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This paper surveys the problem of modelling the dynamics of large ice sheets. A simplified model for 
two-dimensional plane ice sheets is derived, and both isothermal and non-isothermal cases are considered. 
The model is not uniformly asymptotically valid at a divide or at a margin, and we suggest local (isothermal) 
analyses which give order of magnitude estimates for divide curvature and margin slope. We also give a 
uniformly valid description for small perturbations to an isothermal ice sheet, which decay diffusively. 
For the more interesting non-isothermal case, we are able to provide explicit approximate solutions for 
the surface profile, based on Lliboutry’s heuristic boundary layer analysis, and give an approximate 
description of the temperature field. 

KEY WORDS: Ice sheets, mathematical model, large activation energy asymptotics. 

1 .  INTRODUCTION 
A recent paper by Hutter et al. (1986) summarises various efforts directed towards 
solving the problem of “shallow” ice sheet flow. By this is meant the recognition of 
the fact that “typical” ice sheets (Antarctica and Greenland, for example) have 
thicknesses much less than their horizontal extent. Consequently, it is sensible to 
neglect horizontal thermal conduction in comparison with vertical conduction. With 
this assumption, the energy equation is parabolic, and it is natural to consider 
numerical schemes which march outwards from ice divides. This causes some 
difficulties. 

More recently, various more advanced computational strategies for time-dependent 
two and three-dimensional models have been developed (e.g. Herterich, 1988; 
Huybrechts and Oerlemans, 1988; Hindmarsh et al., 1989; Budd and Jensen, 1989) 
which seems to provide a satisfactory basis for the solution of the flow of cold ice sheets. 

Other than numerical approaches, the question arises whether there are any useful 
analytic approaches which can provide corroboration for numerical methods, or 
indeed give any simpler results than a direct numerical approach. Approximate results 
for ice sheets can be obtained (Bodvardsson, 1955; Nye, 1959) using the idea that 
most shearing takes place near the base. This is predicated on the fact that (a) thermal 
conductivity is small, so that the temperature rises towards the base, and hence the 
viscosity decreases suddenly there [a temperature change from 0°C to - 10°C causes 
a tenfold increase in effective viscosity (Paterson, 1981)]; (b) the stress is largest at 
the base, and hence the viscosity (for ice, considered as a power-law fluid) decreases 
sharply there. While this idea has been around for a long time, it has never been 
fully worked out in its natural language-matched asymptotic expansions. An attempt 
to do so is made here. 
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30 A. C. FOWLER 

Before proceeding to such an asymptotic analysis, the governing equations must 
be scaled, using appropriate depth, length, stress and velocity scales. This has been 
exhaustively done in the literature (see Hutter et al., 1986; Morland, 1984, and 
literature cited therein). The procedure is reviewed here in Section 2, in a way that 
is perhaps simpler than previous treatments. 

The equations to be discussed are those of a slow, gravity-driven, viscous flow as 
appropriate to the solid state creep of ice. Ice sheets are “cold” (i.e. below their 
melting point), except at parts of their base, where the temperature may reach the 
melting point, as evidenced by radio-echo sounding of sub- Antarctic lakes (Oswald 
and Robin, 1973). The usual fluid no-slip boundary conditions apply when basal ice 
is cold, but at the melting temperature, ice can slide over its base (Paterson, 1981). 
There a dependence results between basal shear stress and basal slip velocity known 
as the sliding velocity. One assumption of some recent models is that the sliding 
velocity is non-zero, and in some cases this is required in order to obtain a solution 
(Morland and Johnson, 1980; Hutter et al., 1986). On the other hand, basal 
topography in Antarctica (see Paterson, 1981) is so rough that the sliding law we 
should expect is u z 0  (Richardson, 1973). One aim of this paper is to examine how 
a reasonable solution can be obtained if the basal velocity is taken as zero. 

2.  MATHEMATICAL MODEL 

We consider plane flow of an ice sheet, as shown in Figure 1 .  The coordinates are 
(x, y ) ,  with corresponding velocity components (u, u) ,  and the usual equations of slow 
flow can be written (Hutter, 1983) 

u, + u, = 0, 

o =  - P x + z 1 x t 5 2 y ,  

o =  - P y  fZ2,-?ly-pg, 

pc,dTldt  = kV2T + t i j e i j ,  

ei j  = A( T)g(z)sij /z .  

In these equations, representing conservation of mass, momentum and energy, and 
the viscous flow law, letter suffixes represent partial derivatives, p is pressure, z1 and 
t2 are longitudinal and transverse stress deviators (zI  =zI1, 7 2 = t 1 2 ) ,  p is density, g 
is gravity, cp is specific heat, dldt  = a/& + ua//dx + ua//dy is the material derivative, T 
is absolute temperature, k is thermal conductivity. The stress and strain rate invariants 
e and z are defined by 

2e2 = eijeij ,  2t2 = z. EJ .z.. 1J’  
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ICE SHEET DYNAMICS 31 

Figure 1 Ice sheet geometry. 

and are related by 

where Glen's flow law corresponds to 

g ( t )  = t", n % 3, (2.4) 

and Arrhenius' rate law gives 

(Paterson, 1981). Paterson suggests that different values of Q are appropriate above 
and below -10°C. For our analysis, it will only be the rate near the maximum 
temperature which is important, so that (2.5) will in fact suffice. We shall largely use 
(2.4) and (2.5) in what follows. 

The notation used here follows Fowler and Larson (1980a), and we shall also follow 
their style of scaling these equations. Scaling of these equations was first done by 
Morland and Johnson (1980, 1982) and see also Hutter (1983). The present scaling 
procedure is similar to that of, e.g. Hutter et al. (1986), with perhaps some clarification 
in the meaning of the various parameters. 

The boundary conditions for these equations have been given many times before 
(e.g. Hutter et al., 1986). At this point we simply emphasise that T < T, z 273 K (the 
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32 A. C. FOWLER 

melting temperature), and with T prescribed on the surface, there is a natural 
temperature scale. For the Antarctic this is % 50 K. Similarly, surface accumulation 
and ablation provides a natural measure of the vertical velocity. For the two major 
ice sheets, a representative value is about 3 x loT9 m s - ’  (10cm y-’) (Paterson, 1981). 
Its horizontal scale of variation provides a natural horizontal length scale. 

To non-dimensionalise, we write 

T =  T,+(AT)T*, u=[u]u*, u = E [ u ] u * ,  

A = CA1’4*, g = [sls*, t = ( l / [u] ) t* ,  

where y = ~ ( x ,  t )  is the top surface of the ice sheet, and E is defined as the aspect ratio 

E = d/ l ,  (2.7) 

which we anticipate to be small. 

prescribed from the boundary data, as is the “typical” accumulation rate 
The scales here are 1, d ,  [z], AT, [ u ] ,  [ A ]  and [ g ] .  Of these seven, 1, A T  are 

[ a ]  = E [ U ] .  (2.8) 

The choice of the other four is to be such that the asterisked dimensionless variables 
are of order one. The choice of [ A ]  and [g] is so that the flow law functions a* and 
g* are of O(1). Thus, for the Glen/Arrhenius choice (2.4) and (2.5), we choose 

The (dominant) shear stress is determined through the balance in (2.1)2 of shear 
stress and cryostatic pressure gradient. To this end, we choose 

[T] = PgdE. (2.10) 

Lastly, the velocity scale [u] is determined through balance of shear strain rate with 
stress in the flow law. 

(2.1 1 )  

where we have, with foresight, introduced a free dimensionless parameter v to take 
later account of the possibility that most of the shearing takes place near the base 
[in a zone of thickness o(d)], rather than throughout the ice thickness. This 
complication now saves us needless complexity later; it is an indication of the fact 
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ICE SHEET DYNAMICS 33 

that the depth scale is unknown a priori, and we can therefore choose v so that the 
dimensionless depth is O(1). 

The extra scales d, [TI, [ u ] ,  [ A ] ,  [g] are determined through the relations (2.8) to 
(2.11). It is worth pointing out that the velocity [ u ] ,  depth d, and shear stress [ r ]  
are determined self consistently from the boundary data. This is in contrast to Morland 
(1984) and Hutter et al. (1986), where the stress scale [r] and depth d are prescribed 
arbitrarily. This leaves two extra parameters to play with. The main point of the 
present discussion is to show that there are essentially only two dimensionless 
parameters which occur as coefficients in the equations. 

Substituting the variables (2.6) into the equations, we are led to the following 
problem for the velocity and temperature fields, where now and henceforth we omit 
asterisks on the dimensionless variables: 

u,+ u, = 0, 

u, + E’U, = A(T)g(.s)z,/vr, 

5’ = r: + E’Zf . (2.12) 

These equations are those of Hutter et al. (1 986), if v = 1,  providing we choose s = E = 6, 
8= 1 in their equations (3e,f), and redefine their ( T , ~ = E ( T , ~  (our r 2 ) .  The parameters 
ci and /3 are the only ones to appear, and are given by 

ci = 2gd/cPAT, /3 = ~/d[a]. (2.13) 

For values [a] = 3 x lo-’  m s-’ (0.1 m y-’), d = 3000 m, K =  1.2 x m2 s - l  
(38mZy-’), c p = 2 x  1O3Jkg-lK-l ,  g=lOms-’, AT=50K, we compute ciz0.6, 
/3z 1/8. Thus we expect ci to be 0(1), /? to be moderately small. As we have mentioned, 
the parameter v is a free choice. We can take it as equal to one, but it will be 
convenient to choose it to be less than one later. 

The following boundary conditions are appropriate. At the top surface y=q ,  zero 
stress requires 

(2.14) 

G.A.F.D.--B 
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34 A. C. FOWLER 

and we suppose temperature is prescribed, 

T = TA(x); (2.15) 

in addition, the kinematic boundary condition is 

I], + uqx- v = a ,  (2.16) 

where a is the (dimensionless) accumulation rate (a < O  signifies ablation). At the base 
y = h ,  we prescribe no slip: 

u=u=o,  (2.17) 

and there is a prescribed heat flux, 

(2.18) 

where r is a dimensionless geothermal heat flux; it is defined as 

= Gd/kAT, (2.19) 

where G is the dimensional geothermal heat flux. Taking G = 5  x Wm-2, 
k = 2.1 J m- ' s- ', we have r z 1.5 : geothermal heating is therefore significant. If T 
reaches the melting point at the base, (2.19) is replaced by 

T=O at y = h .  (2.20) 

In this case, there is a net release of heat at the interface, which melts the basal ice, 
and hence causes a basal drainage. The net downward flux due to melting is (neglecting 
E )  

- v =  (p/St)[r+dT/dy],  (2.21) 

if -dT/dyl,,,,,+ <r, where the Stefan number is 

S t  = L/c,AT. 

With t= 3.3 x lo5 J kg - ' ,  S t =  3.4, so that together with the small value of p, it is 
consistent to neglect basal drainage. 

We now consider the reduced model, which is obtained from the equations by 
neglecting O(c2). We then find that 

(2.22) 
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35 ICE SHEET DYNAMICS 

we adopt a stream function I) defined by 

u = * y ,  
then 

(2.23) 

(2.24) 

together with (2.22), give the equations for $ and T.  The boundary conditions are 

on y=h, $=+,,=O, T(T+aT/dy)=O; 

(2.25) 

The first condition on y = q  is simply the kinematic wave equation for V .  As specific 
examples of the functions A and G ,  we shall assume Glen's law 

g = z" (2.26) 

and the Frank-Kamenetskii approximation (Frank-Kamenetskii, 1955) to the 
Arrhenius term (2.5): 

where 
A = e y T ,  

y = QAT/R T," . 

(2.27) 

(2.28) 

Although Q varies with T below T, (Paterson, 1981), the main point is that A 
decreases rapidly: a factor of ten between 0°C and -10°C. Numerical analysis of 
the equations is not dependent on (2.27), and asymptotic analysis focusses on the 
creep rate near the maximum temperature. For our purposes, (2.27) is no limitation: 
the value of Q at T, is about 140kJmoleC' (Paterson, 1981), so that with 
R = 8.3 J mole- K-', we find 

~ ~ 1 1 . 3 .  (2.29) 

It is because of this large value of y that "large activation-energy asymptotics" is 
suggested, and this lies behind the approximate analysis suggested in Section 4. 

There is nothing particularly sacrosanct about the rheology, the no-slip condition 
or the temperature-dependent rate factor. We choose Glen's law simply through 
popularity, but it has been questioned (Smith and Morland, 1981; Doake and Wolff, 
1985). However, it is debatable whether laboratory data at the melting point is best 
used for cold ice sheets, since it is feasible that fluid-assisted diffusion creep may be 
more prominent in such data (Stocker and Ashby, 1973). Nor do we necessarily 
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36 A.  C. FOWLER 

concur with the view that an infinite viscosity is necessarily strictly inapplicable at 
zero stress; we consider that a successful numerical or analytical model should be 
able to deal with such a rheology, and part of our purpose here is to show how this 
may be done. 

Sliding (basal slip), as opposed to fabric or temperature-enhanced basal shear 
(Morland et a / . ,  1984), certainly occurs on ice sheets, particularly at the margins. 
We consider it unlikely to occur where basal ice is cold, and where shear stresses are 
close to zero. In addition large scale basal roughness may mean that any sliding 
which does occur inland will be very small. Therefore we pose zero sliding velocity, 
and consider that the model must be solvable with this condition. This necessarily 
leads us to singular behaviour in the reduced model at divides and at margins, and 
we will show how such singular behaviour can be removed. 

3. ISOTHERMAL FLOW 

The advantage of an isothermal situation is that A does not depend on T .  Thus the 
flow problem uncouples from the energy equation. In fact, “isothermal” can be 
relaxed to mean “uncoupled” by formally assuming A = 1, e.g. y = O  in (2.27). This 
would be a consequence of AT ~ 0 ,  or more generally if y<< 1. In the sequel we use 
Glen’s law (2.26) for illustration. We choose v = 1 in (2.24) and will show that q - 1 
with this choice. Two integrations using (2.25), yield 

Denoting ice thickness g - h = H ,  the kinematic condition in (2.25), yields 

a 
ax 

H = - - f  \ c  - I H X  + h,l” - lwx + hx)]H” + */(?I + 2)) + a. 

For simplicity we now suppose h=O. Then (3.2) is a nonlinear diffusion equation 
for H and with h=O, it is 

Steady state solutions of equations like (3.2) were studied by Vialov (see Paterson, 
198 I ) ,  and compared with some success to Antarctic profiles. Bodvardsson (1955) 
derived an equation similar to (3.3), and studied both steady solutions and their 
stability. If we assume a=a(x) ,  and a symmetric solution about x=O (so H x = O  
there), then in the steady state 

X 

Q =  -JH,Jn-’H,H”+2/(n+2)=S~ d x = ~ ( ~ ) ,  (3.4) 
0 
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ICE SHEET DYNAMICS 3 1  

say, where Q is the horizontal flux across a vertical section. The above equation 
states that in a steady state, this flux is balanced by the net accumulation between 
the divide and the section. Then 

where x ,  gives the margin. Notice that H=0(1)  at x = O  since s ( x ) = O ( l ) ,  as we 
anticipated. We include this old result here partly for completeness, and partly to 
point out several features. Firstly, we require a boundary condition to prescribe x,. 
For a land-based ice sheet (such as that which covered North America in the last 
ice age), mass balance requires 

which defines x,: no explicit boundary condition is necessary (or: we require the flux 
Q= -H”+’(H,In-’H,/(n+2) to be zero when H=O). For an ice sheet bounded by 
the ocean, a simple condition is that x ,  is prescribed (and equals the coast position), 
but s(x,) is not necessarily zero. Then H=O when x=x,, but the flux Q does not 
tend to zero. One visuaiises this flux as occurring through iceberg calving and outlet 
glacier drainage. A more realistic condition might be that H = H ,  > 0 at x, ,  Q = Q,, 
with Q, a function of H, .  Such thoughts are not pursued here. 

The next point is that H is singular at x ,  (specifically, H,+m as x-x , ) .  For the 
land-based margin (which we henceforth consider), s(x,) =0, and so (3.5) implies 
H - (x,- x)”’ as x - x ,  (independently of n) .  This singularity is due to the neglect 
of longitudinal stress components in the governing equation (Weertman, 1961). We 
will show how a local rescaling near the margin re-introduces the neglected terms, so 
that we can then expect that the exact solution has a finite but large slope. This is 
basically Weertman’s (1 961 ) idea, recast here in an appropriate asymptotic procedure. 

From (2.12), one can show that when x, -x-B<< 1, the reduced model has 
x,-x-s-S, H , Y - S ” ~ ,  ~ ~ - 1 ,  T ~ - B - ” ’ ,  U-S“’, v-1, P - S - ” ~ .  A distinguished 
limit occurs when 

a=&’, (3.7) 

when the neglected terms of O(2) in (2.12) and (2.14) become comparable to the 
others. Thus with x , - x - E ’ ,  the full Stokes flow problem must be solved. If we 
suppose this can be done, then (3.7) suggests that 

H ,  O( I/&), H,, - O( 1/&*). (3.8) 

at the margin, [There are other issues as to whether the complete Stokes equation 
does have a solution with finite slope (see, e.g. Benney and Timson, 1980).] Note 
that in the original dimensional variables, this corresponds to a slope of O(1). 
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38 A. C. FOWLER 

The singularity here is not due to Glen’s law, but to the use of the lubrication 
approximation E << 1.  The local analysis suggests that this singularity is a real physical 
effect, which needs to be analysed. If sliding is non-zero at the margin (Morland and 
Johnson, 1980), then the problem is alleviated naturally, although normal sliding 
laws (e.g. Weertman, 1957) which have the velocity tending to zero with the applied 
stress would still yield a singularity. Morland and Johnson, 1980 (cf. Morland et al., 
1984) propose a “sliding law” which avoids this problem, but is less clearly based 
on known physics. If one wishes to prescribe no slip, then the implication of (3.8) 
for numerical computations is that a local coordinate stretching should be used, as 
finite difference approximations (for example) will be inaccurate. 

A related question arises if one considers time-dependent perturbations. Nye (1960) 
studied small perturbations to glacier surfaces, and found unbounded growth near 
the snout. Fowler and Larson (1980a) showed that this non-uniformity arose due to 
expansion about the basic state H ,  = 0 at the snout. A similar problem can be expected 
for ice sheets, but the comparable theory (Bodvardsson, 1955) did not emphasise 
this point (see also Hutter, 1983, pp. 403404). Here we show how the use of the 
method of strained coordinates (Van Dyke, 1975) can give a uniformly valid 
perturbation method for small deviations, and that these decay diffusively, as might 
be expected. 

For simplicity, consider the Newtonian case n = 1. Denote the steady state given 
by (3.5) as H,, and write 

H = H , + H ,  . . . , HI<<H,. (3.9) 

Linearisation about H ,  of (3.3) with n =  1 yields 

(3.10) 

We put 

to obtain 

H ,  = e - “ w ( x ) / ~ %  (3.11) 

d 2 w  31 
- + - w = o .  
dx2  H: 

(3.12) 

With suitable boundary conditions at the margins, this is a linear second-order 
Sturm-Liouville problem. We can expect a denumerable increasing sequence of 1’s 
satisfying (3.12) together with appropriate boundary conditions. Now, as x-x,,  we 
have H o - c ( l i 2 ,  where [ = x , - x .  Thus as (-0, w satisfies (at leading order) 

(3.13) 
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ICE SHEET DYNAMICS 39 

Linearly independent solutions are 

w1 =[1/2~2(p[1/4), w2 =[1'2~2(p(1/4) (3.14) 

with 

p=4(3L/c3)'/2. (3.15) 

Thus as [-0, the two independent solutions have behaviour 

w1 - a o i  + a113/2 + O(t2), w2 N po + 0(p2), (3.16) 

where a,, a l .  Po are known from the definitions of .I2, Y2; w1 and w2 correspond to 
solutions 

That is, neither solution has bounded H ,  at [ = O ,  and thus the expansion cannot be 
uniformly valid at x,. To resolve this problem we introduce strained coordinates 
(Van Dyke, 1975) and write 

t = z ,  (3.18) 

where 6 is the scale of the perturbation. We expand the thickness as 

H=Ho(t)+6e-"h(<)+ . . . , (3.19) 

and substitute (3.19) into (3.31, written in terms of independent variables ( and z. 
At leading order [i.e., O(l)], H ,  is again given by (3.5): 

The linearised equation for h can be written, after careful simplification, as 

(3.20) 

(3.21) 

[compare (3.12)], where now 

w=Hi[h-oHJ. (3.22) 

Putting (=t,-(, where s(t,)=O, we have that H o - c [ 1 i 2  as [-0. The two 
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40 A. C. FOWLER 

independent solutions of (3.21) therefore have 

(3.23) 

where, as in (3.16), w , ~ a o [ + ~ 1 ~ 3 i 2 + O ( i 2 ) ,  and ~ ~ - p ~ + 0 ( 1 ' / ~ ) ,  where a0, ctlr Po, 
are known. The extra flexibility in the expansion is now used to ensure uniformity. 
We require (3.18) and (3.19) to be uniformly valid as <-&,,: Thus we require a=0(1)  
(so that de-"a<<t), h = 0(['l2) [so that h =  O(H,)] as t-&,,, i.e. as [-0. Evidently, 
this can be done by suppressing the Y2 solution (-Po + . . .), and choosing 

a = 2(a, + a 1 [ ' 9 / c 4 ,  (3.24) 

and then h = 0 ( [ ' l 2 )  as 540 .  The choice is not unique, but this leads to no difference 
in the solution. The procedure can be continued to higher order. The boundary 
conditions on (3.21) are thus that w = O  at +&,,: this forms a sensible eigenvalue 
problem. The eigenvalues are given by multiplication of (3.21) by w and integrating 
between +5,. We find 

(3.25) 

In fact, minimisation of (3.25) subject to w = 0 at the boundaries yields the minimum 
eigenvalue (Courant and Hilbert, 1953). It is positive, implying stability, and the 
essential structure of the transient will be like H ,  %e-"ccos k x ,  where k=2/n(, (i.e. 
the x dependence of H ,  has a similar shape). 

The perturbation analysis above was developed by Peter Gillott, and is discussed 
further in his M.Sc. dissertation (Gillott, 1985). It serves to show that ice sheets are 
stable (as one would imagine) if thermal effects are uncoupled. It also gives us some 
idea how the mechanical part of the problem tends to behave. 

A different kind of singularity occurs at a divide. Raymond (1983) found numerical 
evidence of a discontinuity in surface slope at a divide, and Hindmarsh (1989) has 
shown that the reduced model does in fact have infinite curvature, if Glen's law is 
used with n >  1 .  In addition, he shows how the inclusion of longitudinal stresses in 
the model gives finite but large curvature at  the divide. Hutter et a!. (1986) show 
that curvature is finite if sliding is included or if n+l at the divide. Szidarowsky et 
al. (1989) showed how finite curvature is obtained even with no sliding, if longitudinal 
stretching is (numerically) included. A similar idea was advanced by Weertman (1961). 
Here we sketch this analysis (but note that temperature dependence has a radical 
effect on the divide curvature, as shown in the subsequent section), but recast it in 
the language of matched asymptotic expansions. 

As x-+O in (3.5) or (3.4), we have 
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the reduced model becomes invalid when either 52y - c2z (mechanical boundary 
layer) or z2 -czl (rheological boundary layer). In view of (3.26), these both happen 
when 

at which point a local rescaling corresponding to (3.27) reproduces the full equations. 
Supposing a solution exists, we infer that 

at the divide. This kind of idea has been applied by Johnson and McMeeking (1984) 
to a weak boundary layer near the ice surface. 

Again, the reduced model is uniformly valid for the primary variables z2, H, u,  
and the local analysis is only of concern if we wish to compute the curvature. In 
practice, it may be best to adapt numerical computations to cope with the singularity 
by using a local straining of the coordinates. 

4. STEADY, NON-ISOTHERMAL FLOW 

We now revert to the coupled equations (2.24), where we adopt the thermally activated 
Glen's law (2.26) and (2.27). We suppose the flow to be in a steady state. The 
equations may be written 

where dldt  is the material derivative ualdx + ud/ay,  and the boundary conditions (with 
u = $,,) are 

until T =0, when we replace the last of (4.2) by T = 0. On the top surface y = q,  we 
have, in a steady state, 

(4.3) 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
O
x
f
o
r
d
]
 
A
t
:
 
1
1
:
5
9
 
2
4
 
J
u
n
e
 
2
0
0
9



42 A .  C. FOWLER 

In general, TA will depend both on distance inland and on altitude. In this study, we 
limit ourselves to an explicit prescription of TA, that is, we assume TA = TA(x). Similar 
remarks apply to a(x). For a land-based margin, the ice sheet boundary is defined 
by s(x)=O (x#O). Let us recollect that v is an arbitrary parameter, to be chosen such 
that the ice sheet thickness is O(1). 

The parameters (other than v )  which are prescribed here are a, f l ,  y and r. We 
have seen in Section 2 that we may expect ax0 .6 ,  bx 1/8, yx 11, I-x 1.5 as typical 
values of these, and, although these are not extreme, it does suggest that some idea 
of how solutions may behave can be gained from asymptotic solutions when either 
0<<1 or y > > l ,  or both. This is particularly true when y > > l ,  since the effect of this 
coefficient is exponentially exaggerated. Moreover, we shall find thermal boundary 
layers of thickness O(B’”) when B<< 1; since P l i z  x0.3, the accuracy of this is only a 
qualitative one. Thus our main concern shall formally be with “large activation energy 
asymptotics”. 

The primary source material for this technique is combustion theory, for which 
see, for example, Buckmaster and Ludford (1982). Thermally activated fluid shear 
flows have been considered by Ockendon and Ockendon (1977), Pearson (1977) and 
Ockendon (1 979). Their techniques have been extended to treat buoyancy-driven 
shear flows (Fowler, 1986) and thermally activated (thermoviscous) Rayleigh-Benard 
convection (Morris and Canright, 1984; Fowler, 1985). 

A relevant question which arises in this context is whether thermal runaway can 
occur. In the glaciological context, the implicit meaning of such thermal runaway is 
not simply that the temperature reaches melting point, but that, subsequent to this 
occurring, melting occurs on a massive, self-sustaining scale, presumably leading to 
collapse of the ice sheet, as envisaged by Wilson (1964); see also Hollin (1965, 1969, 
1977). Such a phenomenon has been studied by Schubert and Yuen (1982) and 
Yuen et al. (1986), although not with as realistic a model as that presented here. We 
shall have little to say on this topic, but will be interested in the circumstances under 
which the basal ice can reach melting point. Since sub-Antarctic lakes have been 
documented, this is known to occur. Such evidence as there is tends to suggest that 
thermal runaway will not occur (Fowler and Larson, 1980b), but a proper discussion 
of this is beyond the scope of the present paper. Models of ice flow which include 
moisture generation have been developed by Hutter, Blatter and Funk (1988) and 
Blatter and Hutter (1991), but a discussion of possible runaway needs the 
incorporation of realistic coupling between basal sliding and moisture generation. 

The system (4.1) is parabolic for T,  and we expect to prescribe 

q,=T,=u=O at x=O. (4.4) 

The equations are degenerate at x = 0, however, as is easily seen on writing those for 
u and T in von Mises variables x, $: 
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where also yl = & d+/u. Since s(0) = 0, the (x, $) region of the flow degenerates to a 
point as x+O. Since also u+O there, both the domain and the diffusion coefficient 
degenerate, and it is reasonable to expect that the solution of (4.5) has singular 
behaviour as x+O. In particular, we do not expect to satisfy T , = O  at x=O, but this 
would be accommodated by a boundary layer of thickness @'/*, in which the 
temperature jumps by a corresponding amount. Just as for the isothermal case, we 
can however, satisfy the other two conditions. 

Following Pearson (1977) and Ockendon (1979), it is attractive to march out in 
x ,  and thus we first seek a similarity solution for (4.1) when x is small. By inspection, 
we find that a suitable ansatz is 

when x is small. Substituting these into (4.1), we find 

1 
F" = - V (bqo)"eYG, 

with boundary conditions 

F=F'=O, G ' = - r ,  on y=O, 

G = - 1  on y=ylo, (4.8) 

where we may choose TA(0)= - 1. Additionally, if a(O)=s'(O)= 1, then we have 

The above system of equations describes an approximation to the solution for all y ,  
and sufficiently small values of x. The parameters b and ylo are unknown. We can 
expect to determine b in terms of ylo, which we expect to be determined from the 
margin condition q = O  at x,, where s(x,)=O. We can also pre-suppose that v will 
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be chosen so that qo=O(l). It is not at  this stage obvious that b = 0 ( 1 ) ,  but in fact 
it will turn out that it is. We anticipate this by proceeding on the formal assumption 
that b=0(1 ) .  An exact similarity solution of (4.7) does not exist, but a local similarity 
solution exists for sufficiently small x, if we neglect the term of 0 ( x ' + l i " ) .  

Now suppose y>> 1. In this case the solution of (4.7) [neglecting O(x'+''") in (4.7),] 
develops a boundary layer structure wherein a basal shear layer lies below an outer 
region of plug flow. If, in addition, p<< 1 (and pliZy>> l ) ,  there is a thermal boundary 
layer outside the shear layer where G matches to its outer value. This scheme is 
pictured in Figure 2. The solution of (4.7) is as follows. G will take its maximum 
value Go at y = 0. Away from the base, G < Go, and the exponential terms are negligible. 
Thus. we have 

F Y h O >  (4.10) 

and this will in fact be a uniform approximation, although F' will jump in a basal 
shear layer. Thus G satisfies 

pqoG" + yG' = 0, (4.1 1 )  

and hence 

G ' Y  F' 

Figure 2 Structure of the solutions for temperature ( G )  and horizontal flow ( F )  for the local similarity 
solution near x=O. There is a boundary layer for G of thickness O(/l"'), and a shear layer for F of 
thickness O(l/y), in the case that basal heat flux is prescribed. If local temperature is prescribed, then the 
basal shear layer is of thickness O(fl'''/y). 
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and 

This satisfies both boundary conditions, in particular, at y = 0, 

(4.13) 

(4.14) 

Notice that, when B<< 1, there is an 0(/3”’) jump in T in a thermal boundary layer 
of thickness O(fi1’2). 

We require a shear layer in which u (and hence F ’ )  decreases to zero. In order to 
balance (4.7),, we write S = F’ (note the horizontal velocity is xS); then S jumps by 
0(1), and we use stretched variables 8 and Y in the shear layer, defined by 

G=G,+0/y, y=Y/y,  (4.15) 

in order to match to (4.13); it follows that, to leading order, (4.11) is just 8 y y = O ,  so 
that to satisfy (4.8),, 8 is given in the shear layer by 

8- - l- y ,  (4.16) 

providing By’>> 1 [since the advective term is O( l//3y2) in the shear layer]. Substituting 
for y and S =  F’ into (4.7),, we obtain 

providing we choose 

(4.17) 

(4.18) 

Remember that Go<O, so that we can expect v ~ l .  Notice that the case /3<<l does 
not render the shear layer analysis invalid providing /3”’>> lly, consistent with (4.16). 
Integrating (4.17) with (4.16) and applying the no slip condition S(  = F “ ) = O  at Y = O  
gives 

S = (1 -e-rr)/r, (4.19) 

and matching this to (4.10) requires 

?o = r, (4.20) 
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which is 0 ( 1 )  as assumed. Actually, the depth is not really prescribed from this local 
analysis, and this is manifested by the fact that b is not yet determined, or equivalently, 
(4.18) determines b, and v has yet to be found. The above description gives the 
vertical boundary layer structure of the local similarity solution for small x. In order 
to determine b, we extend the boundary layer structure exhibited above to the whole 
ice sheet. 

4.1 Shear layer: freezing base 

The idea of the analysis is that the shear layer structure will occur across the bed. 
This is no new idea, and stems from Nye (1959). Lliboutry (1979, 1987) used it to 
give a heuristic account of the boundary layer structure, although he stopped short 
of determining the surface profile. Essentially, the present analysis is based on his 
work, but formalises it in asymptotic terms. 

The basic idea is that the shear layer of thickness l/y, which was found to exist 
for small x above, exists for all x; across this layer u jumps from zero to a far field 
value. As the base of the ice warms, it becomes more “slippery”, and thus the ice 
accelerates. It is not therefore a priori obvious that y or yx are 0 ( 1 )  for all x>O. 
In order to try and analyse the basal shear-dominated flow, we will for simplicity 
consider two particular cases. The first, which we treat in this sub-section, is where 
the base temperature is always below the melting point. (In the next section, we 
consider the particular case where the temperature is always at the melting point; in 
general, neither situation may be completely true.) To be specific, suppose T =  To(x) 
at y=O. For the moment, To is unknown, and it will be determined in the course of 
the analysis. The melting temperature (neglecting the small variation due to the 
Clapeyron effect) is zero, so that we suppose To to. 

We anticipate that T<To for y > O ;  then (if y ~ l )  (4.1)1 implies that uy is 
exponentially small away from y=O. Hence, for y=O(l) ,  u%u,(x), and t satisfies 

dT 
d t  
- =BT,,, (4.21) 

(dldt = ud/dx + u d / d y )  (this will apply even if viscous heating is significant near the 
base), with boundary conditions (providing c( is small enough) 

T=T,  on y = y ,  q=-r on y=O. (4.22) 

Mass conservation gives 

yu, = s(x). 

In the shear layer, we put, as before, 

(4.23) 

(4.24) 
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47 ICE SHEET DYNAMICS 

so K8-0(1) .  The basal temperature To is to be determined later, and we expect that 
To+Go as x-0, in keeping with the local similarity solution. We have 

-uTA+- 1 -= (;) z u y + e y y .  
BY BYZ d t  

(4.25) 

Let us suppose that uctgy, B/NT (as well as pi2>> 1). Then 

8- - r y ,  (4.26) 

where as before we can take 8=0 on Y=0,  since To is as yet undetermined, and so, 
integrating (4.25), [with T = zfx)], 

(4.27) 

whence, letting Y - 00, we obtain (by matching) an expression for the outer velocity 
uO(X): 

(4.28) 

Together with (4.25), and (4.23), this determines y ~ ,  uo and T in terms of the still 
unknown To. We find 

and thus v is determined (since qo=r) by 

and so (4.29) may be rewritten as 

(4.29) 

(4.30) 

(4.3 1 ) 
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If To<Go, then q<<qo, and qx#O(l). The surface profile given by (4.31) matches 
automatically to the local solution given earlier. 

In order to completely solve for q,  we have to calculate To by solving for the 
temperature field, which satisfies in the outer region, y=O(l) ,  

dT 
dt ~ = PT,,, (4.32) 

and where we may take u = u o ,  u =  -yub outside the basal shear layer, which does 
not affect the temperature field if /31’2y>> 1, as explained previously; additionally, T 
satisfies 

T=TA on y = q ,  Ty=-r on y=O. (4.33) 

Since uo given by (4.23) depends on q ,  the solution of (4.31) and (4.32) represents a 
complicated free boundary problem. Nevertheless, some further simplification is 
possible, using the idea that P is small. 

We first write the temperature problem in von Mises coordinates <, $, which gives 

with 

T=T, on $=s, T,=-T/uo on $ = O .  (4.35) 

Iffi<< 1 the outer solution (i,b - 1) is just T = To($) where To is defined, for s < smax, by 

(for s>s,,,, a further thermal boundary layer at the surface will exist: we ignore that 
in this analysis). In the thermal boundary layer, we write 

T =  - 1 +/3’12A, $ = B”2Y; (4.37) 

then A satisfies 

with 

(4.38) 

(4.39) 

and on Y =0, the boundary condition (4.35), for (4.38) is 
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(4.40) 

where we have used (4.23) in the first equation above, and appended the definitions 
of q in (4.31) [using (4.37)] and 4 in (4.34). Then (4.40) defines both the boundary 
condition for A and also q.  As (-0, it follows by matching A to the local similarity 
solution (4.13) for small x, that 

A - (7c/2)’/’r3’’ erf~(Y’/25~’’). (4.41) 

The diffusion equation (4.38) for A has boundary conditions (4.39) as Y -+ 00 and 
(4.40) on ‘f’ =0, and an “initial” condition (4.41) as (+O. In fact, (4.40) is an extremely 
complicated “boundary” condition of integro-differential type. It depends on the 
parameter A; since we have previously supposed y2/?>> 1, it is logically consistent (and, 
in fact, necessary) to suppose E. >> 1 as well. The numerical validity of this assumption 
is unsound, since if y = l l ,  p”’= 1/3, n=3,  then 2% 1.2, and we may expect the 
numerical consequences to be inaccurate; nevertheless, the assumption A>> 1 is a 
formal part of our analysis, and we suppose it to be formally valid. 

Now (4.40) gives AT on Y = O  in terms of the surface elevation q(x). Let us define 
Go= - 1 +p”’A0, so that from (4.37) and (4.14), A. is the value of A on Y = O  as 
(-+O. Suppose that A > A o  for x > O  ( A < A o  is not possible), and that A - A o = O ( l ) .  
Then (4.40)’ implies that q << 1 for x > 0, and (4.40), implies 5 - 1/q >> 1. Thus in the 
solution of the diffusion equation (4.38), A diffuses out to a distance Y - l/ql/’, and 
therefore AT -ql/’. But (4.40), implies AY - ~ q  at Y=O, and this is inconsistent, as 
the maximum value of lATl must be at the boundary. The only other possibility is 
that A z A o  at Y =0, so that (4.41) is a uniform approximate solution for all 5 [as 
it satisfies (4.38), (4.39), (4.41), and A = A o  on Y =03. The r6le of (4.40), is thus to 
determine q at leading order, and (4.40)’ provides the boundary condition for the 
correction to A. That is, we write 

1 
A=A‘O’+ ;A“) .  . . , 

A 

1 
q = q ‘ O ) +  - A q‘”+ . . . ; (4.42) 

each A(’) satisfies (4.38), A‘’) is given by (4.41), and then (on Y=O) (4.40) implies 
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(4.43) 

and so on. In particular, (4.41) implies that 

on Y = O ;  substituting this into (4.40), [or (4.43),] and using (4.40),, we obtain a 
differential equation for whose solution is 5 - x2 /2r ,  and then we can deduce 

A uniformly valid approximation (Van Dyke, 1975) to the temperature profile is 
given by combining the inner and outer expansions for T and subtracting the common 
part; we obtain 

T = T,(xy/T) + (7$/2)1/2r3/2 erf~[y/(2r) ' /~] ;  (4.46) 

in particular, the basal temperature is approximately uniform, 

and the base remains below freezing if 

r < (2/np)1'3. (4.48) 

If p= 1/8, then this critical value is about 1.7. Since a realistic value for Antarctica 
is - 1.5, this ice sheet is quite close to the critical value, even without the inclusion 
of viscous heating. Figure 3 sketches the locations of the shear layer and the upper 
and lower thermal boundary layers. 

3.2 Shear layer: base at melting point 

We can now examine the validity of the assumptions made in deriving the above 
approximate results. Away from the divide, we have from (4.45) u, q -  1 ,  
TJ -pli22A/dxl,=, = (B1 '2 /~" )~A( ' ' / d~J ,=0  from (4.42), - n/y [using (4.40),], and thus 
the advective term in (4.25) is negligible so long as pyZ>> 1. However, the viscous 
heating term is only negligible so long as T<</?/cz. Since ~ - 0 ( 1 )  [from (4.1)2, with 
q=O( l ) ,  qx=O(l)]  for x-0(1) ,  we can expect viscous heating to be significant. In 
particular, since the basal temperature is close to melting at the divide, i t  is plausible 
that viscous heating raises the temperature to the melting point over much of the 
base. We therefore now assume that the basal thermal boundary condition is 
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thermal shear 
boundary ,/2 

layer - p  
layer - I/r 

Figure 3 Location of the thermal and shear layers, for prescribed heat flux. The surface thermal boundary 
layers would be situated where ablation occurs, and are of thickness O(8) (since the normal velocity is 
non-zero); but they are of little relevance if ablation is confined to the margins. 

(neglecting the relatively small dependence of melting temperature on pressure) 

T=O at y=O, (4.49) 

and note that we require T,<O in order that a temperate zone be not formed. 
Lliboutry (1987) has suggested that in this case sliding (on the average) does not 
occur, although Fowler and Larson (1980) consider that sliding will gradually increase 
over a small (average) temperature interval. Here we suppose that any sliding which 
does occur when T reaches the melting point is small, due to the significant roughness 
of the bed. This is obviously not likely to be true at the margin, e.g. under ice streams, 
but may be reasonable in the main part of the ice. 

The local flow for small x is now given by (4.7) and (4.8), but with G = O  on y=O 
rather than G’ = - r. As before, we suppose that y >> 1,  so that the outer solution for 
F in (4.7) is still F%y/q , ,  and there is a shear layer near y=O. Beyond this layer, G 
still satisfies (4.1 I ) ,  and provided p is small, the solution is approximately 

and 
(4.50) 

(4.51) 
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1“ 

/ 

x 

Figure 4 As for Figure 3, but for prescribed basal temperature. The shear layer is thinner. 

for small y(<<1.3”2). Whereas in the previous case G jumped by O(fi’”) in the thermal 
boundary layer, now the jump is 0 ( 1 )  over the thermal boundary layer of thickness 
O(B”’). Now the thickness of the shear layer is such that the variation of G is O(l/y) 
(since a larger variation causes the shear rate to become exponentially small). Since 
G changes by O( 1 ) across the thermal boundary layer, it follows that the appropriate 
shear layer thickness is O(p’i2/y). Therefore we put 

G = o/y 9 y = ( p / ) ) ) Y ,  (4.52) 

so that, solving (4.7) to leading order [with F - (p”2/y)  to match to the outer flow] 

and S =  F’ satisfies, from (4.7),, 

- =ee ,  
dS 
dY  

(4.54) 

provided we now choose 

v = fi”2(bvo)”/r. (4.55) 
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Thus, integrating (4.54) using (4.53) and the no slip condition S = O  on Y =0, 

S = ( 7 t ~ ~ / 2 ) ' / ~ [  1 - exp{ - (2 /n~ , ) ' /~  Y}], (4.56) 

and so matching to the outer flow (4.10) requires 

Away from x=O, we expect a shear layer in which T -  l /y .  We thus write, for the 
same reasons as above. 

T = 0 / y ,  y = p1Iz yly, (4.58) 

so that, approximately, 

(4.59) 

we suppose c1 sufficiently small that 8,<0 at Y=O. (Otherwise a temperate zone 
appears at the base, for which a separate model is necessary to determine water 
content.) We write 8,= -g, g =go at Y =0, g+gm as Y+m. Integrating (4.59) subject 
to the boundary conditions u=8=0 on Y =0, u+uo as Y-, co, we therefore obtain 

(4.60) 

(4.61) 

we have neglected O(l/y2) in (4.59),, so that [z = z(x)] the 8 equation can be integrated 
twice: (4.61) is the first integral, and then (4.60) [using (4.39),] is the second. Also 

quo - s(x), t - - V V X ,  (4.62) 

as before. The first of these is conservation of mass; in (4.60) and (4.62), t is the 
basal shear stress. Given gm, these equations provide four relations for the unknowns 
go, uo, q,  t. Notice that we require go>O, i.e. vyg~>2at"+ ' ,  otherwise a temperate 
layer forms. The heat flux to the main ice sheet, g,, is determined by the solution 
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of the outer temperature field, which, as before, satisfies 

T=O on $ = O ,  (4.63) 

where 5=J;uodx,  g m =  -BIIzuoTJ,lJ,=o, and T matches to the small x similarity 
solution. If B<< 1, then with * = pl/zY, (4.64) 

the outer solution is again To(*), and for Y-O(l), we have 

q =  TYY 

with 

T=O on Y=O, T-r-1 as ’€’+a, 

(4.65) 

T- - 1 + -e r f~ ( \Y/25~ /~)  as 5+0. (4.66 j 

The similarity solution is valid for all 5 ,  thus 

g m  = uo/(7-41’z> (4.67 j 

and this provides the extra relation required to solve for r , ~ ;  one easily checks that 
this solution matches to the local solution at the divide. 

In general, these equations must be solved numerically. We define K by 

and then the set is 

go = [g2, - 2 ( U / K ) T ” +  111’2, 

T =  --yq X ?  (4.69) 
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(4.70) 

K must be determined from the solution, and if u = O( l), we expect K = 0(1),  thus 
v - /? ‘ ” / y .  In practice, if a=0.6 and fl’”=O.3, then n = 2  is of O(1). We solve (4.69) 
subject to 

yx- -bxli”, b=K””/yo, y1, ,=(2/4~~~ (4.71) ? + ? O ,  

as x-0, and choose the unknown K so that y = O  at x = x ,  (where s=O). We see 
that, just as before, y, uo, z are all O(1). 

When u is small, then (4.69) can be approximated by the simpler set 

yu = s, 

or as a single equation 

(4.72) 

(4.73) 

however, neither this nor (4.69) is susceptible to analytic solution, except (possibly) 
for special choices of s. “Massive” melting (i.e. the onset of a basal temperate zone) 
occurs if 

2af““ > K g i  (4.74) 

in (4.69). 
The equations (4.69) were solved numerically using Heun’s method for the 

differential equations for 5 and q,  and using a binary search to compute the correct 
value of b (and hence K ) .  The accumulation rate is chosen so that the balance function 
s(x) is given by 

s(x) = x[ 1 - x”] (4.75) 

(see the discussion in Section 5). Figure 5 shows the depth profile for values A = 1, 
B =  1, a=2, corresponding to an accumulation rate s’(x)= 1 -2x (which is very 
unrealistic). It has the typical concave shape that one expects. For this accumulation 
rate, the onset of a basal melting zone occurs when a=a,z3.036. .  . Figure 6 shows 
the basal heat flux g o  as a function of x at this value. The depth profile is virtually 
identical to Figure 2, and indeed, hardly varies for varying a. 
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I I I I 

0 . 2  0.4 0 . 6  0.a 
X 

Figure 5 q versus x for A =  1 = E ,  a = 2 .  

More realistic balance functions can be obtained by choosing values A ,  B> 1. A 
typical example is shown by Figure 7, with A =4/3, B= 8/3. The corresponding depth 
profile at a =  1.2 is shown in Figure 8. It is similar to that in Figure 5 ,  but rather 
fuller, as one would indeed expect. The important difference lies in the value of a,, 
which for these parameters is around 1.2. [With 100 grid points, it is about 1.218, 
but this value is very grid size dependent. This seems to be due to the fact that for 
the accumulation rate shown in Figure 7, a basal melting zone (go = 0) first appears 
at the margin, and this extra singularity confuses the numerical results.] It does seem 
that for more realistic balance functions, a value of a of 2 will cause basal melting 
(if the temperature reaches the melting point in the first place). Thus, it seems likely 
that the inception of large scale melting is feasible for realistic values of a. From 
(4.69), we have 

t - x l ' " ,  g,-O(1) as X+O, (4.76) 
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0 . 2  0.4 0.6 0 . 8  1 

1 

0 . 8  

0 . 6  

0 . 4  

0 . 2  

Figure 6 

whereas 

A = l  
B=l 
a=3,036 

and therefore go > O  for sufficiently small a. The existence of a critical a, is therefore 
a general feature. Notice also that the basal ice can only stay temperate if go < p 2 r  
(so that ice is melted there). Following from (4.77), this is always true at the margin, 
and is true at the divide provided g0Xgmz:Ylo<fi112r there, which is, however, 
unlikely. The more likely circumstance is that the base is partly freezing and partly 
at the melting point. 
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Figure 7 Accumulation rate given by (4.79, A=4/3, 8=8/3 .  

5 .  DISCUSSION 

5.1 Choice of depth scale 

The depth scale is chosen from the relations (2.7)-(2.1 I), whence we find 

with v given by (4.30) for the case of a cold base: 

or by (4.61), for a base at the melting point: 

v - p / y .  
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1 

h 

9 5  

1 

A=4/3 
B=8/3 

I 

9 .5  
X 

Figure 8 q versus x for A = 4 / 3 ,  B=8/3, a= 1.2 (with 100 grid points). 

Since Pcc l /d,  rccd, d is uniquely determined in both cases. In practice, the dependence 
on v is slight, so that roughly 

d x [l" + [ a ] / [  A ]  (pg )"I '"I + I). (5.4) 

If we choose (Paterson, 1981) 1=106m (103km), [ a ] = 3 x  10-9ms-1 (lOcmy-'), 
[A]=0.65 x 10-(5n+7)Pa-ns-1 (0.2bar-"y-'), pg=104Pam- '  (0.1 barm-'), n = 3 ,  
then we find d -  1600m (1.6 km). If we take v =  a reasonable value, then 
d-3000m (3 km). This seems to accord well with observation. 

5.2 Divide curvature 

In Section 3 ,  we found that for an isothermal ice sheet, the curvature at a divide was 
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O(E( ’ /~ ) - ’ ) ,  based on the length scale ( - 8 )  over which the full Stokes equations 
applied. For the non-isothermal ice sheet, the corresponding analysis is less clear. 
The mechanical boundary layer is where, using (2.12), x-E(ve-yT) l /Z,  and we note 
that E T ~ / Z ~ - X / E ;  if we use T =  - 1, then we have that near the surface, longitudinal 
stresses are important where x - e(veY)1/2 >>E, using either definition of v.  On the other 
hand, if we use the basal value of T ,  then we find x - ~ / y ~ ‘ ~  (To<O) or x - ~ l j ’ ” / y l ’ ~  
(To = 0),  and in either case x <<E. Thus in general, rheological and mechanical boundary 
layers are distinct, and the analysis of the local stress structure is non-trivial. Since 
is the basal ice which controls deformation, we might hazard the guess that the basal 
value of T is the relevant one, and the divide curvature is (at least) O(y1/2~(1/“)-1). 

5.3 Model uses 

Although the reduction in complexity achieved by use of the limits l j-0, y+co  is 
attractive, the approximations which result are only likely to be qualitative; 
nevertheless, they may be useful, particularly when used in combination with 
numerical computations. For example, (4.29) gives the surface profile as a function 
of the basal temperature; but it could also be used to compute the basal temperature 
from the surface profile. If such a “prediction” was found to be accurate for direct 
numerical computations, it could (eventually) provide a credible way of inferring 
basal temperatures from observations of surface profiles. In such ways, the rough 
predictions here can be used as calibration tools. 

5.4 Surface proJIes 

The predicted profiles given by (4.45), or from (4.69), are rather opaque, and their 
dependence on the balance function s(x) is obscure. Since s(x) can at best be estimated, 
it is a reasonable procedure to find forms of s(x) which give particularly simple 
equations for q(x).  A particular class of profiles which appear quite realistic are the 
“h yper-ellipses” 

( ; ) R + x A = l .  (5.5) 

where for a nonlinear isothermal flow law (Vialov, 1958; Paterson, 1981; Hutter, 
1983), we would have B=2+2/n, A =  1 + l/n; for a plastic flow law ( n - a ) ,  B=2,  
A = 1 .  The choice B = 8/3, A = 4/3 fits the Antarctic profile inland from Mirny quite 
well, although other choices are also quite good. 

The approximation q = qos(x)/x of (4.45) is consistent with (5.5), provided 

s (x) = x [  1 - XA] l/B, (5.6) 

which is a perfectly feasible form of the balance function. In particular, for A >  I ,  
B> 1 ,  accumulation becomes almost uniform over the interior, and ablation is 
concentrated at the margin. The warm-based approximation in the form (4.73), for 
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Figure 9 Comparison of Vostok-Mirny profile with the warm based model results with A =  1 ,  B =  I ,  and 
A=4/3 ,  B = 8 / 3 .  

small a, can also be represented in the form (5.5) with B = 2 ,  provided 

where C K K - ~ ’ ~ ,  p =  [ 2 ( A -  1)n- 1]/3. Choosing C= 1 andp= 1 gives A = 1 + 2 / n = 5 / 3  
for n = 3 ,  and a plausible result. In Figure 4 we showed the accumulation rate 
corresponding to A = 413, B = 813. We have not plotted the rate for A = 513, B = 2, 
as it is very similar, and the function ~ ( x )  is very similar to Figure 8.  Note that Figure 
8 is for a warm-based ice sheet. In Figure 9 we compare (crudely) the results in 
Figures 4 and 8 (for a warm-based ice sheet) with the Vostok-Mirny profile in 
Antarctica [redrawn from Paterson (1 980)]. The comparison is crude, but shows that 
the warm-based (as well as cold-based) models can fit data satisfactorily, with the 
assumption of realistic accumulation rates. 
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5.5 Temperature profile 

For a freezing base, a uniformly approximate temperature profile is approximately 
given by (4.46): 

T = To(xy/T) + ( 7 ~ / ? / 2 ) ' / ~ r ~ / ~  erf~[y/2r) ' /~] .  (5.8) 

For a warm base, the corresponding result is 

T = T',[uo(x)y] +erfc uo(x)y/2 /? 1 uo(x) dx . i [ 11/21 (5.9) 

Both exemplify the typical observation (Paterson, 1981) of a relatively uniform upper 
temperature which increases smoothly in the lower parts of the ice sheet. Occasionally 
an inversion occurs, such as at Mirny Station in Antarctica. This is caused by the 
upper temperature To($) which depends on the temperature along the stream line. 
When To decreases as the divide is approached, this temperature difference is advected 
downstream and revealed as an inverted temperature gradient. Downstream of the 
maximum value of s (i.e., in the ablation area) the "outer" solution To($) cannot 
satisfy any prescribed surface temperature, and thus a boundary layer at the surface 
is also required. This gives rise to secondary inversion, as shown by the temperature 
profile of White Glacier (Paterson, 1981, p. 210). 

5.6 Surface velocity 

For a freezing base, we have the simple prediction u a x .  The particular choice of s 
given by (5.7) gives uccxp, so that also uccx if p= 1. A constant strain rate is a simple 
prediction that could be used for comparison in numerical tests. Flow of this form 
(called extending flow) was studied by Nye (1957). 

5.7 Numerical computations 

Hutter et a!. (1986) describe a numerical method for solving the plane, steady, 
non-isothermal problem based on solving for u,  v ,  T in the reduced model. Their 
method is to shoot from a divide using qo as an unknown, but they are unable to 
obtain a solution for a no-slip boundary condition; in particular, their method requires 
both non-zero velocity and finite viscosity at the divide. The suggestion of the present 
paper is that the local divide solution should be taken from the local (quasi) similarity 
solution of (4.7) (neglecting viscous heating). For given qo, this provides an accurate 
start-up solution). More generally, shooting from the divide is unlikely to be a good 
method for solving time dependent problems, where a more direct method [e.g.: time 
step q from t j  to t j + l  using (2.25),; Crank-Nicolson or other implicit method on 
(2.24), to get T at t j + ' ;  quadrature of (2.24)' to get $ at t j + J  might be useful for 
both stationary and time-dependent problems. Schemes of this sort have been 
successfully implemented by, for example, Huybrechts and Oerlemans (1 988). 
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6. CONCLUSIONS 

A simplified scaling procedure for ice sheet models shows that the aspect ratio E is 
determined self consistently, and that only three essential parameters enter the 
problem. These are a, the viscous dissipation number (Brinkman times Peclet number); 
p, the thermal conduction number (inverse Peclet number); and y, the viscosity 
number. Typical values of these are .-0(1), p- lo-’, y -  10. 

Isothermal analysis shows that the reduced model ( ~ 4 0 )  has weak singularities at 
divides and at margins, but the reduced model itself is still valid. A local analysis is 
necessary to show that curvature is O(E(””- ’) at divides, while the slope is 0(1 /~)  at 
a margin, but these are glosses on the basic solution, and a successful numerical 
method should be able to incorporate these singularities without having to avoid 
them artificially. In addition, we have shown how (isothermal) ice sheets respond to 
small perturbations, i.e. diffusively, and how the perturbations can be made uniform. 
This local analysis will also have bearing on the implementation of numerical methods. 

Our approximate analysis suggests that geothermal heating contributes significant 
warming at the base of large ice sheets, and may be enough to raise the base to 
melting point, even under divides. In any case, viscous heating should act as a 
significant basal heater, so that much of the base of large ice sheets could be at the 
melting point. Once the base reaches the melting point, the ice above remains cold. 
Viscous heating acts to reduce the heat flux supplied to this cold ice, and hence warms 
it. When the heat flux at the bed reaches zero, a layer of temperate ice will form, 
and this may occur in practice. 

If such temperate layers form in the interior of an ice sheet, then viscous heating 
causes meltwater production, and moreover, this is a runaway effect, since the viscous 
heating A z ” + ~  increases with water content w (z being controlled by the depth, but 
A increasing with w, see Duval, 1977). Massive release of meltwater suggests (as is 
observed) the existence of subglacial lakes (which may provide a clue to the existence 
of these temperate regions). It does not necessarily mean massive creep instability 
and surging, for if a basal zone of temperate ice surmounting a subglacial lake does 
exist, it simply acts as an inviscid bubble overlying a frictionless boundary; this 
requires only that the surface stress be zero, but the ice can be dammed by colder 
ice on either side. On the other hand, such isolated temperate regions could be 
unstable to the formation of finger-like instabilities, whereby a protruding finger of 
temperate ice causes increased water production, and hence increased flow, which 
enhances water production further and enables the finger to propagate further. The 
existence of outlet ice streams is suggestive of such speculation. There are many 
interesting questions to be examined. 
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