Temperature Surges in Thermistors

AC Fowler and SD Howison

Mathematical Institute
24/29 st Giles
oxford Ox1 3LB

Abstract:

A thermistor is a nonlinear resistor whose resistivity increases with
temperature. We analyse a simple circuit containing such a device and
show that under certain circumstances rapid temperature surges can occur.
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1. Introduction

Thermistors are circuit components made from a ceramic material
whose electrical resistivity p(T) varies significantly with temperature T.
In this paper we discuss the interaction between the heat generated in the
device and the current flow “hrough it, and the subsequent change in the
current itself. In particular, we consider the behaviour of a positive-
temperature-coefficient thormistor, i.e. one whose resistivity increases
with temperature (as opposed to a negative-temperature-coefficient device
whose resistivity decreases with increasing temperature). Such devices are
frequently used to protect circuits, since any current surge leads to a
temperature increase which in turn reduces the current by increasing the
thermistor's resistance.

A simple circuit is shown in Fig. la. A short circuit is represented
by closing the switch S, and we require & model for the subsequent evolution
of the current. Two questions are of particular interest: (a) what is the
dependence of the steady current I0 on the external voltage VO' and (b) can
large temperature gradients occur inside the device. The second question
is prompted by the experimental observation [1] that for large values of YO
the device can crack; it is suspected that this may be caused by thermal

stresses associated with high temperature gradients.
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It is convenient to work with the electrical conductivity O(T) = 15/ (T);
the variation of logo with T is sketched in Fig. 1b. The main result of this
paper is to show that the temperature variation of 0 and the external resistance
RO can combine to produce large temperature gradients within the device. This
fact was noted in (2]; previous work (see [2] for a review and references) had
always ignored the effect of the external circuit.

In form, a typical thermistor is a cylinder whose thickness 2H is about
2mm, and whose radius is about Smm. The two end surfaces are covered in thin
metal contacts and onto these are soldered connecting wires. The net effect
of this arrangement is that the heat loss from the thermistor is mostly
through the top and bottom, and thus for simplicity we consider a one-dimensional
model. With distance x measured from the centre plane, the temperature

T(x,t) and electric potential ¢(x,t) satisfy; for t > 0 and |x| < H,

conservation of charge:

3 TN
% (o(T) K)—O ' (1.1)
ar _ . a7 20 2
and conservation of heat: P cag = k=5 + o(T) 5;-) ; (1.2)
3x

the last term in (1.2) represents the Joule heating.

On the conducting surfaces x = + H, the potential satisfies

O (+H,£) = £ & (t) (1.3)
vhere ¢0 satisfies the circuit equation

V0 = I(t)R0 + 2¢O(t) ' (1.4)

in which the current I(t) is given by

L

_) .
ox % = H

I(t) = T2 (a(T) (1.5)
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At t = 0, the temperature satisfies

T(x,0) = Ta (1.6}

where Ta ~ 20°C is the ambient temperatureion x = + H, we model the heat

transfer to the surroundings by a heat transfer law,

9T _
koo h(T-Ta) =0 (1.7)

where h is a heat transfer coefficient. Lastly, we assume that the variation

of 0 with T is given by an exponential law:

0 =.0, exp (-F{(T)) (1.8)
where 00 = O(Ta) is the ‘'cold' value of 0 and
P(t) = 0 T <T <T_ + AT
a a
T - ('ra+AT)
= T + AT < T < T_ + 2AT
eAT a a
= - 1/€ Ta + 20T < T < & ,

vwhere AT -~ 100°C is the increase in temperature needed before 0 starts to

decrease, and € ~ 10—1 is dimensionless.

Typical values for the parameters in these equations are as follows[l]:

pc = 3 x 106 J m-3 K-1 Oy = 2 m—1 !
Kk =2wm 'K} R, = 504

B =10 m v, = 250V

r =5x10 " m AT = 100K .

h = 102 W m_2 K-1 .

Using these parameters, and with some hindsight, we scale the variables

as follows:
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(szc/k)t-': , T - Ta = (AT)u

%
"
(o
E
ct
[

©
"

o 6 =0,0 .

Dropping the overbars, we have the following dimensionless system:-

For -1<x<1, t >0,
(O(U)Qg)x = 0, (1.9)
u = u__ + Yo (1.10)

t XX x '
on x =+1, +u + Bu=0; (1.11)

- %

and o=+ (1-A) (1.12)
and u(x,0) = 0 . (1.13)

The variation of o(u) with u is given by

o(u) = exp (-f(u})/€) (1.14)
where 0 0<u<x<1
f(u) = u-1 1 <u<?2 (1.15)
1 2<u< e

The dimensionless parameters here are

00v2/4kBT ~ 150 , 8 = ha/k 2 1071,

Y

~ - 2 -~
10 1 (taken from data for 0), A=¢%r ROUO/H ~ 40 .

m
t

We analyse (1.9) - (1.15)in the following section.
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2. Asymptotic analysis

All the dimensionless parameters in (1.9)-(1.15) are either large or
small. In particular, the fact that € is small suggests using the techniques
of high-activaticn-energy asymptotics. We give a summary here; more details
can be found in (2].

We begin by integrating (1.9) and substituting for ¢x into (1.10).

The result is the non-local equation

u = u + (Y/c(u))
t XX 1 ax 2

[+ g Suix, )]

-4 + Y exp(f(u)/e) (2.1)
XX 1 2 * :
(A + f exp(f(u)/e)dx)
0

with 9u/3x + Bu = 0 at x 1

du/9x =0 at x

0 (by symmetry).
There are thfee stages in the evolution of u.

1. Almost uniform increase in u until time t*, when u(0,t*) = 1.

2
While 0 < u < 1, £(u) = 0 and so u satisfies u =u o+ Y/ (A+1) " with
2
ux + Bu=0at x = 1. Because B is small, the solution is u = Yt/ (A+1) " (1+0(B)).
Thus the dimensionless t* is approximately AZ/Y.

2. Acceleration in u near x = 0 As soon as u reaches 1 at x = 0, the term

exp(f(u)/€) in the numerator of the heating term in (2.1) ‘'switches on' and
produces locally large heating in a thin region near x = O. This'surgéﬂ
reminiscent of thermal runaway problems, lasts until the integral in the
denominator of (2.1) becomes larger than A and reduces the heating term.

The details nf the unsteady development of this transition are complicated

[2) and will not be considered here; we merely note that the timescale is .
thought to be()(ekz/y). This is the phase that may cause cracking via

thermal stresses.
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3. Equilibrium by conduction to a steady state

If the maximum .temperature is u*, the heating term in (2.1) is only

effective when u* - u ~ O(g). This suggests that the thickness of the layer

where the heating is effective is x ~ O(8/€) ~ O(1) for our parameter values,

and then a balance of terms in (2.1) gives
u* < efn(y/e) + 1,

which for our parameters corresponds to a realistic maximum temperature of
about :190°C.

Our final point concerns the 'current-voltage characteristic', i.e.
the dependence of the steady current on Vo. Clearly until u reaches 1 at
x = 0 the thermistor resistance is unchanged, and so the steady current
I,= VO/(R0+RT), where RT is the thermistor resistance nrz/ooL. However,
when u{g,®) > 1, which occurs at voltages vo such that Y/(l-i)\)2 > 28/ (2+B) ,

the current starts to fall. In the steady state described above, the

(dimensional) current is easily'shown to be approximately

Yo A

Iy ~ EE * A+my/€

where m is an o(c/B) constant depending on the precise details of the

temperature profile.Substituting for A,y, one finds that since A < < my/€,

4TeHKAT 1
I — . —
®© m V0

so that I changes from being proportional to V0 to being inversely proportional

as Vo increases.
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