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Abshad. We study the bifurcations which ( I C E U ~  as we perturb four-dimensional 
systems of ordinary differential equations having homoclinic orbits that are 
bi-asymptotic to a fixed point with a double-focus structure. We give several methods of 
understanding the geometry of the invariant set that exists close to the homoclinic orbit 
and introduce a multi-valued one-dimensional map which can be used to predict the 
behaviour and bifurcation patterns which may occur. We argue that, although local 
strange behaviour is likely to occur, in a global sense (i.e. for large enough 
pertuibationsj the whoie sequence oi biiurcatians produces a singie periodic orbit, just 
as in the three-dimensional saddle-focus case. 

AMs classification scheme numbers: 34A34,34C35,58F13 

1. Introduction 

Many features of chaotic behaviour in ordinary differential equations can be 
understood by the analysis of homoclinic bifurcations associated with homoclinic 
orbits which are bi-asymptotic (as f -  fm) to a fixed point of the flow. This point of 
view was advanced by Sparrow (1982) in analysing the Lorenz equations, and also 
by Glendinning and Sparrow (1984), Arneodo et al. (1982), Tresser (1984), and 
Gaspard (1984) in extending Shii'nikov's pioneering work jiY65, iY7iJj on systems 
with a homoclinic orbit to a saddle-focus. 

The idea of such an analysis is that one approximares a Poincart map for a flow 
by approximating trajectories which are sufficiently close to the homoclinic orbit, 
and that one then studies this map to deduce facts about the dynamics of the flow. 
To be specific, consider the differential equation 

.i =f(x, p),  x E Iw" (1.1) 
where p is a parameter. We assume that when p = 0, there is a homoclinic orbit 
r = (xo(t) ,  -m < f < m, xo(0) # 0, xo(l)+ 0 as f + im} biasymptotic to a fixed point 
at x = 0. For p small we choose a 'box' B : 1x1 S c, where c << 1, and take one 'face' 
of it, S, as the Poincark surface. Suppose that r leaves B through a face S' at a point 
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Figure 1. The sets S and S' and the maps Z and 2; 

P' and re-enters through S at a point P (see figure 1). For x within B we have 

f = Df(0, p)x + O(lx*l) (1.2) 
and the flow is approximately linear. Hence, using (1.2), we can calculate an 
approximate map, X, from S to S'. Outside B ,  if a trajectory starts on S' near P' we 
can write 

4) =xo( t )  + Y O )  3 = Df[xo(f), ply + O(Y*) 

and, in principle, solve this equation to find the point where ~ ( t )  enters B close to P 
on S. Providing both p and the initial y are small compared with c, and that the time 
spent going from S' to S is small relative to the time spent by a trajectory in B, we 
can approximate the map from S to S' by an equation of the form Z;: S'- S, 

Z;(x) = P + pe + A(x - P')  + O(y2, p2, p y )  (1.3) 

where A is a non-singular (n  - 1) X (n - 1) matrix with entries which depend on the 
details of the global flow outside B, and e is a vector determined by how the global 
flow changes with p. 

Composition of the two maps 2: and ZL then gives a mapping from S back to S. 
This will be highly nonlinear due to the distortion near 0. 

For this analysis to be valid, we require that p << c, and that we only consider 
trajectories which spend a long time in B. It follows from this that in their passage 
through E ,  the more stable eigencomponents of x are exponentially reduced relative 
to the least stable eigencomponents; for similar reasons, only those elements in S 
with exponentially small unstable eigencomponents relative to the least unstable will 
emerge-through S' close enough to r to hit S again on the next pass. The implication 
of this is that the Poincare map can be approximately taken from consideration only 
of the eigencomponents with eigenvalues nearest to zero. These ideas were used by 
Neimark and Shil'nikov (1965) and Shil'nikov (1968) in analysing near-homoclinic 
behaviour in n dimensions. 

In consequence, there are three main types of homoclinic bifurcation (from a 
fixed point). These are where the least stable and unstable eigenvalues are (i) both 
real; (ii) one real, one complex pair; (iii) two complex pairs. Case (i) is 
uninteresting, unless a symmetry is present. (One of the possible symmetries gives 
the Lorenz case (Sparrow 1982) when the expanding eigenvalue is of greater 
absolute magnitude than the relevant contracting eigenvalue.) Case (ii) is that of 
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Shil'nikov (1965), which has been extensively studied (see below). Case (iii) has also 
been studied by Shil'nikov (1967, 1970), and is our subject here. 

Shil'nikov's early results were as follows: he showed (1965) that in case (ii) 
above, when p = 0 and n = 3 in (l.l), there may exist a countable number of 
periodic orbits. Later (1967), he obtained the same result in case (iii) (at p = 0, 
n = 4). This analysis was extended to n dimensions and p # 0 (Neimark and 
Shil'nikov 1965, Shil'nikov 1968). but only in obtaining criteria for the bifurcation of 
a singie periodic orbit. Later (i97Oj, Shii'nkov extended the anaiysis of cases (iij 
and (iii) to n dimensions, to obtain (via symbolic dynamics) the result that at p = 0, 
there exist uncountably many aperiodic orbits. The major achievement of Glendin- 
ning and Sparrow (1984) and Gaspard (1984) was to show that the bifurcations 
associated with case (ii) when p 20, and when countably many periodic solutions 
exist at p = 0, could be viewed in terms of the existence of a one parameter family 
"I pr;,,uu1r DU.ULIUI,D, W l l l n 1  CAl), 111 LI ung,r.uuurrruuu VI p - ", a.1u W I I U D G  p , w u  1 

is determined implicitly by p = p ( P ) ,  where p ( P )  is single-valued but not (neces- 
sarily) monotonic. Thus Shil'nikov's (1965) result was extended to p #0, and by 
Gaspard (1984) also to n dimensions. 

In this paper, we extend the methods of analysis of Glendinning and Sparrow 
(1984) to case (iii) above, where there exists, at a value p = 0, an orbit homoclinic 
tG a 
expect our results to apply in general if n > 4) and p # 0. We begin by deriving an 
approximate PoincarC map from a subset of R3 into R3, and we show that this map 
is naturally defined on a small part of a torus. In seeking to determine the invariant 
set of this PoincarC map, we then show that this set is contained in a neighbourhood 
of a spiral sheet (shaped like a scroll); then the invariant set is in fact a 

we show to be another scroll, in general skewed and offset from the original. 
The following parts of the paper establish the topological nature of the 

constituents of the scroll intersections, and elucidate how the components evolve as 
the parameter p varies. We give a variety of ways of describing both the geometry of 
the components, and the dynamics of the map on them. In particular, we show that 
the Poincar6 map on the invariant set is close to a multi-valued one-dimensional 
map, whose multi-valuedness stems from the ability of the real (30) PoincarC map to 
transfer between different components of the invariant set, and we use this 
one-dimensional map to infer results on periodic orbits. For example, we show that 
there is a one-parameter family of (primary) periodic orbits whose period P is 
determined implicitly via p = p ( P ) ;  we give explicit formulae for p ( P ) ,  which are 
analogous - to the three-dimensional Shil'nikov case. Finally, we point out some 
novel bifurcations which may occur in examples of this sort. 

There are two standard ways of proving the various Shil'nikov theorems and 
making rigorous our derivation of the maps 2 and 2; above. One way, following 
Tresser (1984) is the following. By the Hartman-Grobman theorem (Hartman 
1982), the local flow near 0 determined by (1.2) is homeomorphic to the linear flow 
of 5 satisfying 

-f -"L-A:" ^^I..+:^-.^ ... L:̂L ".A-* :.. " -":-LL L,.̂ .4 ^C .. - n  .̂.A ... LA-- ---:-?I D 

pain: =f &cb!&ncus (bifcca!) q p ,  we specifica!!y c=csi&er = 4 (but 

neighbaurhood of the ifitprsection of this scro!! and its image under the m.p, which 

The homeomorphism will in fact be a diffeomorphism (i.e. smooth), provided 
certain non-resonance conditions among the eigenvalues of Df(0, p )  are satisfied 
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(Hartman 1982, Belitskii 1978). In this case, we can smoothly linearize the flow near 
0, and by an extension, we obtain a global flow which is linear in a neighbourhood 
of 0. Then the approximate Poincart map is constructed as outlined, and is close to 
the actual map. The existence of fixed points follows from the use of the implicit 
function theorem, and the use of symbolic dynamics applied to embedded Smale 
horseshoes leads to the aperiodic orbits (see also Guckenheimer and Holmes 
(1983)). 

Shil’nikov (and Gaspard), using the other technique, avoid the problem of 
resonant eigenvalues by rewriting the flow (1.2) as an integral equation for x ,  and 
invoking standard smoothness theorems on the solution. The remainder of this 
proof then follows Tresser’s outline. The recent book by Wiggins (1988) contains 
detailed discussion concerning the proof of results obtained from these kinds of 
analysis. 

In this paper we will avoid all such technical issues and concentrate on analysing 
the appropriate return map which we obtain in section 2 by the technique described 
at the beginning of this section. Our aims are to understand the geometry of the 
invariant set for small p and the way in which it bifurcates as p changes (section 3), 
to compute a multi-valued one-dimensional map which can be used to predict the 
behaviour of trajectories and sequences of bifurcations (section 4), and to sketch a 
proof of a theorem that there is a one-parameter family of periodic orbits in a 
neighbourhood of r, for small p #0, with period P related to p via a single-valued 
function p ( P ) ,  which has an infinite number of zeros which accumulate at P = m 

(section 5). We shall also argue that our results imply that the global effect of the 
homoclinic bifurcation (if we look outside a large enough neighbourhood of p = 0) is 
to produce a single periodic orbit, just as in the three-dimensional saddle-focus case 
(Glendinning and Sparrow 1984). In the course of the analysis, we shall indicate 
reasons why and how various other ‘typical’ behaviours may be expected, such as 
period-doubling and subsidiary homoclinic orbits. Our discussion will be discursive, 
but will, we hope, provide methods for understanding behaviour likely to be 
observed in examples. 

A C Fowler and C T Sparrow 

2. A Poinear6 map for the bifocal case 

The derivation of a Poincari map for a four-dimensional system with a homoclinic 
orbit proceeds analogously to that for two- and three-dimensional systems, as 
expounded, for example, by Sparrow (1982) and Glendinning and Sparrow (1984) 
and as explained above. The flow in the neighbourhood of a homoclinic orbit (which 
we assume exists when a parameter p = 0) consists of two parts; firstly, when the 
trajectory is near the fixed point, the behaviour is essentially described by the 
linearized equations of the system about the fixed point. Secondly, away from the 
origin, the nonlinear equations can be linearized about the homoclinic orbit. Hence 
a Poincari map for nearly homoclinic trajectories can be constructed analytically, 
which is valid to arbitrary accuracy as p (the bifurcation parameter) becomes small. 

Let us first suppose the fixed point with which we are concerned to be the origin, 
and consider the flow in a small neighbourhood of the origin. We define local polar 
coordinates (rl, O,,  r,, &). The linear behaviour near the origin can be represented 
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as: 

f, = -A,r, 
e = o1 

e2 = w2 

iz = A2r2 

where we take A,, A2>0. The set of equations (2.1) represents the assumption that 
the origin is a double focus. We will assume that A,, A2,  w ,  and w2 are independent 
of p, though more generally that would not be the case. This assumption simplifies 
our formulae without affecting the results of the analysis. To construct a Poincarc? 
map, we consider a three-dimensional return surface S, which is the interior of a 
torus near the origin defined by: 

S : r , = h  o s e , ,  e2s2n 0 s r2 s Fz. (2.2) 
Here h is small, as is iz. While r, and r2 are small, we follow points initially in S 
through to another torus S’, defined by: 

S ‘ : r 2 = k  o s e , ,  e 2 s 2 n  0 s r, s Fl. (2.3) 
Again, k is small. By solving (2.1) we find that a point (r:, @, 0;) in S is mapped to 
a point (r;, Si, 0;) in S’,  given by: 

r; = h [ k / r 2 ]  0 

1 2  

A2 

(2.4) 
0 1  e; = 0: + - In[k/r;] 

0; = 0; + In[k/r;]. 
w 

Following the notation introduced in the previous section, we call this map 
Z:S+S’. Evidently, we can take F, = h(k/F2)-*1’*z in (2 .3 )  since this gives us a 
nufficient!y !arge torus S’ that any trajectory started in S which does not tend to the 
origin will leave the neighbourhood of the origin through S’. Notice that O1 is the 
axial angle in S, whereas 8, is the axial angle in S‘, so that the angle variables are 
interchanged in going from S to S’ (this reflects an extremely complex behaviour of 
the map L, as we see below). See also figure 2. 

Next we calculate a map Z; from S’ to S determined by the global flow. The 
circle r2 = 0 in S is in the stable manifold of the origin 0. The circle r, = 0 in S’ is in 
the unstable manifold of 0. By assumption there is (when p = 0) a point P‘ on r, = 0 
in S’ which maps through the flow along the homoclinic orbit into a point P on r2 = 0 
in S. We can define the origins of e2 in S and 8, in S’, so that P satisfies O2 = 0, and 
P’ satisfies 0, = 0. 

Under the flow, the solid torus S’ is mapped near to S by Z;. For sufficiently 
small p, Z:(P’) . .  . is close to P, and thus Z;(S’) n S will be non-empty. However, as 
can be seen from figure 2, most points in Z;(S’) do not intersect S. We only wish to 
consider those points in S which return to Sunder Z and Z;, and those which do are 
those which have images under close to P’ in S’. For such points the map Z; may 
be linearised as a first approximation. Evidently, this requires p << h, k (i.e. take S 
and S’ sufficiently far from the origin), and we thus restrict our attention to the 
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Figure 2. When p = 0, X k ( P ' )  coincides with P.  
However, for all small p, most of X;(S' )  does not 
intersect S. 

values of e2 in S' satisfying leZl << 1 which will map into S. Now define local 
Cartesian coordinates: 

X' = r; cos 0; 

Y' = r; sin 0; in S' 

(2.5) 

The flow near the homoclinic orbit then maps S' to S via the approximation 
Z;:S'+S defined by the affine transformation (1) (ric;@) (r;co;0;) (2.6) 

Y = risin 0: = A  r;sin 0; +dp. 

The matrix A is invertible. Composition of (2.4) and (2.6) defines a Poincart map 
q : S - S  which takes (r!, e:, 0;) to (r;, e:, 0:) via a point (r;, e;, 0;) in S'. q is 
only defined for points in S which make it back to S, and as already mentioned, 
these are points such that O2 is small in S', and also (with the same argument) such 
that 0: is small in S. 

We are therefore led to consider a small part of S, S, c S, defined by 

The second inequality restricts attention to the part of S near to P, whilst the third 
ensures that the image under X in S' is near to P'. This image, X(&) = S& is given 
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from (2.4) by 

(2.8) 
with 6 = All,’.,. 

and E, 
small (see below) lie close to two-dimensional sets with the form of a cylindrical 
logarithmic spiral. A representation of the set & is shown in figure 3. We will refer 
to S, as a spiral sheet, or scroll. When we need to emphasize its three- 
dimensionality, we will call it a thick scroll. 

We shall speak of the width of So as its extent in the axial (Z) direction which is, 
in this case, he,.  The relative thickness we define as the (relative) extent in the radial 
direction. 

At constant e,, points on opposite sides of S, have ln(rz/r;) - O(E*) from (2.7), 
where r: are r, values on the outer and inner sides respectively. Hence 

Both (2.7) and (2.8) define three-dimensional sets which, if we choose 

(2.9) 

where Ar, = r; - r; is the actual radial thickness and ArJr, is the relative radial 
thickness. Similar definitions apply to S& which has width measured by Z’ = ke, and 
relative thickness Arl/rl - O ( E ~ ) .  Notice that the transformation of the spiral S, to 
the spiral SA is extremely complicated since the 0, and 0, directions are 
interchanged. This reflects an enormous stretching (in the 0, direction) and 
contraction (in the 0, direction) which are two of the hallmarks of horseshoes in the 
map. (These statements are justified below.) 

The other part of the Poincari map 2; which takes S’ to S, is simply the affine 
transformation (2.6). This may disturb the scroll SA by rotation, magnification, etc., 
but the image Z;(SA) = cp(So) will still be a thick scroll which is almost two- 
dimensional. In general, the scroll cp(S,) will have its axis displaced from that of S 
and skew to it as indicated in figure 4 (the axes intersect at P for p = 0). 

The relative sizes of So and cp(S,) will depend on AI,  ,’., and on our choices of h, 
k ,  E , ,  E, and F,. We have so far left these open, though for later parts of the analysis 

Figwe 3. The set S, in B given by (2.7) is a 
thick spiral, or scroll. X maps & into another 

S; interchanging the 8, and 8, 
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Figure 4. The scrolls S, and IL(S;) in B. The axes of these scrolls are in general ( p  20) 
non-intersecting and skew. 

it is helpful to make some definite choices. We already know that we want f2 << h, k. 
If we choose e2 so that SA is approximately the same width (kel)  as it has radius (i,) 
we need to take ke2 - f l  which implies e2 - (h/k)(f , /k) '  where 6 = AI/&. Then, if 
elements of A are of size IAl (this could be an appropriate norm of A, for example) 
we may expect from (2.6) that the image of S' under Zh has size IA[h(f2/k)' 
(+O(fi)) and that, therefore, points in Z;(SA) = p($) have 

T i -  IAl W 2 / k ) ' ( + o ( p ) )  
(2.10) 

0:- IAl (f2/k)'. 
Consideration of r,r&which is constant near &suggests that in fact IAl - k'h"', 
which is invariant under time reversal ([AI- IAI-', 6- a-', h - t  k )  as it should be. 
Substituting into (2.10) gives us 

r: - h'-"'-' r2 + O b )  (2.11) 
e: - h-'/'f; 

in S, so that the size of p(S,) is independent of k (as it should be), and also that 
rib"' is independent of h (as it should be). The expressions (2.11) also suggest that 
we consider the appropriate part of S if we take el h"'f$, which we therefore do. 

For fixed h and k,  then, we start with a set So of width -i; and radius -f2. This 
maps by Z into a set SA of width and radius -F; which is mapped by Zh back into a 
set p(&) of approximately the same size (P:). The image of S, under p is therefore 
of approximately the same width as S, (by choice), hut its radius, f;, is larger than 
the radius of S,(T.) if A I  < A, (expansion stronger than contraction) or smaller if 
A1 > A2 (contraction stronger than expansion). Other choices of the variables could 
have been made (for instance, to make S, of roughly equal radius and width) but 
wherever necessary we will use those above. We retain both h and k (rather than 
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fixing one in terms of the other) since this makes it slightly more obvious how one 
formula depends on another. 

It is clear that if S, contains an invariant set-that is, a set A which satisfies 
q(A) = A  and such that points in A continually return to S, under application of q 
(and q ' t t h e n  this set must be a subset of the intersection S, = S, n q(S,). The 
rest of this paper concerns the geometry and dynamics of the components of SI. 

3. The geomehy of &:intersecting skewed spiral sheets 

In this section, we will present a variety of ways of understanding what the 
intersection SI = Son q(S,) looks like, and how its components change as p changes. 
In the general (skewed) case, S;is a nearly one-dimensional structure consisting of a 
number of disconnected 'thick' curves or cords. We will begin by studying the 
one-dimensional structure, and to this end, we consider So and q(&) = as being 
represented by two spiral sheets, or scrolls, of two dimensions. These can be 
specifically defined using (2.7) and (2.8): 

0 2  S, : r2 < ?, ieli 6 6, O2 + - In(k/rz) = 0 
A2 

Tn:Z;(SA). 
In order to describe what the components of S, are like, we can make use of a 

diagram like that in figure 5. We call one (either) scroll the vertical (V) scroll, and 
call the other the horizontal (H)  scroll. (Our arguments will work whenever the axes 
of S, and To are not parallel, which is generally the case.) We choose a section II 
through the H scroll which includes its axis. The sheets of the scroll H then intersect 
n in an infinite series of parallel lines, as shown in figure 5. The dotted spiral at the 
right of figure 5 indicates how the lines are joined by the sheets of H outside II. We 
could label parts of H with integers, H,,, HI, etc., each integer representing a 

V spirai  H spiral 
Figure 5. The plane n, showing intemcctions with the H-scroll and V-scroll. The 
labelling is explained in the text. 
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connected piece of H above or below II on which the angle variable varies by n. 
The lines are designated by pairs of integers (4 .9 ,  (2,3) etc, showing which two 
pieces of H join at this line. (The series of integers is, of course, infinite, with 
infinitely many lines (-a -n + l), converging on the axis.) The vertical scroll v 
intersects n as shown in solid lines at the left of figure 5. 

To describe components of S,, we merely have to choose a point on H n V, and 
to track it as its radius on N varies, so that the corresponding radius in V varies 

To illustrate, consider the intersection of the scrolls near the V-axis. The V-axis 
intersects many different sheets of H. For example, the intersection of V with sheet 
H,(EF) of H gives the following. For points near the V-axis, the sheet H4 (i.e. EF) 
is almost planar, and the intersection of V with H4 gives an SI component which is 
essentially a spiral which winds out from the V-axis on H4. As it winds out further 
snA fiirther .______., it _ _  ncillates ~ mnre .....- and ~~~~~ mnre ..-~~. nn ..~ ~ ~ _ ,  H . ~  and thic ____I mntinnes nntil it ~. mn9 nnt _ _ _  nf _ _  
HA. This is when it reaches the point P an V, E on H. At this point, the S, 
component is parallel to the V axis. A little thought shows that the continuation of 
the component moves past E on H to sheet H3(ED) on H, whereas the component 
reverses direction on V at P,  and starts to wind back in towards the V axis. It 
continues to do this, winding inwards on V, and oscillating decreasingly on H, until 
it finally asymptotes to the V axis. Nolice that this is able to happen because the 
component never reaches D on H3. 

We term such a component a homo-axial spiral. It winds out from the V-axis on 
sheet H4, moves over to H3, and winds back in towards the V-axis on H,. A 
schematic representation of a homo-axial spiral is shown in figure 6. 

Now look at the intersection of the V-axis with sheet H, of H ( C D ) .  As before, a 
spiral winds out from the V-axis while the component oscillates hack and forth on 
H,, The first crisis occurs at C on H2, and Q on V. Here the component reverses 
direction on V, and moves on to sheet H I .  Now, however, as the component winds 
inwards on V, it suffers another crisis at R in H ,  reverses direction at R on V, and 
continues on to sheet H,,. Evidently it continues to shuttle back and forth on that 
part of Vbetween Q and R, and winds in towards the H-axis. We term this a 
hetero-axiul spiral. A view is shown in figure 7. 

There also exist closed loops. An example is shown in figure 8. A loop exists on 
sheets V, and V,, and on sheets H, and Hz between the lines H(1 ,Z)  and V(2,3). 
The loop goes from points AB’ to BA’ to CB’ to BC’ and back to AB’.  

The notation for the H lines (which we shall call axial lines) gives an easy 
method for following components of SI. Starting from any point in SI (on H and V 
at the same ordinate in figure 5 )  we wind round V on sheet Hi (say) till we get to an 
H-line with an i in it-either H(i,  i + 1) or H(i - 1, i); at this point we reverse 
direction in V and move to Hi+, or Hi-, as appropriate. (This prescription is 

A C Fowler and C T Sparrow 

G&!~ess!y. 
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\ \ 
\ \ 

cj\%aj 
\ Fipre 7. A hetero-axial spiral 

suficient, but it sometimes suits us for descriptive purposes, as in the description oi 
figure 8, to introduce the obvious notation for V sheets and V axial lines as well.) 

The three types of constituents described above are the only possible types of 
component in SI. What we now wish to do is to understand how these constituents 
arise and how they bifurcate amongst themselves as p changes. 

3.1. Bifurcation of geometry: unrolled scrolls 

Let us now consider how the homo-axial and hetero-axial spirals, and closed loops, 
are generated as the parameter p is changed. As we decrease p towards zero, we 
can suppose that the V spiral approaches the H axis, as shown in figure 9. The first 
thing that happens, as a sheet of V crosses one of the axial lines of H ,  is that a small 
closed loop is created. This has just happened on H(1, 2)  in figure 9(a ) .  As p 
decreases, V descends to position (b) in figure 9. The loop expands on sheets 1 and 
2 of H .  Further loops are created as further sheets of V cross H(1, 2). Nothing 
happens to these loops (other than becoming larger) as p decreases until the V sheet 
on which the large loop exists crosses the line H(0, l), as in figure 9 ( d ) .  When this 
happens, appeal to the recipe given above shows that a bifurcation occurs. The 
(large) closed loop no longer exists, and this component of SI is now part of a 
homo-axial (H)  spiral. Just before the bifurcation, figure 9(c).  there is the closed 

Figure 8. Existence of closed loops. 
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~\./,' 
Figure 9. p decreases towards zero as V goes from (0)  to ( d ) .  

loop on sheets HI and H2 and V, and V,. In addition, there is a homo-axial H spiral 
on sheets V2 and V,. which reaches Ho. It is easy to see that this homo-axial is 
created just after figure 9(h), when the axial line V(1, 2) crosses the H axis. Just 
after the bifurcation, in figure 9(d), this homo-axial winds on to sheets H I  and Hz,  
where it then crosses to sheet V, and winds back to the H axis. This extra excursion 
on HI, Hz consumes the loop which previously existed on sheets HI and Hz.  

A less wordy and more comprehensible way of visualizing this bifurcation is to  
unroll the H scroll, so that it lies flat. The appropriate diagram is then figure 10. the 
H axis is at -m in this picture, the sheets H I ,  H2 etc lie next to each other, separated 
by the axial lines H(0 ,  l), H(1, 2), etc. The diagram depicts in heavy lines the 
situation in figure 9(c). Loops are created on the line (1,2) as p decreases. When 
the loop reaches the line (0, 1) on H, a bifurcation occurs, in which the pre-existing 
loop joins to a homo-axial H spiral, to form a larger homo-axial H spiral, as 
indicated by the dotted lines in figure 10. Thus, we have the bifurcation scheme 

Evidently, the homo-axials are generated at the left (by the intersection of V sheets 
with H axis) and move to the right by consuming loops in the manner just discussed. 

Exactly the same process occurs for homo-axial V spirals. As the V axis nears an 
axial H line, infinitely many loops are generated at a 'centre' (on the unrolled H 
scroll). When the V axis crosses the H line, a homo-axial V spiral is produced, which 
proceeds to consume the previously produced loops from the inside (as seen on the 
H scroll). This scheme of affairs is represented in figure 11. 

It is fairly obvious how to elucidate what happens when homo-axial V spirals 
approach the H axial lines. The possibilities are sketched in figures 12 and 13. In 
figure 12, we see a bifurcation involving two homo-axial spirals: the scheme is 

This provides a mechanism for generation of hetero-axial spirals. Figure 13 shows 
the bifurcation of a hetero-axial with a homo-axial. The scheme is 

(A) homo-axial + loop+ homo-axial. 

(B) H homo-axial + V homo-axial- 2 hetero-axials. 

c H axis - -  . 
spiral loops 

Firure 10. Unrolled H scroll; a type A . 
bifurcation. 
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A Fylre 11. Generation and destruction of loops 
by a homo-axial V spiral, as depicted on an 

( a )  (b) unrolled H scroll; a type A bifurcation. 

(C) hetero-axial + V homo-axial-, hetero-axial + V homo-axial. 

In summary, consideration of an unrolled (H) scroll indicates the following 

(i) Loops are generated on axial H lines at the right, appearing further to the 

(ii) H homo-axials are generated at the left, and propagate to the right by 

(iii) V homo-axials are generated at the right, and also consume loops produced 

(iv) H and V homoaxials interact via type (B) bifurcations (figure 12) to 

This scheme propagates hetero-axials to the right, and homo-axials to the left. 

sequence as p is decreased. 

left as p decreases. 

consuming the loops produced in (i) (type A bifurcation). 

in (i) (type A bifurcation). 

generate heteroaxials. 

ia) 
Ho 

3 
H hcinoaxia 
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(v) Hetero-axials propagate to the right, and V homo-axials to the left, via type 
(C) bifurcations, as in figure 13. 

This is all the bifurcation of the topology of S, which occurs as p varies. Its 
symmetric counterpart occurs as p decreases below zero and the V spiral leaves the 
vicinity of the H spiral. 

3.2. A method of drawing S,, symmetric between H and V scrolls 

The disadvantage of the method of seeing the geometry and bifurcation of S, that we 
have just described, is its lack of symmetry between the H and V scrolls. (One of its 
advantages was the ease of visualization.) We now introduce a method which has 
this symmetry. 

We first notice that a point Q on the H scroll bas a certain radius rH (distance 
from the H-axis), and if it also lies on the V scroll it also has a V-radius rv (distance 
from the V axis). The set of points in H with H-radius r, forms a line parallel to the 
H-axis and, similarly, the set of points with V-radius rv forms a line parallel to the 
V-axis. These two lines intersect at Q, but nowhere else. Hence w e  can uniquely 
identify Q by writing down the pair of radii (rH, rv). We can similarly identify all 
points in SI, and plot them on a diagram showing r, against r,. Figure 14 shows 
several such diagrams. 

Returning now to consideration of the scrolls So and To given by equations (3.1), 
let us suppose that the H scroll is S,, and the V scroll is To. We are free, if we like, to 
use the coordinates from SA in our description of To (the mapping 2’ is affine and so 
well behaved) and so rH is measured uniquely by r, and r, by r,. The condition that 
some pair of values (r2, rl) represents a point in SI, the intersection of S, and G, can 
now be calculated. 

(e) 

Fxgwe 14. Evolution of S, in the (I,,. rV j  plane as p 
changes. The sequence evolves as in the description in 
section 3. First, loops are generated at fixed pints  
(I,, = r v j .  These propagate towards the axes. In (c). 
homo-axial spirals are generated; these propagate 
towards r,, = rv by consuming Imps in bifurcations of 
type A. In (e), approaching homo-axials lead to type 
B bifurcations, forming hetero-axials in (f j. Type C 
bifurcations merely rearrange the spirals, and are not 
shown. As p changes further, the above sequence is 
reversed. 

( 1 )  

$1 
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In (X,  Y, Z )  coordinates, the line of points in So with radius r2 is given by 

X = r, cos tI2 

Y = r, sin 0% (3.2) 
Z arbitrary 

and, from (3.1), 

(3.3) 
W2 0, + - ln(kjr2) = 0. a2 

Similarly, in SA, the (X ' ,  Y', 2') coordinates of the line of points with radius r, is 
given by 

X' = r, cos 8, 

Y' = r, sin 8, (3.4) 
Z' arbitrary 

where (3.1) tells us 

w , .  ,. 8, - - in(hir,j = 0. (3.5j a, 
Under CL, the line given by (3.4) is mapped, according to equation (2.6), to ( 5 )  =.( ;;:;) + d p  (3.6) 

so writing A out in full as (U,,), 1 =si, j S 3, we find that the two lines (3.2) and (3.4) 
intersect if and only if we can find X and Y (with 2' arbitrary) satisfying: 

X = r , c o ~ 0 ~ = a , , r , c o s 8 , + a ~ ~ r , s i n 0 , + a , ~ Z ' + d ~ p  

Y = r, sin O2 = az,r, cos 6,  + aZzr, sin 8, + a,J' + d2p 
-. (3.7) 

where 13~ and 0, are given by (3.3) and (3.5) above. Eliminating Z', and introducing 
new constants CY, q,, q2, d, we can write (3.7) in the form 

r, cos(0, + q,) = ai-, cos(@, + q,) + p 
where we have rescaled p, or, substituting in from (3.3) to (3.9, 

) (3.8) 

Solutions of this equation, for various values of the constants and of p, look like the 
diagrams plotted in figure 14, as can be easily checked. 

r , c o s ( - ~ I n ( k i r , ) + q , )  w2 = ar , cos (W'~n(h / r , )+cp ,  + p  
a1 

4. A mnlii-valued one-dimensional map to model cp 

Our aim in this section is to consider the full three-dimensional return map q = ZLZ 
and to derive a multi-valued one-dimensional map @,, which will model forward 
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orbits of 9 that remain in S, for ever. We will obtain such a map in the form 

A C Fowler and C T Sparrow 

L(r;+’) = R,(ri) (4.1) 
where L and R, are both functions defined in ri<iz. Given a sequence of points 
xi = (r;, et, Si) generated by 9, so that x i+ ’  = q ( x i ) ,  xi E S,, Vi 3 0 ,  we will show 
that the successive r,-values, r;, approximately satisfy (4.1). Conversely, we will 
argue that most finite sequences of rz-values (r:, r:, . . .) satisfying (4.1) can he well 

points y E So. Thus, we will be able to study the maps (4.1) to obtain information 
about the behaviour likely to  be observed in examples of differential equations 
having a homoclinic orbit of the kind discussed here. 

It is possible to derive an approximate formula for functions L and R, satisfied 
by iterates xi+’ = 9 ( x ’ )  by combining equations (2.4) and (2.6) to generate 9 and 
=sing eqcation (2.7) to ens~re  that both x i  m d  xi+’ !!e in SG. The a~s9\uer so nbtaiaed 
is 

app:oxiE-ated by .pq”ence of c2-ya!ues achie,;ed by crbi! fer 

r;+’cos ---ln(k/ri+’)+ 9 2  =P(ri)”cos(:In(k/r:)+ ql )  + w .  
(4.2) 

( ;: ) 
which is of the form advertised in equation (4.1). However, this calculation largely 
mimics the calculation of the equation (3.8) in the last section, and it is more 
instructive to derive (4.2) directly from (3.8) since this involves us in a geometric 
argument about the way in which 9 acts on So. This argument will give us, at the 
same time, the result about the existence of trajectories approximating sequences 
generated with equation (4.2). 

0;) in one component of si. R e d !  that & 
and SA are actually three-dimensional (and that we are describing their extent in the 
Z,Z’ directions as width). Our point x i  will he close to a point y in one of the 
one-dimensional components of the approximation to S,, which we discussed in the 
last section. We now consider a segment of the three-dimensional cord in SI which 
contains x i  and y ,  and which corresponds to a small piece of the one-dimensional 
approximation to S:. Its  leneth is the length of this one-dimensional approximation, 
while its thickness will be that of So (in the radial direction) and its width (in &) will 
he the thickness of To. 

In particular, the segment samples all values of O2 allowed by equation (2.7) hut 
only a small fraction of the 8, values. The image under Z of this segment in S;, will, 
therefore, do a similar thing; it will sample the complete range of O2 values allowed 
by equation (2.8), but only a small fraction of the 0, values. In other words, the 
image in SA is a very thin ribbon stretching across the whole width (in the Z’ 
direction) of SA. When mapped by X; into T = q(&), this ribbon will intersect all 
components of S, that extend to the appropriate r,-radius in the sense used in 
section 3. 

To he more specific, if we use the sizes mentioned at the end of section 2, and we 
begin with a segment at almost constant radius r: in So, it will have actual thickness 
r:EZ and width less than or equal to E:h (depending on the r,-value of the segment). 
This will be mapped to a thin ribbon in SA at almost constant radius r: = h[r:/k]’ 
where 6 =A,/& (see equation (2.4)). of thickness E:r: (compared with a thickness 
of Elri for the scroll SA) and width equal to the whole width of SA. Under Z; this 
ribbon will once again intersect S, in small segments that typically sample the whole 

 et 9s consider a point x i  = (rb 
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thickness of So but have width only &:h (or less). The places where the ribbon 
(which had r,-value ri in SA) intersects SI will be close to points on the 
one-dimensional approximation of SI with description (.;+I. rf) in the notation of 
section 3, and where we must, therefore, have rp' and r: satisfying equation (3.8). 
The fact that the ribbon stretches the whole width of SA implies that the image of 
our original segment under 9 will intersect SI near to all such points, and the image 
of x i  will lie close to one of them since xi+' is also in S, (by assumption). 

equation (4.2) after introducing the new constant fi  = ahk-'. Thus (a) we have 
shown that (4.2) is approximately satisfied for points in S,, and (b) we have a strong 
argument that near to a point x i  with radius r; in S, we will be able to find points y 
such that ~ ( y )  has any r,-value ri+' satisfying (4.2). 

The argument for (b) requires that the intersection of S, and To be transverse 

component of S, containing x i  does not sample the full thickness of S,,. We will not 
pursue this possibility since it is evident that for most finite sequences of iterates it 
will not occur. Notice, however, that if we restrict our attention to parts of SI where 
the intersection is transversal, we can generate, in a standard way, a nested 
sequence of sets S, = cp(Si-,) n So of width Eih in S,,. These will converge to some 
Cantor set of ribbons, S, c SI, and if we label the components of SI with integers we 
will be able to construct the usual kinds of symbolic dynamics and will be close to 
recovering Shil'nikov's results about the existence of infinitely many periodic orbits 
and aperiodic trajectories in the flow. 

It remains for us to  describe how t o  use equation (4.2) before continuing, in the 
next section, to examine some of its behaviour and bifurcations. We shall descrihe 
two methods, one related to the way of looking at S, illustrated in figures 8 and 9, 
and the other related to  the way of looking at SI illustrated in figure 14. 

Figure 15 shows the two functions L(r) and R,(r) superimposed on a diagram 
like figures 5 and 8. The relationship between the functions and the scrolls is 
apparent. The lower curve is y = R@(r), the upper is y = L(r) .  For a given r-value, 
say r;, we find the following iterate by following the vertical line r = r; until we 
reach the y value given by y ,  = Ru(ri). The possible value(s) of ri" are those for 

XT-.., if x . 1 ~  r-mhi-n n n s r n t i - n  f 1  Q\ .rri+h .f - h l . i f 6 1 6  .SIP A- ;nAnoA nhtslin 
1.V.Y) ,I nr W l l l V L l l r  ry"L.L."" \-'."I "Llll r ,  - ,.,,*,&, , nr U" 1.. "I-" ""LYL.. 

nc2r xi ,  I!? p.rtic??!.r, it Fi!! Ea! ..ark if S, znd T, !!!!ersect in scch a ..ay ?ha! the 

t '  

r + 

ir 

" 
L ' \ /  

./ 
1 H v 

y =  R,(r) 

Figure 15. The left- and right-hand sides of equation (4.2) related to figures like figure 8 
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r 1 
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0,' 0 

Fiyre 16. Plotting iterates of (4.2) on an (rz, r , )  plot of 

r, = h(r,/k)', illustrated here for 6 = &/.I2 =- 1. 
? S, like figure 14. The graph superimposed on the plot is / 
r 2 

which L(r;+') = y , ,  and these are those values of r at which the horizontal line y = y l  

of r;". 
The other technique is illustrated in figure 16. Here we have plotted the curve 

r, = h(r,/k)' on top of an (r,,  rz) plot like those in figure 14. (We have chosen to 
illustrate the case 6 = Al/A2 > 1. )  Now, given an initial value r:, we move vertically 
to the curve r,=h(r;/k)'  to obtain the appropriate r, value. We then move 
horizontally to any point on a component of SI so that the new r: and h(r;/k)' 
satisfy, respectively, the left- and right-hand sides of equation (3.8). This is 
equivalent to ri and r; satisfying the left- and right-hand sides of equation (4.2). To 
generate further iterates we continue to alternately move vertically to the graph and 
horizontally to any component of SI. 

.. - r (-1 T +  :r a v r i r l n n t  +hot thnra ~m ---nmll.. I "..lrhnr -f ..noc:hl- ....I....I ,,,,SLJGL.LJ y - U\, ,. I t  1- C " I " I . L L  U I Y L  L1.L.l,. (ILL. ~C.,CLaL,y a ,,Y,.."CL "I y"".,.".C "l,"GD 

5. Bifurcation of orbits 

Fixed points of the map described in the last section will correspond to fixed points 
of the mapping cp, and these in turn correspond to periodic orbits of the flow which 
pass only once through S, before joining up. Thus, it is apparent that we can learn a 
lot about the existence and bifurcation of periodic orbits in the flow by looking at 
the fixed points of maps such as that shown in figure 16. Let us first consider the 
situation when p = 0. 

When p = 0, the axes of the two scrolls intersect at P and it is clear that there 
will he infinitely many components of the one-dimensional representation of the set 
SI accumulating on r, = rl = 0. (The axis of each scroll intersects infinitely many 
sheets of the other scroll.) 

Figure 17 shows this situation for the two cases 6 = & / A 2  > 1 and 6 < 1. The only 
difference between these figures is the position of the graph r, = h(r;/k)'; in both 
figures there are infinitely many fixed points of the mapping given by intersections of 
the graph with the one-dimensional (r,,  r,) representation of the set SI. These 
intersections accumulate along one axis or the other (depending on 6 > 1 or 6 < 1) 
and we can calculate the asymptotic period of the orbits (in the flow) represented by 
these intersections. From section 2 we find that the time spent between the surfaces 
S and S' is - ( l /A , ) ln [k / r ] ,  where r is the value of r, in S (at a fixed point of cp). 
Since most of the orbit's period is spent near the origin, this is the asymptotic value 
of the period, except that P cannot depend on k ,  which merely locates the box S'. 
We deduce that the time spent by the orbit between S' and S is In(l/k) + 0(1) ,  and 
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2 r 

E y r e  17. Infinitely many fixed points of the mapping for )r = 0 
accumulate along the ,,-axis of 6 > 1 and along the ,,-axis if 6 < 1. 6 - 1  ‘1 

that the period P is related to p and r by 
1 

P--ln(l/r). (5.1) 
A2 

Defining P. to be the period of the orbit represented by the nth intersection (starting 
at some convenient place and counting upwards as the  r,-value at the intersection 
tends to zero) we can see that in the asymptotic regime we will have (using 
equations (3.8) and (5.1)) 

If &>l;  P,-nn/)w,\ (5%) 
If 6 < 1; P,, -nn/lw,l. (5.2b) 

In fact, if we are now prepared to vary p we can, given a period P, determine an 
associated r,-radius rz-e-“‘ and can, using equation (3.8) or (4.2) obtain the 
relationships 

6>1; pme-”‘cos[wzP+ 0(1)] (5.3a) 
6<1; paee-”’Pcos[wlP+O(l)] (5.3b) 

for p-values at which periodic orbits of period P exist as P-+ m. Figure 18 shows a 
bifurcation diagram of period against p for orbits represented by k e d  points of our 
one-dimensional map. Equations (5.3) show that the wiggles in figure 18 will 
decrease in size very rapidly as P + m  if Ain/lw;l is large for the relevant index i = 1 
or 2. 

Notice that figure 18 is consistent with our knowledge that there are infinitely 
many periodic orbits when p = 0; it is just that we have joined them together into a 
single family which can be traced by increasing and decreasing p whilst increasing P 
monotonically. If we are obliged to increase p monotonically we will see only that 
pairs of orbits appear or disappear in saddle-node bifurcations at the points where 
the curve in figure 18 is vertical. Figure 19 shows a sequence of bifurcations as p 



1178 A C Fowler and C T Sparrow 

P t l = O  

F@m 18. p against period P for the periodic Figure 19. Details of bifurcations between loops 
orbits represented by k e d  paints of the one- and spirals as p changes monotonically. Two fixed 
dimensional map. points, A and E ,  produccd in a saddle-node 

bifurcation in frame (i) are eventually destroyed in 
separate bifurcations in frames ( U )  and ( x ) .  Here 
we show the bifurcations on an (r& r;") plot (see 
(4.2)). which is topologically equivalent to the 
(r2. r ,)  plot of figure 16 (see (3.8)). 

varies monotonically (from positive to negative, say) following two fixed points, A 
and E ,  from their appearance in one saddle-node bifurcation to their separate 
destruction in two other similar bifurcations. Just as the two points A and B move 
onto different loops at some point in this sequence, so the points C and D, and E 
and F, get separated from one another on the components of SI representing 
homo-axials; a little thought about the geometry of the scrolls leads one to the 
conclusion that this is exactly what we would expect to happen to homo-axial 
components as one scroll moves through the other. Now, while increasing p again 
from the value shown in the last frame of figure 19, we can follow the other fixed 
point (besides A) involved in the saddle-node bifurcation of that frame through a 
similar sequence of changes, and eventually, moving p up and down through zero 
can follow the fixed point continuously down towards r, = r2 = 0. This process is the 
precise counterpart of following the curve of figure 18 as P-m. 

Figure 18 is the basis of our assertion that for large enough p values it is likely 
that the effect of all the complicated bifurcations close to p = 0 is just to produce a 
single periodic orbit. This orbit is the continuation of the curve shown in figure 18 
into parameter regions where there is no hope of justifying our analysis rigorously, 
and it could exist in either p c: 0 or p > 0. 

This argument is similar to one expounded at greater length in Glendinning and 
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Sparrow (1984) in relation to three-dimensional saddle-focus homoclinic bifurca- 
tions. In that case, all examples studied behave as expected. In the present case we 
expect that observed behaviour will depend strongly on the ratios Ajn/lwil. If these 
are large, it may be difficult to observe anything other than the single periodic orbit 
since the wiggles of figure 18 will be small. 

5. i. Stability of orbiis;period-doubiing bifurcarion 

The three eigenvalues of the full three-dimensional return map rp are O ( E ~ )  << 1, 
O ( E , ~ / E ~ ? ~ )  >>1 and = R’IL’ where R‘ and L’ are the derivatives of the right- and 
left-hand sides of equation (4.2) and where the sizes of the other constants were 
discussed in section 2. All fixed points are therefore saddles, but the 0(1) 
eigenvalue goes from >1 to <1 at the turning points of the curve in figure 18. When 
R ‘ >  L’, trajectories have two unstable Lyapunov components, a situation com- 
monly referred to as ‘hyperchaos’ when it affects whole invariant sets. (Glendinning 
and Tresser (1985) discuss this phenomenon in systems related to those studied 
here.) 

Period-doubling bifurcations will occur when R’IL‘ = -1 and to visualise this it 

This only has the effect of rescaling the diagrams we have been using so far (based 
on equation (3.8)) so that the graph of rl = h(r,/k)’ becomes a straight diagonal. We 
have resisted this simplification earlier since it slightly obscures the dependence of 
the asymptotic behaviour on S. R’IL’ = -1 now just means that near the fixed point 
the (rz, rl) plot considered as a function of rz has slope -1. Figure 20 shows a 

period 2 orbit is produced from a fixed point. (Period 2 orbits of the map represent 

is io pioi (4,2j &&;yon oul (r1, rz) p:ois, as was doiie in figure 18. 

seque=% =f g,f;;;ca~Gns ;;a;ting .&,-i?h a pe;.;G&&&!ing gifi;;ca?iGn in a 

pigue N. A hxed p i n t  period doubles (0)-(b) producing a periodic 
orbit of period 2. Following this orbit (by increasing and decreasing v) it 
can be made to approach the axes (d) .  (d ) 
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periodic orbits of the flow which pass twice through the linear region near the 
bifocus before joining up.) In this case the period of the doubled orbit increases as it 
approaches the axes. It is, in fact, approaching a subsidiary homoclinic orbit. 

A C Fowler and C T Sparrow 

5.2. Subsidiary homoclinic orbio 

In addition to the homoclinic orbit which occurs at p = 0 (which we call the primary 
homoclinic orbit) we can expect other homoclinic orbits to exist for small p-values. 
These are orbits which start on the unstable manifold of the fixed point in S; and 
which after a number of passages through S, and SA eventually land on the stable 
manifold of the fixed point in So. Following Glendinning and Sparrow (1984) we 
refer to such orbits as subsidiary homoclinic orbits, and Glendinning (1989) has 
shown that infinitely many such orbits do occur in a neighbourhood of p = 0. (The 
precise way in which their existence depends on p is affected by the ratio of the 
angular frequencies o1 and oz.) In terms of our (rz, r,) plots, such an orbit occurs 
when a trajectory like that shown in figure 21 exists. 

The full complexity of the bifurcation picture near p = 0 can be gathered from 
the fact that each of these homoclinic orbits can be analysed using the technique 
described in this paper, though the region of validity of the analysis will include only 
a very small subset of the p- and r-values for 'which our analysis provides a good 
approximation to the behaviour. Nonetheless, we may deduce the existence of a 
global curve of periodic orhits like figure 18 for each of these homoclinic orbits, and 
figure 20 illustrated the way in which a period 2 orbit could increase in period by 
approaching one such homoclinic orbit in an appropriate way. 

l@me 21. Subsidiary homoclinic orbits on (rescaled) (r2,  r,) 
plots; (a)  shows the simplest type where the orbit passes only once 
through the linear region near the bifocus; ( b )  shows a more 
complicated orbit; (c) illustrates the type of orbit associated with 
(b) .  
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-re 22. A period-doubled orbit is produced at one 
fired point and destroyed at another distinct one. 

5.3. Details of bifurcation structure 

The bifurcations we have discussed so far differ little from those observed in 
three-dimensional systems with homoclinic orbits to saddle-focus (one real eigen- 
value and one complex pair) fixed points. This is largely because if the ratio of 
exponents 6 =A,/& is not close to one, then the map (4.2) which really 
encapsulates the dynamics is close to that of the 30 saddle focus case. For example, 
if 6 > 1, then fixed points of (4.2) are given approximately by L(r,) = p, which also 
approximately defines the map; this is similar to the three dimensional case. The 
real novelty of the bifocal example thus occurs when 6 is close to one. 

We have been unable to find an example on which to explore the bifocal 
distinctions. Nevertheless, it is possible to conjecture as to some behaviour which we 
might expect. In the three-dimensional (Shil’nikov) case, period-doubling bifurca- 
tions occur off the primary branch, and such period-doubled orbits may themselves 
become homoclinic, or rejoin the primary branch a little further up (or down), but 
without encountering a saddle node bifurcation. In the four-dimensional case, this is 
not necessarily true, and a period-doubled orbit may, in principle, rejoin the 
primary branch after a number of intervening saddle-node bifurcations. Such a 
possible situation is depicted in figure 22, where the period-doubled orbit rejoins the 
primary branch on a different arm, with a single saddle-node bifurcation in between. 

6. Conclusion 

We have described several powerful methods to visualize the geometry of the 
invariant set existing near a bifocal homoclinic orbit, and have derived a multi- 
valued one-dimensional map with which the dynamics on the set can be approxim- 
ated. These tools should considerably simplify the task of understanding bifurcation 
patterns occurring in examples. Our experience with the three-dimensional saddle- 
focus case suggests that the map and model described in this paper will prove 
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competent to predict results over large ranges of parameter values (much larger than 
can he expected on rigorous mathematical grounds). We can expect the details of 
fully fledged four-dimensional behaviour to be observed most easily in cases where 
A,n/w,  and A,n/w, are of reasonable size and where A,  and A2 are of similar size. 

A C Fowler and C T Sparrow 
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