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Delay recognition in chaotic time series
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We show how the use of “smart” embeddings of time series can indicate the presence of (large) delay in a system, and how
they can be used to enhance predictions based on nonlinear dynamics methods.

1. Delay equations are of wide relevance to natural
dynamical systems, particularly in medicine and
physiology. For example, models of respiration [1]
and cell maturation [2] naturally include significant
delays; other systems which have been modelled with
delay differential equations are population dynamics
[3], and lasers [4].

Since such systems can display extremely chaotic
behaviour, even for a first order equation with a sin-
gle delay, it 1s of interest to know whether any of the
current nonlinear dynamical methods of time series
analysis (e.g. ref. [5]) have the potential to recog-
nise and make use of the delay. In this Letter we will
report one idea which seems to have some applica-
tion in this context.

Many of the systems which incorporate delays are
modelled by delay-recruitment equations, of the gen-
eral form

ex=—x+f(x)), (1)

where x; =x(t—1). Such models combine an expo-
nential relaxation term with a nonlinear forcing term
dependent on the retarded argument x,. Of partic-
ular interest is when the dimensionless parameter ¢,
the ratio of the relaxation time to the delay, is small,
for then solutions oscillate on a time scale ¢~ €, and
as a consequence, the effective dimension of chaotic
behaviour is of order 1/€ [6].

Chaos in equations such as (1) is associated with
chaos in the discrete map x—f(x), although the pre-
cise relationship is not clear. When € is small, one
might expect solutions to be close to the singular limit

x=f(x;) [7], but the rapid oscillations make any
such easy comparison opaque. In this paper we focus
on the Mackey—-Glass equation [2], which can be
written in the form (1), with

AX
I+x”

fix)= (2)
The equation was studied by Farmer [6], and can be
obtained in the form (1) by putting A=a/b, €=
1/bt, with a, b, T as in Farmer’s paper. He chose val-
ues c=10, A=2, and a range of e< 1. He found that
the information dimension of the chaotic attractor at
small € was D~ 1/e. A typical time series of the so-
lution is shown in fig. 1, when the attractor dimen-
sion is about 20. In this note, we always keep ¢=10,
A=2.

2. In the normal way, a system of large dimension
requires an equivalent number of variables for its
description. And yet the time series in fig. 1 is gen-
erated by a single equation. Is there some way in
which this information can be extracted? In partic-
ular, can we infer the delay from the time series? The
answer, surprisingly, is yes.

The basic idea is this. For small enough J (d<e€),
we approximate X~ (x—Xx;)/d (xs;=x(¢t—4)), thus

J
X +mf(xl)~ (3)

= €+4d s
While (3) is not necessarily very accurate, the ideas
of embedding techniques suggest that if the time se-
ries in fig. 1 is embedded in R? as (x, x5 x;), then
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Fig. 1. Time series for Mackey-Glass equation (1), (2) withA=2, c=10, ¢=0.05.

the trajectory will lie close to a surface. On the other
hand for fixed 6~ € and 4# 1, the trajectory embed-
ded in R? as (x, x5 x,) should fill a three-dimen-
sional volume, since the attractor dimension is
~ 1 /€. Therefore, if we plot some measure of trajec-
tory volume versus 4, we should see a sharp change
near 4= 1, corresponding to a collapse of the volume.

The measure we have chosen is called the singular
value fraction (SVF), and is constructed as follows.
Given a time series, we choose an embedding with
one variable time lag 4. We then normalise the
embedded time series so that it has zero mean and
unit variance. For each embedding, we use global
singular value decomposition (SVD) to determine
the principal singular vectors wy, ..., W, and their as-
sociated singular values o, ..., g,, where dg is the
embedding dimension, and g, >0, >...2 0,4, > 0. For
any given choice of k, we define

k dE
Fsy(k)= 21:0?/; of. (4)

Notice that 0<Fsy<1 for 1<k<dg, and Fgy is
monotone increasing. We can show that in fact Fgy
> k/dg, and therefore we define the singular value

fraction fsy(k) as (dgFsv—k)/(dg—k), or equiva-
lently,

dE

1
T (dg—k)N &

Jsv(k)=1 o} . (5)
Thus fgve [0, 1] for 1 <k<dg, and is monotone in-
creasing with k (and f5v(dg)=1). If fsy =1 for k< d,
then the attractor resides in a k-dimensional sub-
space. Now since the attractor dimension ~ 1/€ is
large, we assume that dg < 1 /¢, so that the embedded
trajectory will fill the phase space. We then expect
that if we plot fsyv as a function of 4, there will be a
sharp rise at 4=1 as the attractor volume collapses.
In fig. 2, we show that fsy (4) experiences just a max-
imum near 4=1. Further details on the use of sin-
gular value fractions in diagnosing delays and se-
lecting optimal embedding lags will be presented
elsewhere; here we wish to examine the possible use
of so-called “smart” embeddings in making predic-
tions.

It should be emphasised that other methods could
be used to establish the attractor collapse at A=1. In
particular, use of generalised dimension statistics [8]
such as the correlation integral C,(r) (which meas-
ures the proportion of pairs of points in the embed-
ded trajectory which are a distance less than 7 from
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Fig. 2. SVF for Mackey-Glass equation, k=2, as a function of 4 for the 3-D embedding (x, xs, x,) with d=¢/4.

each other) might allow for possible folding, which
the SVF would not be good for. Specifically, we can
expect

Co(r) ~g(A) (r/D)” (6)

for small r, where D is the linear dimension of the
embedding trajectory, and v is the correlation di-
mension. Reasonably, one can expect the pre-
multiplicative factor g to depend on the variable lag
time. Now if the attractor really collapsed to a lower
dimension, one might expect C,=~ (r/D)”~! when
A~ 1, and thus g(4) should experience a sharp peak
near A=1, at fixed (small) r. We have not tested this
conjectural idea, though it may have its own prob-
lems; the point to be made is that, where folding of
the collapsed trajectory does occur, SVD is not likely
to be as useful.

3. The standard embedding for a time series such
as in fig. 1 would be x, x5 Xa5 .... We designate a
smart embedding as (x, X5 X5 o  Xis
Xa1s Xaz» s X4, ), Where & is a “normal” lag selection,
and 4,, 4,, ... are one or more lags selected by suc-
cessive use of SVF, or some similar method. In mak-
ing predictions based on local linear or nonlinear
predictors, we are interested in minimising the av-
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erage absolute prediction error, P. In general, P will
depend on the number of data points, NV; the embed-
ding dimension, dg; as well as the prediction method,
noise level, etc. If the attractor dimension is D, then
for dg< D, we can expect the trajectory to fill the
embedding space - it is being projected onto it, and
nearby points in R“ may not be close on the attrac-
tor. Thus P should decrease unti! dr reaches D, pro-
viding N is large enough. As dg increases further, P
will increase again, since the & data points are being
spread around a larger and larger space.

In a delay system with a large delay, there is a se-
rious problem if N is limited. If D is large, one typ-
ically expects exp[O(D)] data points as a require-
ment to make useful diagnostics or predictions [9].
This makes the use of smart embeddings very at-
tractive, as they provide an effective way of decreas-
ing the dimension of the attractor - or at least
squashing it flatter.

Figure 3 shows the mean absolute prediction error
P versus 4 for the Mackey-Glass equation, using a
three-dimensional smart embedding (x, x4, X4), and
local linear prediction using the average of four near-
est neighbours. Prediction is one step (€/4) ahead.
We see that there is a sharp minimum near 4=1
(remember the normalised time series has unit stan-
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Fig. 3. Average absolute prediction error P versus 4 for Mackey—Glass equation, embedding as for fig. 2.
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Fig. 4. Prediction error P versus dg for the normal embedding (x, Xs, ..., X(az—1)s)-

dard deviation). In fig. 4 we plot P versus dg for the
smart embedding (x, x5, ..., Xae_2, X4) With d=¢/4,
A=1. Apparently paradoxically, P increases with dg.
This is due to the fact that di < 1 /¢, so that the points
continue to spread apart as dg increases. To obtain
P decreasing with dg, we can change the prediction

step ahead to be =~ 1. This point will be pursued
elsewhere.

4. The evidence presented above illustrates our
main thesis, that particularly in delay differential

equations, smart embeddings provide a useful ve-
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hicle for constructing accurate low-dimensional re-
constructions. Moreover, this approach may be ex-
tended to other systems with, for example, different
time scales of behaviour. Here we wish to pursue a
feature of (1), as exhibited by fig. 3. This is most
strikingly illustrated if we plot phase portraits (x, x.)
of fig. 1, using in fig. Sa 7=1.5, and in fig. 5b
7=1.0235, where also f(x;) is plotted. We see that the
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trajectory collapses close to f(x;) when t=1. This
suggests that in some average sense, the singular limit
e=01n (1) is attained, although the means by which
this occurs is very unclear. In fig. 6, we show the av-
erage value of |x—f(x,)| as a function of 4. The
minimum near 4=1 is very similar to the minimum
displayed by the prediction error.

Some understanding of this comes from rewriting
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Fig. 5. Phase plot of fig. 1, x versus x5 (a) d=1.5; (b) 6=1.025.
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Fig. 6. Mean absolute deviation ¢ |[x—f(x,)|) as a function of 4, Mackey-Glass, e=0.05.

0.05

Mackey-Glass, eps

x(t)

flx(t-1)] ---—

4

Fig. 7. x(¢) (solid line) and f(x,) (dotted) as functions of z.

~f, at leading order. However,

which suggests that x

neglecting tran-

]

the equation as an integral equation

there is in fact no guarantee

s

as we expect d/dt~1/¢

sients, and expanding in powers of €. Equivalently,

we use operational calculus to write

that the terms diminish. Nevertheless, (6) is sugges-

tive, as are successive finite difference approxima-

tions:

(7

>

(1+eD)"Yf;, =f, —¢fy + €%, —€¥i +...

X=
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x(t+e)=fi+1e?f+..., &

x(t4+2€) —x(1+€)+x(1) =f + 13 +.... (8) This work was partly carried out at the CNLS of

Qualitatively, we can partly understand fig. 6 by
considering fig. 7, which shows x and f; versus ¢. Since
x tracks f), always tending exponentially towards it,
it follows that x has the same shape as f;, but re-
tarded by a time of O(e¢). It is because of this that
fig. 6 has a minimum at 4=1+0(€). Nevertheless,
it is clear that the resemblance is only qualitative.

5. In conclusion, we have shown that the use of
variable, “smart” embeddings can be used to diag-
nose the presence of delay in chaotic time series, and
that they can be used to make improved predictions,
particularly in data-poor, high-dimensional series.
For this particular delay-recruitment model, there is
a close relationship between the map (the singular
limit) and the equation, whose exact nature remains
opaque, however.
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