ tr),

using (2.25) and (2.36), and AT is the surface cooling. Evidently, rp* is independent
of the applied load, but depends (like g0*) on soil type. Then, for fixed undercooling
AT, the condition rp*< rp*, which defines the range of existence of solutions of type
(a), is independent of s, which explains the position of the second knee of the curve.
At the intersection of rp* q * s, a 0, and heaving is suppressed since then 0 < 1.
For larger AT, go* is increased and the range of heavable loads is increased.

The existence of multiple solutions is reminiscent of similar situations in, for
example, thermal runaway. It is a natural hypothesis that case (b) is unstable and
hence unrealisable, so that there is a hysteresis loop between (a) and (c). Case (c),
however, does not lead to ice lens formation and thus is not associated with heaving.

no lenses /

I, ... ,-&lit ,-_q clay

gravel

Fo. 6. A regime map based on Fig. 4 for different soils, measuring heave rate parameter a versus soild
texture parameter (p*) and load parameter (s). The figure indicates no heaving for large p* (gravel), large
heavingfor moderate loads for intermediate q* (silt), and small heave rates for large loads (clay). In addition,
for a fixed soil, heave is effectively suppressed at a critical value of the load parameter (s * ).
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In that case, only the case (a) branch, indicated by solid lines in Fig. 6, has any
relevance. If this is the case, then we can interpret Fig. 6 as follows. First, we expect
q* to be high for low g*, i.e., for gravel, and low for clays. Also, tr is low for gravel,
high for clay, so that at fixed Po, s is high for gravel, low for clay. Consequently, for
small q* (clay), a is very small, so that the rate of heave is small. On the other hand,
heaving occurs for s < qc*, that is Po < qc*tr. Since tr is high for clay, large loads can
be heaved. As q* increases, there is a comparatively sudden jump near q* q*, where
a increases sharply. Thus silts can heave rapidly, but (since o- is lower) only lower
loads. For q*>qc* (gravel), heaving does not occur. These observations basically
reproduce statement (a) of 3.

Apart from these overall observations, our analytic results mimic features of
O’Neill and Miller’s numerical results. As pointed out after (3.19), case (a) can be
fully analysed even when similarity is not invoked. Then vi << 1, and satisfaction of
(3.17) with (3.18) and (3.3)1.2 yields a linear profile for f, with

(4.3) z- zy= (zy- zb) O/ Ob H,

(4.4) f O HO,/(zy z,).

The resultant linear temperature profile was assumed by Gilpin [2], and also found
by O’Neill and Miller [7]. The pressure and temperature profiles found here correspond
to observation (c) of 3. For clays, the initial similarity solution rapidly relaxes to a
quasisteady state given by (4.3) and (4.4), where for H<< 1, vi given by (3.16) is
essentially constant (observation (d) in 3). The sensitivity to the load is manifested
through the dependence of vi through B (3.16), on W/ (3.12), i.e., on f/, which is
determined by 0s (4.4) which is proportional to P- (2.25). We have already mentioned
successive lens formation (following (3.35)).

The regime map, Fig. 5 or 6, suggests that as the load is increased for a given
soil, heaving will be rapidly suppressed at a critical value of Po crq*. For a given
soil, for which the soil-water characteristic function and the hydraulic conductivity kh
are known, this critical value is in principle measurable, and could provide one means
of testing the current theory.

5. Conclusions. Analysis of the O’Neill-Miller model is possible on the basis of
the "large activation exponent" assumption that y >> 1, i.e., there is strong variation of
permeability. This analysis yields completely explicit approximate results that are in
qualitative agreement with O’Neill and Miller’s [7] computed results. They also seem
to be consistent with some basic observed characteristics of heaving soils. A feature
of the results is the coexistence at some values of overburden and subcooling of three
possible freezing modes, two of which involve lensing, the other of which does not.
It is not at present known whether both lensing solutions are physically realisable,
although it is plausible that the solution of case (b) is not.

The existence of explicit results of the type presented here suggests ways of
parametrising laboratory and numerical experiments by means of regime diagrams of
the type shown in Figs. 5 and 6. Another is indicated in Fig. 7 that might serve (for a
particular soil) as a regime map: it is a projection of Fig. 5, using the definitions of
f*/s and 0z. Further consideration of such maps is deferred to future work, together
with consideration of such features as soil compressibility and solutes. It is interesting
to note that introduction of n=n(pe) into (2.26) leads to cross derivatives in a
diffusion-type equation for (W, p)r. However, it is easy to check that the diffusion
matrix .has positive eigenvalues when n’(pe)< 0, as is realistic.
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no hee ve

/
/

no lenses

J

large small
heave heave

FIG. 7. A projection of the regime map, Fig. 4, on to the plane O. For a given soil, 0 oz ATPo,
*/s oc 1/Po, where A T is the surface cooling. This suggests ways of testing the current theoryfor particular soils.
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