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FLOODING AND FLOW REVERSAL IN ANNULAR TWO-PHASE FLOWS*

A. C. FOWLERT AND P. E. LISSETERY

Abstract. A two-fluid model for annular two-phase flow is presented, which incorporates realistic phase
interaction terms corresponding to turbulence in the gas phase, interphase pressure differences, and profile
effects (nonuniform velocity profiles); this model avoids the conundrum of illposedness associated with the
simplest averaged model [D. A. Drew, Continuum modelling of two-phase flows, in Theory of Dispersed
Flow, R. E. Meyer, ed., Academic Press, New York, 1983]. In this paper it is shown that an appropriately
scaled form of this model is capable of significant (asymptotic) simplification and in its reduced form is
able to predict the phenomena of flooding and flow reversal in annular flow, both qualitatively and
quantitatively.
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1. Introduction. Two-phase flows are of commercial importance in boilers, cooling
systems for nuclear reactors, and pipelines from oil wells. Many other situations may
also potentially be described in terms of two-phase flows, such as explosive volcanic
eruptions. Typical experiments with gas-liquid flows through pipes involve steam and
water or air and water. It is observed that there are several different flow régimes,
depending (among other things) on the gas and liquid mass fluxes. The particular
régime that concerns us here is annular flow in a vertical pipe, in which the liquid
phase flows next to the pipe wall, while the gas phase streams upward in a central core.

Annular flow occurs naturally in two-phase flows through vertical, heated tubes,
where, following the inception of boiling, the régime changes successively from bubbly
Sflow to slug flow to churn flow and, finally, to annular flow. These various régimes have
been described by Jones and Zuber [9], for example. It is, of course, experimentally
attractive to isolate these various régimes in order to study their properties. To attain
an annular flow régime in an unheated flow, it is common to admit the gas flow at the
base of a tube but to force the liquid into the pipe through an orifice in the tube wall
at some distance above the inlet.

Because of the way in which the annular flow is created, it is evident that, if the
gas flux is low enough, the liquid will simply fall under gravity as a film, so that a
countercurrent flow is obtained. On the other hand, very high gas fluxes will be able
to drag the liquid film upward, thus forming a cocurrent flow. It is the transition
between these two states that interests us here.

As the gas flux is increased, the transition to upward film flow is termed flooding.
When the gas flux is reduced in a cocurrent flow, the transition to countercurrent flow
is termed flow reversal. The process is illustrated in Fig. 1; there is a clear hysteresis
between states [7].

The phenomenon of flooding is one of intrinsic dynamic interest. There are also
direct practical reasons for understanding it. It is of concern in vertical tube condensers
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FIG. 1. Schematic illustration of the processes of flooding and flow reversal,

and in loss of coolant (nuclear) accidents. It may be associated with the transition
from slug flow to (churn flow to) annular flow in heated test sections, since the Taylor
bubbles in slug flow are analogous to countercurrent annular flow, while the annular
flow régime itself is one of cocurrent flow. Furthermore, flooding is such a basic
phenomenon that realistic averaged models of two-phase flow ought to be able to
predict it. In this regard, it is noteworthy that, of the many descriptions of flooding in
the literature, few are concerned with an averaged model, whereas such models
constitute the necessary means for calculation of practical flows. Hence, it is an
important test of realistic averaged models that they should be able to predict flooding,
and, moreover, with some accuracy. This is our intention here.

Previous analyses of flooding divide roughly into two approaches. The first is
typified by that of McQuillan [13], who provides a fairly simple model that agrees
reasonably with his experimental data. The model is based on conservation laws (mass,
momentum), but is applied in a specific way. More complicated analyses are based
on the point forms of the Navier-Stokes equation applied to the liquid film (e.g.,
Chang [3], and, in a similar vein, Taitel, Barnea, and Dukler [19]), which are then
analysed for linear and nonlinear wave behaviour (e.g., Chen and Chang [4]).

Now, practical calculations involving two-phase flows are actually made using
averaged equations [8], [5], [6] and, for flow in a long vertical pipe, these are
cross-sectionally averaged as well. In this case, averaged models for annular flow lose
the luxury of the pointwise description of the film flow. Yet if such models are to be
useful, they must be able to predict such phenomena as flooding.
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Our primary purpose, therefore, in the present paper, is to present a realistic,
averaged two-fluid model for annular flow and to show that it does indeed predict
both flooding and flow reversal in a reasonable way. In the course of this analysis, we
are led to consider the importance of boundary conditions for the flow and also to
describe transient wave behaviour in the liquid film. While the approximate model we
derive is, of course, a major simplification, we aim to show that it retains a capacity
for both qualitative and quantitative prediction.

2. Model equations. Very general field-averaged equations for one-dimensional
two-phase flow have been posed by many authors. Here we follow Drew and Wood
[6], and take the (for example, cross-sectionally) averaged equations representing
conservation of mass and momentum for each phase in the form

—(pg )+ _ (pgav) =T,

—_— +_ —_
at (PZB) a9z (peBu) r,
(2.1)
—(pgav)-l- (Dgpgav) ——[apg]+pg, +F wt Fi +Tv,— ap,g,

_(Wﬁ“)"'_(DfP/,Buz)——“[BPZ]+P& B"‘sz"‘F& Fu;—Bp.g.

In these equations, @ and B are the gas and liquid void fractions (e +8=1), v and
u the gas and liquid velocities, and p, and p, the gas and liquid densities, which we
shall take to be constant. The term I' represents, in general, a source term due to
evaporation (I"'>0) or condensation (I'>0), which is relevant for heated or cooled
flows. In general, it is determined by an enthalpy equation that determines I" via the
latent heat term. In the present paper we ignore change of phase and take I'=0. p,
and p, represent (averaged) gas and liquid pressure, and a suffix i represents the
average interfacial value, thus p,(ps) is the average interfacial gas (liquid) pressure.
Other terms in these equations correspond to various realistic effects, which are
described in more detail below, and whose form must be constituted. In addition, a
relation between p, and p, must be prescribed.

2.1. Illposedness of basic model. The simplest version of this model neglects all
the interaction and source terms, equates the profile coefficients D, to one, and
(importantly) assumes

(2.2) Péi = Pgi = Pe = Pg-
This basic two-fluid model can then be written as
a,+(av), =0,

—a,+[(1-a)ul, =0,
(2.3) a,+[(1-a)u]
pg[vt+vvz]:_pzs

P([ur + uuz] =Pz

and must be supplemented by boundary conditions that may be taken to be applied
at the inlet (see later discussion for more detail). These two-fluid Euler equations are
known to possess complex characteristics if u # v and are then, in fact, partly elliptic
in time. As such, they are ill posed and are unlikely to correspond to a physically
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realisable flow (despite which, they have sometimes been solved numerically for
practical problems; see, e.g., [12]).

One reason why this basic model is unrealistic is that it assumes that there is a
common average pressure, which is the only term that couples the two fluids. In reality,
other terms may be important, and in particular, the assumption of equal phase
pressures may be inaccurate. In what follows, we discuss realistic prescriptions of the
various interaction terms for annular flow and then determine whether the resulting
model has real characteristics, which is our acid test for the feasibility of the model.

2.2. Friction factors. The terms F; represent forces acting on the gas and liquid
phases (k = g, £) at the phase interface or the tube wall (j =i, w). In annular flow, we
have

(2.4) F,,=0.

Furthermore, if waves on the liquid film are of small amplitude (this is the ripple wave
region of annular flow and is appropriate at high gas fluxes and relatively low liquid
fluxes, whereas at lower gas fluxes, we have the roll wave region), then we can ignore
the effects of added mass. In this case an appropriate correlation for F,, is that of
Wallis [21]:

(2.5) Fp,=—(32/d Re/)Pé’lul“,
where d is the tube diameter and Re, is the film Reynolds number given by
(2.6) Re, = Bp|uld/ .,

e being the liquid viscosity. Wallis also suggests the following expression for the
interfacial force in annular flow:

(2.7) —F=F;=(2f;,/d)a"?p,|v— xul(v—xu),
in which
(2.8) £=.005(1+758), x=2.

Here, yu represents the wave velocity in the film. More accurate correlations for F;
in the ripple wave region may be given, for example, that due to Asali [1], but the use
of more complicated correlations serves only to obscure the underlying analysis and
is perpendicular to our main purpose here. For similar reasons, we will not attempt
to complicate (2.5) and (2.7) in ways appropriate to roll waves, since this also would
only serve to obfuscate the basic point.

2.3. Phasic pressures. The equations (2.1) contain four pressures, the averaged
gas and liquid pressures, p, and p,, and their corresponding values at the interface,
Dei and p,;. We suppose

(2.9) Pgi = D

Difference between p,; and p,; may be due to surface tension or to the vapour thrust
of an evaporating liquid, and a corresponding constitutive relation has been proposed
by Kawaji and Banerjee [10]. However, the difference is likely to be small [14], so
that we suppose

(2.10) pg'. :p&..

Last, we need to prescribe p,— p,. A nonzero value may be prescribed by using the
Bernoulli equation for the flow in the liquid film. A simple model assumes laminar
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flow in the film, with small amplitude waves at the interface. Then [17] we find the
averaged expression

(2.11) Pe—Pa= cpé’(“é’_ur)z,

where u, is the ripple wave speed (see before (2.10)), and following a suggestion of
Trapp [20] and Serizawa and Kataoka [16], we could choose ¢=.03, or ¢=.02 for
long waves.

2.4. Profile parameters. The parameters D,, k= ¢, g, indicate the distribution of
the momentum flux in each phase and are defined as

(2.12) D, = <akpkui>/<ak><Pk)< “k)z,

where a, u; are the respective (locally defined) void fractions and velocity for each
phase (k=/¢, g), and the brackets denote cross-sectional averages. Turbulent gas flow
can be represented by a power law profile [2], but realistic assumptions yield values
of D, close to one; therefore, we take

(2.13) D,=1.

Flow in the liquid film is more akin to Couette flow, and for laminar flow, D, can be
taken as 4/3. As the film Reynolds number increases, D, decreases (as the profile
becomes blunter). Thus D, = D,(Bu); but for sufficiently small Bu,

(2.14) D,~4/3.

2.5. Characteristic speeds. We use the above constitutive relations to simplify (2.1)
to the following form:

-—(pg )+ (pgav) 0,

0 l¢]
- +— u)=0,
Py (peB) Py (peBu)
(2.15)
ap
(PgaU)+ [apg ]=_aaz—apgg_F(i’
0 0 0 [¢)
— (peBu)+— (DepBu’) + cp(x —1)*u’ B _ -B 9Py Fpo+ Fs—Bpeg,
ot 0z 0z 0z

where p=p,, and F,, and F, are given by (2.5) and (2.7). To find the characteristic
speeds, we write (2.15) in the form

(2.16) A, + Bis, = algebraic terms,

where ¥ = (a, 4, v, p) r and we use B =1— «; the characteristic speeds A are then given
by the roots of det (AA — B) = 0. We take p, and p, as constant, so that the two acoustic
speeds are infinite, and the other two characteristics are given by the roots of

(2.17) A Hgr+r=0,

where
p=ate(l-a),

(2.18) g=—-"2e(1—a)v—2aD,,
r=e(1-a)o’+au’[D,—c(x —1)°],
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and

(2.19) € = pg/ Pe-

For the basic two-fluid model, ¢ =0, D,=1, so that in that case

(220) p=a+e(l—a), q=-2au—-2e(1—a)v, r=e(l1-a)v’+au’,

and the roots are

u =+ isv
2.21 =
(2.21) 1+is’
where
(2.22) s={e(1-a)/a}"?,

and A is complex unless u = v.
For the case where ¢ #0, D,# 1, we assume for simplicity

(2.23) ex1, l-ax1, eV~ U, (1-a)u< ey,

(corresponding to typical observations); if, in addition, we suppose that ¢ is small
(e.g., ¢s0.1), then the roots of (2.17) are approximately

(2.24) A= Du+{(D%= D,)u’— s*v*}V2.

Obviously, a more complicated expression for A can be written down including ¢, but
(2.24) illustrates the basic point that the simplest realistic profile parameter D, > 1 can
make the characteristics real. The criterion for real characteristics is then

\y1/2
(2.25) {M} v 2
pea u 3

if D( = ‘j‘

Recall from (2.8) that Wallis’s correlation for F, suggested that the interfacial
wave speed was yu, where y =2. If D,=4/3 (and sv/u is small) then 2u is also the
greater characteristic speed, and it may be reasonable, in general, to associate the
propagating interfacial wave speed with the (larger) characteristic speed.

Having real characteristic speeds is the first crucial test that a realistic two-fluid
model must satisfy. However, even if D,> 1, (2.25) will break down for large enough
(1—@)"?v. What then happens is beyond the scope of the present discussion, but we
mention that one possible mechanism for transitions between different flow régimes
may well be precisely the breakdown of wellposedness of the model. When the two
values of A are complex conjugates, small disturbances at arbitrarily high wave number
grow rapidly. At low gas fluxes (and thus thick films), large roll waves grow and
eventually begin to bridge the tube, leading to churn flow. In effect, the flow régime
modifies itself in such a way as to ensure a well-posed model.

2.6. Boundary conditions. In a single-phase flow, we prescribe the pressure drop,
or the flow rate. For a two-phase flow, we can imagine each phase supplied separately
at the inlet. Then we can prescribe the pressure drop from the base to the exit of the
tube, Ap, and the inlet gas and liquid fluxes

(2.26) G, = ap,v, G,=(1—a)p.u.

No other condition seems appropriate: in particular, we do not prescribe a at the
liquid inlet.
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To reconcile these prescriptions with the fourth-order system (2.1), we observe
that elimination of dp/dz between the two momentum equations yields a third-order
system for B, u, and v. If we suppose B = B, at the liquid inlet is prescribed, then we
can, in principle, solve for B, u, v, and then find Ap from either momentum equation
as a quadrature; hence Ap = Ap(B,), and B, can be determined a posteriori by satisfying
the pressure drop boundary condition. Thus, prescription of G,, G, and Ap is sufficient
to determine the solution.

3. Scaling analysis. We nondimensionalise (2.15) as follows:
(3.1) z=4&% u=Uu* v=W* p=p,+Pp*, B=BB* =({/U)t%,

where p, is the outlet pressure, £ is the tube length, and U, V, P, B are to be prescribed.
We choose these to satisfy

(3.2) peBU = Gy,
where G, is the inlet liquid mass flux, and similarly (anticipating o =1)
(3.3) p:V=G,.

The scales for B and P are chosen so that, in the liquid momentum equation, — Fy, ~ F,
and in the gas momentum equation, dp/dz ~ F,. F,; and F,, are assumed to be given
by (2.5) and (2.7). Wallis’s relation (2.8) is

(3.4) fi=£(1+®B), £, =0.005, ®=75;

we suppose (B« 1) that 1+®B = O(1), which is certainly valid for the ripple wave
region. Then we choose

f.G;
(3.5) P= Ej’
where
(3.6) A=d/2¢
is the tube aspect ratio, and also
(3.7) B= [————16” "G"f"]l/z,
pAf.G,

where we use (2.5) with (2.6).
The nondimensional equations are, omitting asterisks,

—&,B,+[(1-8,8)v].=0,
Bi+(Bu). =0,
ar[8:{(1—8,8)v}, +2{(1-8,8)vv.]=—(1~8,8)p. — (1 + b,B)|v — x8,u|(v — x5,u)
(3.8) —85(1-8,B),
84[(Bu),+ De(Bu?). + c(x —1)*u’B.] = ~8,Bp. + (1+ b,B)|v — x8,u|(v — x8,u)
—u/B—cp,
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where
8,=B,
8,=U/V,
(3.9) r=pe/ Py,
a;=p;V?/ P,
b,=(®-1/2)B (and a*~1-BB/2),
8= p,gl/ P,
and also
£,=06,6,,
(3.10) €= o0,
8,=8,65ra,,
c,=18,85.

Typical values of these parameters may be estimated from data supplied by Nash [14]:
pe~1000 kg m~>,
pe=1.6kgm™,
G G,~5kgm?s™!,
G,~50kgm’s7",
d=32%x10"7m,
-1 1

we=11x10"kgm's

We can suppose that the aspect ratio A« 1, e.g., 107> < A<10~". With these values,
we find

8,~2x1072
8,~.88x1072,
r~ 600,
(3.12)
a,~2 (taking A=107?),
b2~ 1.5,
8;~6x1072
whence
£,~1.6x107%,
Cl -~ 10_1,
(3.13)
8,~1.4x1073,

Cy ™~ .7-
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It is self-evident that in varying circumstances, the values of these parameters may be
different. Nevertheless, the smallness of some of them is likely to apply in general.
Bearing this in mind, we seek to simplify the equations in (3.8) by neglecting terms
which are small; to leading order, we obtain

v,=0,
B:i+(Bu). =0,
2a,00, = —p,— (1+b,8)|v|v,
0=(1+b,B)|v|v—u/B—c,B.

It should be noted that various highest derivatives have been omitted, which raises
the possible issue of singular perturbation.
The boundary conditions for these equations are

(3.14)

(1-6,8)v=1 atz=0,
(3.15) Bu=1 atz=0,
A*p=Ap/P prescribed,

where z=0 corresponds to the liquid inlet, and A*p is the dimensionless pressure
drop. As discussed in § 2, it will be convenient to prescribe alternatively

(3.16) B=Bo atz=0,

and to choose B, so that (3.15); is satisfied. Other variants of these conditions may be
appropriate, for instance in flooding (see § 6 below).

4. Multiple steady-state behaviour. The equations (3.12) imply

(4.1) v=1

for steady gas inflow. Then

(4.2) -p.=1+b,B
and

(4.3) u=pB(1+XB),
where

(44) X=b,—c;,=[®~3—pegl/PIB

= [® 3 pup,gd /2/,G31B.
Together with (4.3), we have
(4.5) B+ (uB).=0.

For cocurrent flow, u >0, while for countercurrent flow, u <0; in either event we can
write the steady-state solution of (4.5) as

(4.6) Blu|=1.
Together with (4.3), we obtain u implicitly as
4.7 X =u’—|ul,
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whose graph is depicted in Fig. 2. Depending on the value of X, up to three steady
states can exist, and we would expect a hysteretic transition between them. In particular,
for X < —2/3+/3, there is a unique steady state of countercurrent flow. As X increases
through zero, we might expect an abrupt transition to steady cocurrent flow, with a
finite upward film velocity. This corresponds to the observed phenomenon of flooding.
Alternatively, as X is decreased from positive values, there is a transition from cocurrent
flow for X > —2/3+/3 to countercurrent flow in X < —2/3+/3. This corresponds to flow
reversal.

Note the asymmetry implied by the transition process. Flooding as X increases
through zero is associated with u - 0, i.e., 8 > o0, specifically 8 = O(1/|X|). Examination
of the definitions of X and B indicate that when flooding is induced by increasing
G,, then the film thickens significantly as it approaches flooding. On the other hand,
the flow reversal transition involves a change in flow direction, without such a major
change in film thickness.

The occurrence of multiple steady states raises the issue of stability, which will
be addressed in § 5; in addition, the loss of the liquid acceleration terms from (3.8)
forces us to lose the ability to satisfy the extra boundary condition on the pressure
drop (since (4.2) implies A*p =1+ b,/|ul, u given from (4.7)). Equivalently, we cannot
choose B = B, arbitrarily at z=0. In order to satisfy this extra boundary condition, we
must analyse an inlet transition layer, and this is done in § 6; we then also describe
possible connecting solutions for the case of split flow (part upward, part downward).
In the remainder of this section, we compare the predictions of (4.6) and (4.7) with
experimental results.

Figures 3 and 4 plot five separate predictions of film thickness m versus G, for
two very different values of G,. All these predictions are of the right size and trend,
although the curves marked 3 and 5 are evidently the best. Curve 1 is the prediction
based on (4.7). It is particularly inaccurate for high gas fluxes, but this can be viewed
simply as indicating that the Wallis friction factor f; defined in (2.7) and (2.8) is

11W3

v

-2/3Y3/| O X

F1G. 2. Steady-state values of liquid film velocity u versus the dimensionless control parameter X, given
by (4.7).



FLOODING AND FLOW REVERSAL IN ANNULAR TWO-PHASE FLOWS 25

I 1 A N
7

4 6 8
G, (kg m 2 s

F1G. 3. Film thickness m versus liquid mass flux G, at G, =39.7 kg m~2s”!, near the transition to roll
waves [14]. For a description of the various curves, see the text.
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FIG. 4. Film thickness m versus liquid mass flux, G, at G, =79.3 kg m™2s™", well into the ripple wave
region. For a description of the various curves, see the text.

inaccurate, as it was validated primarily for annular flow in the roll wave region. An
alternative friction factor is due to Asali [1]:
(4.8) f;=.046 Re;*’[1+.045{.34 Re$(ws/ 1) (pg/ pe)'/> —4}].

This was derived specifically for flows in the ripple wave region, and it can be
incorporated in the approximate theory very simply, by approximating the last equation
in (2.1) by

(4.9) Fy,, + Fp — Bpeg = 0;
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the corresponding prediction yields curve 3 in Figs. 3 and 4 and is quantitatively more
accurate. Asali [1] also produced a correlation for film thickness that gave a best fit
to his own data. This correlation yields curve 4 in Figs. 3 and 4 and compares very
badly with Nash’s [14] data. Nash’s own prediction gives curve 2, based on the
Shearer-Nedderman friction factor correlation for the ripple wave region.

The definition of m in terms of the dimensionless film thickness BB is just

(4.10) m[1—(m/d)]=dBB/4.
If m« d, a very simple estimate of m is thus
(4.11) m=dB/4,

this crude estimate gives curve 5, which is the best of the lot. This is rather fortuitous
and is perhaps best interpreted as indicating that the prediction of curve 1 for this
data from the ripple wave region can be improved by choosing a slightly smaller value
of ®@. Our conclusion from these figures is that our approximations can predict data
in a reasonably quantitative manner, and, importantly, that inaccuracies in the predic-
tions are associated with invalidity of the empirical friction factor correlations rather
than with the neglect of the asymptotically small terms.

5. Waves and stability. For a steady-state curve such as Fig. 2, we expect the
middle branch to be unstable. In order to determine if this is so, we consider the
approximate time-dependent model from § 4:

(5.1) B.+(Bu).=0, u=p(1+Xp),
whence

9B, 9 2 _
(5.2) at+az [B*(1+XB)]=0.

This is a nonlinear, hyperbolic wave equation with (sub-)characteristic speed
(5.3) c(B)=3XB>*+2B.

We recall that the characteristic speeds of the full system involve D, but that the
corresponding inertial derivatives in (3.8) are neglected in deriving (5.2). Situations
akin to this one are discussed by Whitham [22] and Kevorkian and Cole [11].
“Subcharacteristic” refers to the wave speed in the simplified problem (5.2).

In the steady state, X = u’ —|ul, |u|=1/8, so that ¢>0 when u>1/+/3, and ¢ <0
otherwise. Now, for a situation such as in Fig. 1, the initial data for (5.1) will be
prescribed at the liquid inlet (say, z = 0). If u > 0 (cocurrent flow) then the characteristics
must propagate with positive speed, and we expect the subcharacteristic speed of (5.2)
to be positive. Similarly, if ¥ <0 (countercurrent flow) then characteristics should
propagate downward. In other words, we expect uc > 0, otherwise information propa-
gates in from infinity, and violates a radiation condition. Thus we expect the steady
state to be unstable where uc <0, and this is precisely the negatively sloped part of
the equilibrium curve in Fig. 2. Thus justifies our interpretation of the hysteresis implicit
in the steady state.

Hysteresis between flooding and flow reversal is, in fact, observed [7]. Flooding
is often associated with near-stationary waves on descending films, and the transition
can be aided by droplet entrainment in the upward gas flow. Reversal of cocurrent
flow can take place by a lip of fluid creeping downward from the liquid inlet (Fig. 1).
In either case, a region of split flow can occur; the conditions under which this can
occur are examined in § 6.
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5.1. Rolling and undercutting of breaking waves. Disturbances to the steady states
B =constant of (5.2) evolve as nonlinear waves. The wave speed ¢ depends on 3
through (5.3), and depending on whether dc/9B =0, disturbances will break forward
or backward. In Fig. 5, we illustrate these different types of wave breaking, which we
call “rollover” (¢>0, dc/3B >0; or ¢ <0, dc/dB <0) (cocurrent flow, u>(2/3)"/?; or
countercurrent flow, u <0), or ‘“undercutting” (¢>0, dc/3B <0) (cocurrent flow,
1/V3<u<(2/3)"?).

Qualitative behaviour of this type is, in fact, observed [15], although the transition
from undercutting to rollover on climbing films occurs at larger X than the value
—V2/3+/3 predicted here. Basically similar ideas have been presented by Silvestri and
Varsi [18], although in a less general context than the present one.

6. Inlet boundary layers and flow transitions. The simple steady-state analysis of
§ 4 is able to satisfy the inlet gas flow boundary condition (v =1) and the inlet liquid
flux boundary condition (8|u|=1), but not the pressure drop down the tube. As
discussed in § 3, we can prescribe A*p, the dimensionless pressure drop, by attempting
to prescribe B =3, at the inlet, and then choosing B, to satisfy the pressure drop
condition (3.13);. In order to do this, some neglected derivative terms in (3.8) must
be brought back in, and these will be important near the inlet. For the moment, we
consider cocurrent flow in 0 <z <1, with both gas and liquid entering at the base of
the tube.

The derivative terms that are important are the inertial terms, the principal ones
being the gas acceleration term 2a,(1—c)vv, and the liquid acceleration terms

z
Z 1
rollover
t c>=0
B B
dc/ép=0
undercutting AU 1%
c=0 K_(
ac/ap < O Aoz
S RUER
> X
N\
rollover
c=<0
3 3c/aB <0

FiG. 5. Different predicted types of wave breaking in annular flow: “rollover” and “‘undercutting.”
P 8.
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84 D,(Bu*)z+ é(x —1)*u’B,] (we consider only the steady problem here). With b, =0,
we have 2a,(1—-c)vv, ~8,~107%, while 8,D,(Bu*), ~107>. However, the important
term to include is the liquid acceleration, since the gas acceleration only affects the
pressure drop (although in an important way). Thus we rescale z near the inlet by writing

(6.1) z=8,Du;

we have

(6.2) v~1+88 ",

so that

(6.3) {2a,(1-¢)8.}8,~ —p,,

and

(6.4) (Bu®)+{é(x —1)°/ DB, ~—(81/8.D¢) Bp; + 1+ XB —u/ B;
using (6.3), we have, to leading order,

(6.5) (Bu?);+ ou’B; = v, ~ 1+ XB—u/ B,

where

o=3Cx-1)*/D,~107",
(6.6)
y=2a,(1-¢)83/8,D,~1.

For simplicity, we will ignore the term in o as a small correction. We denote the
dimensional liquid flux as

(6.7) Bu =j,

so that (with o =0) (6.5) is

(6.8) (*/B)e = vBB =1+ XB—j/B’.

For steady upflow, we have j = constant =1, so that in this case
(6.9) Be=(j—B*—XB*)/(j*+ 8.

The accessibility of the steady (far field) solutions described in § 4 (i.e., {-independent
solutions of (6.9)) can thus be ascertained by inspection of j—B°—XB>. This is
illustrated in Figs. 6 and 7, which shows that the conjectures in § 4 about the multiple
steady states are borne out. For X >0, the unique far field value of B is approached
from any initial value of 8, at the inlet. For —2/3v/3 < X <0, the lower root for 8 (i.e.,
the larger value of u) is approached for any value of u greater than the other, unstable
value. For lower values of u, the film thickens unstably, and we should expect a
transition to downflow. For X < —2/3+/3, it is simple to show, in the same way, that
a downflow is the only possible solution.
The pressure drop across the inlet transition region is, from (6.3),

(6'10) A*pin -~ V(BOO_BO)’
where
(6.11) v=2a,(1-c)5,~.08,

and B is the far field value of B, while that down the length of the tube is, from (4.2),
(612) A*pout~ 1 +bZBco;
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F1G. 6. A stable climbing film can exist when X > 0.
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FI1G. 7. A stable climbing film when —2/3V/3< X <0.

therefore the overall dimensionless pressure drop is

(6.13) A*p~1+byBeot v(Bo— Bo),
and thus for a given A*p, we choose B, via
(6.14) Bo=[1+(b+v)Be—A%p]/v.

The importance of this analysis lies at several levels. From a theoretical point of
view, it corroborates our earlier discussion of the steady state. Practically, it suggests
that satisfactory approximations to the flow can be made by ignoring inertial terms,
provided the pressure drop (or inlet void fraction) condition is also ignored. However,
such an approximation will lead to a computed pressure drop A*p ~ 1+ b,8.,, but this
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will be inaccurate. In fact, (6.14) implies that if the prescribed A*p <1+ b,8,, then
the inlet region acts as a constriction to the gas flow, since then B,= O(1/v»). On the
other hand, if the prescribed A*p > 1+ b,B.,, then (6.14) would give B, <0, which is
impossible. It is possible in this case that there would be a transition to the churn flow
régime.

The analysis given above is based on a mathematical attempt to obtain consistency
and a full solution to the stated problem. In physical reality, the boundary layer region
is of a thickness (8, ~ 107>), which is smaller than the channel radius (since A~1072),
and this is true no matter what the aspect ratio A is, since §,¢ A. Thus we expect
other effects to be important, and the transition region will be controlled by two-
dimensional adjustments to the flow. Nevertheless, the conclusions concerning pressure
drop are independent of the inlet region length and should be relatively robust.

6.1. Split flow. We now return to consider the case in which the liquid inlet is
halfway up the tube, and part of the liquid flows downward (in z <0, say) and part
flows up (in z>0). Such flows can be observed during both flooding and flow reversal
(see Fig. 1). In this case, the far field flows in z=0 are given by the steady solutions
of (6.8), where j=+j, in z =0, and

(6.15) jo+jo=1.

Thus j is constant except at { =0, and the usual kind of jump condition is determined
from the integral form of the conservation equation. In the present case (with o =0),
this is simply

(6.16) L/*/B—vB*/212=0,

where + refer to conditions at { = 0+. For a climbing film (only), j, =1, j_=0, so that
(6.17) B+=[2/v)+B+B21",

so that if B_=0, then

(6.18) Bi=02/y)"

gives the initial value of B above the inlet (before flow reversal and the development
of a split flow).

The adoption of (6.18) is in contrast to the previous discussion, where we supposed
both liquid and gas were admitted at the base of the tube. In that case, we could
prescribe B, so that A*p took the correct value. When the liquid inlet is halfway up
the tube, then it has zero initial vertical momentum, and thus the extra pressure drop
to accelerate it to the far field solution is predetermined, whereas in the previous case
with arbitrary B, the inlet momentum flux could be chosen arbitrarily. Our resolution
of this paradox is that when the inlet flow at the bottom of the tube is gas only, then
we cannot prescribe the pressure drop and the gas flow independently, just as for
single-phase flow. Therefore if Ap is prescribed, G, is indeterminate; alternatively, if
G, is given, then Ap cannot be prescribed independently, and thus the value of A*p
computed from the far field annular flow solution will be approximately valid.

We now adopt the jump condition (6.17). For X >0, as we have already shown,
(only) a stable upflow is possible, B_=0, and thus is valid for any value of y. If
—2/3v/3 < X <0, then pure upflow is possible consistent with 8_=0 and (6.18), pro-
vided B.<pB,, where B, is the larger root of 1—B*—XB>=0, i.e., if u,<(y/2)"?,
where u, is the lower positive root of X = u’—u (see Fig. 2). Since u,<1/+/3 on the
middle branch, we infer that stable upflow is possible for all X > —2/3/3 if

(6.19) y>2/3V3.
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Realistically, vy =0(1), so that this condition may or may not be satisfied in practice.
In particular, if vy is calculated using the data of Nash [14], then y>2/3+/3 for data
in the roll wave region if it is assumed that no liquid is entrained into the gas core,
while y<2/3V3 if the mass fluxes in the core and film are adjusted to allow for
entrainment or for data in the ripple wave region.

If y>2/3v/3, we should expect that as X is decreased, flow reversal takes place
abruptly, as X decreases through —2/3+/3, although for X values near this (X <0),
sufficiently large fluctuations may induce transition to either split flow or downflow.
However, if y <2/3+/3, then there is a critical X., —2/3v3 < X, <0, such that stable
upflow is no longer possible. It is feasible to suppose in this case that a split flow may
develop as indicated in Fig. 8. We may hypothesise that the value of B, is marginally
consistent with stable upflow, i.e., 8, = 8,, where B, is the larger root of j, — B° — XB°> =
0, where j, <1. Then j_=1—j,, and B_ is determined from (6.17). However, the value
of j. is arbitrary, and we are unable to supply a plausible criterion to determine this.

j-BAXB+1)

N

J_ { \4—/ d:;\)vnflow

FI1G. 8. A stable split flow when —2/3v/3 < X <0.

For a stable downflow with X <0, (6.17) implies B, =0, and B_=(2/y)">. For
any value of vy, the downflow is accessible, and there is no inevitable instability to split
flow as X increases towards zero. Instead, as X >0, B, (the dimensionless far field
film thickness) > (8.~ 1/|X]), so that the film thickens and becomes stationary. We
might then expect disturbances to lead to droplet entrainment and then split flow; this
is consistent with observations of McQuillan [13].

The conclusions we can draw from the above discussion is that hysteresis between
flooding and flow reversal may be manifested in the following ways:

(i) By the two transitions occurring at different values of X;

(ii) Sufficiently large fluctuations can first induce split flow in both transitions;
if v <2/3V3 (such as for Nash’s [14] data for ripple wave flow), flow reversal should
always yield split flow before the complete reversal,

(iii) Flow reversal is not associated with significant film thickening, while flooding
is.

7. Conclusions. In this paper, we have used a two-fluid model for annular flow
to examine the phenomena of flooding and flow reversal in vertical tubes. In so doing,
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we have been able to provide a more methodical framework for some proposals that
have been previously advanced in the literature, as well as make several new ones.

A two-fluid model is necessary if we hope to represent accurately the motion of
the different phases, particularly in annular flow, where the phase velocities are
markedly different. However, the posing of a two-fluid model raises the question of
wellposedness, since the basic model with equal pressures and no interaction terms
has complex characteristics. Therefore, the use of such models must be accompanied
by the inclusion of realistic interaction terms and checked for the existence of real
characteristics.

Our two-fluid model includes constitutive terms representing different phasic
pressures, gas flow turbulent stresses, friction factors, and flow profile parameters.
Realistic estimates for these terms, particularly the profile parameter for the liquid
film, indicate that our two-fluid model is well posed.

By nondimensionalising the equations, we are able to simplify the model dramati-
cally. The principal simplifications are that, for annular flow, the gas velocity is
approximately constant, inertial terms are negligible, and the momentum equations
reduce to a simple force balance. The reduced model thus obtained predicts multiple
steady states and a hysteretic transition between upward and downward flowing liquid
films. The transition between these states occurs via the processes of flooding and flow
reversal, which can lead to states of combined up and down flow.

In order to resolve the paradox posed by the reduced equations, which represent
a singular perturbation of the full equations, we have shown how an analysis of an
“inlet transition region” enables all three physically appropriate boundary conditions
to be applied. The important inference from this analysis is that, while it is, in general,
reasonable to ignore the inertial terms, this approximation necessarily loses the ability
to prescribe the pressure drop, and if we compute the pressure drop from the approxi-
mate model, the answer would be wrong. This has implications for numerical studies:
if they include inertial terms, then the inlet region must be properly resolved, otherwise
we can expect spurious results.

Further work on both the model and the detailed analysis is clearly possible, but
we hope to have shown how common applied mathematical techniques can be used
with realistic two-fluid, two-phase flow models in order to derive, in a methodical
fashion, approximate models that are, nevertheless, quantitatively and qualitatively
accurate. This same approach can be used in models of bubbly flow, slug flow, etc.,
and our work in these areas will be presented elsewhere.
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