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MULTIPLE REACTION FRONTS IN THE OXIDATION-REDUCTION OF
IRON-RICH URANIUM ORES*

J. N. DEWYNNEYt, A. C. FOWLER}, AND P. S. HAGANS§

Abstract. This paper describes the oxidation of iron-rich uranium-bearing rocks by infiltration of ground-
water. A reaction-diffusion model is set up to describe the sequence of reactions involving iron oxidation,
uranium oxidation and reduction, sulphuric acid production, and dissolution of the host rock that occur. On
a geological timescale of millions of years, the reactions occur very fast in very thin reaction fronts. It is shown
that the redox front that separates oxidized (orange) rock from reduced (black) rock must actually consist of
two separate fronts that move together, at which the two separate processes of uranium oxidation and iron
reduction occur, respectively. Between these fronts, a high concentration of uranium is predicted. The mechanics
of this process are not specific to uranium-mediated redox reactions, but apply generally and may be used to
explain the formation of concentrated ore deposits in extended veins. On the long timescales of relevance, a
quasi-static response results, and the problem can be solved explicitly in one dimension. This provides a framework
for studying more realistic two-dimensional problems in fissured rocks and also for the future study of uraninite
nodule formation.
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1. Introduction. When a container of radioactive waste is buried underground, it
eventually corrodes, and leakage of radioactive material to the surrounding rock occurs.
Depending on the chemistry of the rock, many different reactions may occur. A particular
case concerns the oxidation and reduction of uranium ores by infiltrating groundwater,
since UQs is relatively soluble (and hence potentially transportable to the water supply),
whereas UQ, is essentially insoluble. It is therefore of concern to those involved with
radioactive waste disposal to understand the mechanics of uranium transport through
reduction and oxidation reactions.

The same phenomena more or less take place in naturally occurring uranium ores,
and a graphic example is provided in an open cast uranium mine, such as the Osamu
Utsumi mine at Pocos de Caldas in Brazil (see Fig. 1). Here, the rock is iron-rich,
containing 2 percent by weight of pyrite (FeS,), which acts as a reducing agent. As
oxygenated surface water penetrates the rock, the pyrite is oxidized, as is evidenced by
the brilliant orange colour of the (rusty) oxidized rock. The front between oxidized and
reduced rock is extremely sharp and owes its irregular shape (Fig. 1) to the presence of
fissures, where the groundwater penetrates preferentially. The mine at Pogos de Caldas
provides the basis for an international study, which is described by Smellie et al. [8].
One purpose of the project is to “produce a model of geochemical transport across redox
fronts, with special attention to the understanding of long-term, large-scale movements
of redox-sensitive natural series radionuclides.”

The host rock contains reduced uranium (UQ,, or uranium in the U** state). As
the water infiltrates, this reduced uranium is oxidized, becomes soluble, and is thus
transported toward the redox front, where it is reduced and precipitates once more. An
interesting phenomenon is that uraninite nodules are observed to occur ahead of the
redox front; these are small (~1 cm) spherical regions in which the concentration of
UOQ, is extremely high.

* Received by the editors May 6, 1991, accepted for publication (in revised form) July 16, 1992.

+ Faculty of Mathematical Studies, University of Southampton, Highfield, Southampton SO9 5NH, England.
} Mathematical Institute, Oxford University, Oxford OX1 3LB, England.

§ M.S. B265, C-3, Los Alamos National Laboratory, Los Alamos, New Mexico 87545.

971



972 J. N. DEWYNNE, A. C. FOWLER, AND P. S. HAGAN

Scale —
0 50 100 meters

1372 4 shaft F3 Fz A
52
32 A
12
1302
82 -
62
42
22
1202 -
Oxidised Phonolite / Tinguaite _L[___ Shaft"E " \\- Probable
Ground Water
[C] Reduced Phonolite / Tinguaite Flow Paths
Main Fracture Systems (apparent dips) -”_ Drill Bore Holes
Uranium Mineralisation (<200 -> 1550 ppm) - Actual Mining Surface

FIG. 1. 4 sketch of a cross section of the Osamu Utsumi mine (after [8)). The shaded regions represent
oxidized rock and tend to be centred on the main fracture systems.

There are three problems of immediate practical interest, both scientifically and for
the containment problem. The first is to determine the rate at which the redox front will
advance. This can most easily be studied using a uniform one-dimensional model, that
is, where we ignore fissures. It is, in fact, necessary to study this one-dimensional problem
to provide a computationally efficient model for the case when fissures are present (which
is the second problem and which will be reserved for future work). The third problem
is the mechanism of nodule formation and propagation. Again, this requires a one-
dimensional description in which a model for the formation mechanism can be addressed.
This too will form the subject for a future study.

In this paper, we therefore address only the case where a redox front advances
uniformly. The novel feature that we find is that the redox front, in fact, consists of two
separate fronts, where two separate reactions occur. The fronts are tied together because
the supply of reactants at each front is determined by the reaction at its neighboring
front. We find the timescales are so long that the whole system evolves quasi-statically
and can be explicitly solved. This provides a basis for the further studies referred to above.

Economic geologists have done a good deal of work in this area, and complicated
reaction-diffusion models have been posed and solved numerically (e.g., [10]). The for-
mation of ore deposits in sandstones (called roll front deposits) as a result of dissolution
and precipitation kinetics is well understood and is comparable to our description of the
redox front, in which oxidation and reduction occur at separate fronts (that delineate
the boundaries of the ore deposit).

In a sequence of papers, Ortoleva and colleagues [4]-[6] have analyzed reaction-
diffusion models relevant to redox front propagation in porous rock because of infiltration
of oxygenated groundwater. They are particularly interested in various kinds of spatial
instabilities, such as fingering or banding, and draw attention to a mechanism for these,
which they dub the “reaction-infiltration” instability. This involves the feedback between
precipitation, porosity, and flow rate. In geological environments, such as those under
consideration here, they draw attention to two crucial asymptotic limits: one is that of
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fast reaction rates, which enables the system to be reduced to a set of “slow” reaction-
diffusion equations separated by moving reaction “fronts”; the second is “‘solid density
asymptotic,” exemplified by the solubility of a mineral in pore water being much less
than its gross density. The effect is that the transport timescales are fast, and, as a result,
we can solve quasi-static equations with the time dependence exhibited by the moving
fronts.

In realistic modeling of the chemical reactions (for example, Walsh et al. [10] solve
a model with 26 minerals and 60 aqueous species ), these approximations have also been
introduced. Most notably, equilibrium chemistry is assumed [10], [1]. This corresponds
to the assumption of fast reaction rates and is very accurate for the long timescales of
relevance here. When the concentration of aqueous oxidant species is much less than
the concentration of the reducing minerals present in the rock, then solid density asymp-
totics are relevant [ 3], in which the advection and diffusion of the concentrations adjust
to steady conditions much more rapidly than reaction front movement occurs. These
approximations enable us to solve the one-dimensional problem virtually explicitly, and
we find that the redox front moves (after an initial transient) at a constant rate, an idea
that is also well known (e.g., [2], [4]).

Recently, Cross et al. [1] used a computer model combining detailed chemical equi-
libria equations with advective and diffusive transport to model the redox front propa-
gation at Pocos de Caldas. This paper has a similar purpose, but our approach is or-
thogonal. We have written the simplest possible description of the chemistry involved.
While we thus lose important details of the reactive processes, we find a significant gain
insofar as we are able to explicitly describe the front propagation process. In particular,
we give explicit formulae for the front propagation speed and for the thickness of the
ore-bearing redox zone (i.e., the region between the oxidation and reduction fronts). An
important inference is that the front speed is determined solely by conservation of the
total number of oxidant atoms, entering as dissolved O,. The implication is that two-
dimensional models may be easily adaptable to analysis by using parameterizations based
on the present results. A second important inference is that straightforward numerical
models almost certainly predict the uraninite U** concentration incorrectly, since the
redox zone thickness may well be much smaller than any realistic grid spacing (cf. [1,
Fig. 3]). We consider that a coherent future modeling strategy will marry the ideas of
the present work with more realistic model chemistry.

We wish to emphasize the distinguishing features of the present model, which go
beyond the fast reaction rate, “solid density” asymptotics of Ortoleva et al. [6]. The
presence of two uranium species mediates the redox reaction and actually splits the front
into two parts. As far as we are aware, such an idea is completely novel. Moreover, the
analysis of the split redox front is facilitated by a third approximation, that 6 is small
(where § is the ratio of solubilities of U** and U®"). As a consequence of this analysis,
we are impelled to consider nonequilibrium precipitation-dissolution kinetics, again in
a way that appears novel and goes beyond the precipitation modeling of Sultan et al.
[9]. In fact, we find that, if « is a measure of the precipitation-dissolution rate, then the
singular limits k = o0, 6 = 0 do not commute, and it is then essential to retain the
nonequilibrium kinetics for a realistic answer.

2. Mathematical model. We base our model on the conditions observed in the
Pocos de Caldas mine [1]. The reduced rock has a porosity of about 4 percent, contains
about 2 percent by weight of pyrite, and has a density of 2.2 X 10° kg m™3. The oxidized
rock has a porosity of 20 percent. This implies that about 300 kg m™> of oxidized rock
is dissolved and washed away. This occurs because the redox reactions produce sulphuric
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acid that is mainly responsible for the dissolution. Specifically, potassium feldspar reacts
to form clay minerals and silica, some of which is dissolved. The infiltrating groundwater
is, in fact, quite acidic, because of dissolved CO,. Most of this acid is expended hydrolyzing
the oxidized rock, and a slowly moving hydrolysis front is found between the surface
and the redox front. The hydrolyzed rock near the surface is found to be relatively soft
and subject to significant erosion. The pH of the groundwater changes from about 3.0-
3.6 in the hydrolyzed region, to about 5.5-6.2 in the reduced/oxidized regions [1]. For
our purposes, however, the only effect of the hydrolysis front is to increase the pH of the
infiltrating groundwater, and we ignore the hydrolysis front in what follows. The flow
rate of water from the surface is about 10 ™' m® per square meter per year, and contains
oxygen at a concentration of 102 kg m™ (H,0). In the undisturbed rock, the uranium
oxide concentration is 6.3 X 1072 kg m™~> (rock). The solubility limits of the uranium
oxides are (approximately) 102 kg m~ (H,O) in the oxidized region and 10 7% kg m™>
in the reduced region. That is, UO, (or U*") is slightly soluble in water; it is more soluble
in sulphuric acid, and thus it is realistic to suppose that the solubility of U*" depends on
the acid concentration.

Our present aim is to model the redox front. For the eventual purposes of studying
nodule formation, it is necessary to include a description of how the acid produced at
the redox front reacts with feldspar in the rock. A list of principal chemical constituents
that must be included in the model is FeS, (pyrite), O, (oxygen), H* (acid), U*" (reduced
uranium UQ,), U®* (oxidized uranium UQO;), and S (silicates and other minerals present
in the primitive rock that are soluble in acid). The uranium is present in both aqueous
U,,, and precipitate U form. These species undergo reactions as follows:

(i) 4FeS, + 150, = 16H*[+8S037] (slow),
(ii) 2U* + O, = 2U°",
(iii) 15U%" + 2FeS, — 15U + 8H*' (slow),
(iv) U =UL,

(v) Ut =ug,
(vi) m'S + H* — dissolved salts, clay (slow).

(2.1)

These reactions represent, respectively,

(i) the overall redox reaction,
(ii) oxidation of uranium,
(iii) reduction of uranium,
(iv) dissolution/precipitation of U**,
(v) dissolution/precipitation of U,
(vi) silicate reaction.

Note that the combined effect of reactions (ii) and (iii) is to produce reaction (i). We
have only included the constituents in these reactions that are necessary to determine
the model. While all the reactions are fast on a geological timescale, the surface-mediated
ones are relatively slow, as only the surface atoms of the solid are available as reaction
sites; these are marked slow in (2.1). We suppose that the oxidation reaction (ii) occurs
exclusively in the aqueous solution.

Let u, v, w, x, , ¢, h, and s denote the variable concentrations as follows:

u=[Us], v=[U4], w=[US], x=[U$],
r=[FeS;], ¢=[0;], h=[H*], s=M][S].

These are molar concentrations, measured in units of mol m~3 (of rock for u, r; of water
for v, w, ¢, h). Because of the variety of species that can be leached from the ore, it is

(2.2)
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more convenient to measure s in units of kg m™ (of rock). As a consequence, the molar
silicate concentration has been multiplied by “its” molecular weight M. The constant
m' is a representative stoichiometric coefficient. Typical values for the Pocos de Caldas
mine are

u~0265(63%X102kgm™3), v~42X107°(10"°kgm™),
(2.3) w~0.042 (10 2kgm™3), r~350(42kgm™3), ¢~ 0.313(1072kgm™3),
s~ 300 kg m3, h~03(3X10"*kgm™).

The values of v, w, and c are inferred from likely solubility limits, and 4 from its
oxygen equivalent; r and u are the initial values in the rock; s is the quantity of feldspar
that is dissolved. Note that r, s > u, w, ¢, h > v; the size of x is as yet unknown. We
denote the porosity by ¢; thus ¢ ~ 1/5 in the oxidized region, while ¢ = 1/25 in the
reduced rock. In fact, ¢ is also a variable with ¢ = ¢(s); ¢ may also depend on u and x,
and this may be important in later studies of nodule formation. Let z denote the coordinate
perpendicular to the earth’s surface, pointing downward. We denote by J the (constant)
vertical flux of water, taken to be J ~ 10! m3 (water) m~2 (rock) y~'. The diffusive
flux of species yis —¢(D/7)Vy, where D is the diffusion coeflicient, and 7 is the tortuosity.
In the absence of information, we take 7 = 1; we take D ~ 3 X 1072 m? y~! for all
species (except u, x, r, and s that are nonaqueous, and neither diffuse nor are advected).

Let the molar rates of reaction of the steps (i) to (vi) of (2.1) be ry, r,, r3, r4 and
r_4, rs and r_s, and rg, respectively (74 being the rate of the forward reaction in (2.1)(iv),
r_4 being the rate of the backward reaction, and similarly for s and r_s in (2.1)(Vv)).
Then, the equations governing the reaction scheme (2.1) may be written as

(2.4a) (¢c) + (Je): = (¢Dc:); — 151 — 1y,
(2.4b) U = —rq + r_y,

(2.4c) (pv), + (Jv), = (¢DV,), + 14 — r_4 — 2r; + 1513,
(2.4d) (pw), + (Jw), = (¢Dw,), + 2r, — 1513 + rs — r_s,
(2.4¢) X, = —rs+rs,

(2.4f) r, = —4ry — 2rs,

(2.4g) (¢h), + (Jh). = (¢Dh;), + 16r, + 8r3 — rs,
(2.4h) S = —Mrs,

where m = m’M and has units of kg mol~'. The reaction rates r,(7, ¢), r2(v, c), and
r3(w, r) can generally be expected to be complicated nonlinear functions of the concen-
trations, satisfying r; (0, y) = r;(y, 0) = 0. Their precise form is not relevant, and it is
helpful to suppose that r; oc rc, r, oc vc, and r; oc wr. The rates r4, r_4 and rs, r_s5 are
related to the solubilities of U*" and U®" and may depend on /.

The diffusing species ¢, v, w, and A require boundary conditions. We take these to
be

d
(2.5) ¢ = ¢, [J—qua—Z](v, w,h)=0 atz=0
and
(2.6) u—>uy, c,w,h—>0 asz—> .

We apply a boundary condition for u rather than v since the primitive rock contains a
concentration u, of U¥*. The value of v is tied to that of u by solubility (see below).
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We now exploit the idea that the rate constants are mainly extremely large (the
possible exceptions being ry, r3, rs) on the geological timescales of interest. The resultant
“fast reaction rate’” asymptotics have been expounded by Ortoleva et al. [6]. This implies
that the irreversible reactions take place over extremely thin transition layers in which
diffusion is balanced with the reactions. Outside these transition layers, the rates of the
irreversible reactions decay to zero exponentially. It is a feature of these types of asymptotic
problems, where the decay outside the transition layers is exponential, that in an appro-
priate asymptotic expansion, the reaction rates vanish to all algebraic orders (of the small
parameters, namely the 1/7;). It follows that the leading-order behavior of the reactants
is then actually described by the advective diffusion equations with the reaction rates set
to zero. (A comparable example occurs in the boundary layer theory of Rayleigh-Bénard
convection at high Rayleigh number R,, where the interior (outer solution) temperature
is isothermal to all orders of the small parameter R,'/3 [7].) Although we allow r, r3,
re to be relatively small, in fact we also put 7, and r; to zero outside reaction fronts as
we expect the oxidation reactions to be rate limited by the aqueous species, and thus
very fast in practice. We do not necessarily assume that 74 is fast, however. This applies
to the irreversible equations, excepting those containing the dissolution reactions (iv)
and (v), since the corresponding reactions do not occur in a thin layer, and the equilibrium
is not transcendentally accurate. To obtain flux equations from (2.4b)-(2.4e) we must
therefore add these equations to eliminate the r.4 and r.s terms (see [6, p. 1001] for an
explanation of this). We can then equate the reaction terms identically to zero outside
any transition layer, yielding

(2.7) u + (¢v), + (Jv): = (¢Dv;)., X+ (ow) + (Jw): = (¢Dw.)..

The other equations, relating u# to v and x to w outside transition layers, come from
(2.4b) and (2.4¢)

(2.8a) U = —ry + 1y,
(28b) X, = —Fs + r_s.

Now, equating the other reaction rates to zero shows that r = 0 or ¢ = w = 0 (from (2.4),
and since all concentrations are nonnegative). If r = 0, then (2.4a) implies cv = 0; thus,
in either event, we have cv = rw = 0 everywhere outside transition layers. We assume
that the solubility limit of v is given by a function of u and 4, as shown in Fig. 2.
Specifically, we assume that in equlibrium

Il

(2.9a) u
(2.9b) v

0, v < vy f(h),
vof(h), u>0,

where the dimensionless O( 1) function f( /) is shown in Fig. 2; we expect v, to be small
(that is, vy << u). In fact, we will assume that x is in equilibrium, that is, s = —r_s In
(2.9b), but we do not assume equilibrium for #. We model the precipitation dissolution
terms in (2.8a) as follows:

[k(v—f)u, v<f
(2.10) u =

k(v —f), v,

The second of these is similar to the precipitation model of Sultan et al. [9]. In an earlier
work [4], a linear adsorption-desorption was used. We consider (2.10) more realistic.
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FIG. 2. (a) Solubility of aqueous U** as a function of precipitate U**, for various levels of acid concentration;
(b) Variation of solubility limit with acid concentration.

Substituting (2.9) into (2.7) and appending the other equilibrium forms of (2.4),
we have the advective diffusion equations

(¢c) + (Je). = (¢Dc;).,
(u+ ¢v), + (Jv), = (¢Dv;),,

(2.11) (x + ¢w), + (Jw), = (¢Dw;).,
(‘bh)l + (Jh)z = (¢th)z — Fe,
S, = —mrg.

The equation for r, dr/dt = 0, shows that r is piecewise constant (that is, constant between
reaction layers). While it is likely that the redox reactions are fast on a geological timescale,
we infer that feldspar dissolution is slower, since the formation of uraninite nodules
suggests that acid can permeate ahead of the redox front to some extent, and this can
only be the case if rg is small.

These equations (2.11) apply between any reaction fronts that exist. Across such
fronts, jump conditions apply that are determined by exact conservation laws. Examining
(2.4), we find three such conservation laws, in the form

(47' + ¢h - S/m)l + (Jh)z = (¢th)z>
(2.12) (u+ v+ x+ ¢w) + (J(v+w))., = (¢D(v; + w,)).,
(4dc + 2¢w — 157 + 2x), + (J(de + 2w)). = (dD(4c, + 2w,))..

From these, we deduce the three jump conditions, below, at a reaction front moving
with speed V:

[4r + oh — s/m]*V = [Jh — ¢Dh,]*,
(2.13) [+ v+ x+ dwl*V = [J(v+ w) — ¢D(v, + w,)]*,
[4¢c + 26w — 157 + 2x]3V = [J(4c + 2w) — ¢D(dc, + 2w.)]?,

where [ ]! represents the jump across the front. In addition, matching the diffusing
species profiles in a reaction layer to an outer solution with finite (and, when scaled,
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O(1)) gradients can only be achieved if, at leading order (in 1/r;), the diffusing species
are continuous across reaction fronts; thus

(2.14) [v]F =[c]f =[w]t =[h]t=0.
In addition, the assumption that the silicate reaction is slow implies that
(2.15) [s]f = 0.

Thus, (2.13) simplifies to
4[r]*V = [—¢Dh,]t,
(2.16) [u+ x]?V =[—-¢D(v, + w,)]2,
[—15r + 2x]12V = [—éD(4c. + 2w,)]E,

where we have used the continuity of water flux [J]* = 0 and that [¢]T = 0 if
¢ = ¢(s).

This completes our derivation of the advection-diffusion equations. One additional,
very accurate approximation, can now be made. The advective timescale is ¢ ~ z/J,
while the diffusive timescale is ¢t ~ z?/D. Taking z ~ 10 m, J ~ 107! my™', D ~
3 X 1072 m? y!, these are, respectively, about 100 years and 10* years. This suggests
that, after an initial transient, advection dominates diffusion, and, furthermore, if J >
¥V, then the fronts evolve quasi-statically. Since, because of the large amount of FeS, and
the small amount of O,, this will be the case, we can anticipate that the whole problem
may be treated using a quasi-static approximation (that is, we neglect the time partial
derivatives in the equations).

3. The basic redox front. We first illustrate the solution by considering the uncon-
taminated case, where uranium is entirely absent, u = v = w = x = 0, and the redox
reaction (1), together with the etching reaction (vi), are the only processes. This situation
has been considered by Ortoleva et al. [4], for example, and we repeat their results here
for ease of reference in the subsequent analysis.

In the quasi-static approximation, we must solve

(3.1) (Je): = (¢Dc;):,  (Jh). = (¢Dh.). — rs,
with the jump conditions at the front

(3.2a) [c]f=[h]E =0,

(3.2b) 4[r]*V = [—¢Dh.]t,

(3.2¢) —15[r]iV = [—4¢Dc.]*.

In addition, reaction equilibrium implies (from (2.4)) that

(3.3) n=0 = cr=0.

We therefore expect a redox front to exist, behind which » = 0 and in front of which
¢ = 0, as shown in Fig. 3. The acid produced at the redox front dissolves the rock. The
model is completed by specifying a relationship between ¢ and s. Most simply,

(3.4) ¢ = do + b(s0 — 5),
where the data from the Pogos de Caldas mine suggests that
(3.5) ¢o = 0.04, b=533X10"*m?kg™!
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F1G. 3. Redox front propagation in the absence of uranium. Shown are profiles of ¢, r, h, and s.

(so that ¢ = 0.2 when As = sy — s corresponds to 300 kg m™3). In this first illustrative
example, however, we take ¢ to be constant.

We denote the redox front by z,(¢). Suppose that r = ry in z > z,(1); solving for ¢
in z < z,(t), we find that

colexp (Jz,/¢D) — exp (Jz/¢$D)]

(3.6) €= [exp (Jz,/#D) — 1] ’
where, at z = z,(1),
(37) —lSrOV = 4¢Dcz’

and where V' = dz,/dt. We thus find that
4J(co/ ro)

(3.8) V=TS0 —exp (—z/D1
where
(3.9) I=¢D/J.

Using =02, D=3X102m?>y !, ¢, =0.313Mm™3, and r, = 350 M m~3, we have
(3.10) I~6cm, V/J~4cy/15ry ~ 0.24 X 1073, V~024X10"*m y_’.

The quasi-static approximation is certainly valid for z, 2 /. For z, < [, (3.8) implies
that z, ~ [J/(co/r0)t]'"?, and the neglect of the time partial derivative is only valid if
t > l(co/1r0)/J, thatis, if z, = I(co/ry). In practice, /(cy/1o) is so small that the details
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of the initial transient are irrelevant. For relevant values of z, > [/, we have the asymptotic
steady-state velocity

(3.11) V ~ 4Jcy/157,.

The front takes 4 X 10° years to travel 10 meters (this figure is consistent with the
computer model predictions of [1]). To complete the solution, we determine the acid
profile. (In other redox reactions, if acid is not produced, then the above description is

complete.) We suppose that reaction of feldspar in the rock occurs at a rate proportional
to acid concentration; thus

(3.12) rs = kh.

Solving for 4 and assuming that z, > /, we obtain, approximately,

Aexp [m*'(z—z)], z<z,
(3.13) h=

Aexp[m (z— z)], z>z,
where

1
(3.14) mi=ﬁ[Ji VJ2+4k¢D],
and the jump condition (3.2b) applied at z, gives
(3.15) 4reV = —¢D[h.]7,
whence
4ryV 4rV

(3.16) o dl

A= = )
¢D(m* —m™)  VJ? + 4k¢D

We can now calculate the feldspar concentration. For z > [/, we have d/dt ~
Vd/dz, and s satisfies

(3.17) Vs. = —mrs = —mkh,

with s = 5o as z = oo. We find that
kA
(3.18) s=s,+%[l—exp(mi(z—zr))]

for z = z,, where the value of s at z,, s, is given by

__mkA

(319) S, = So v

It follows that the total consumption of feldspar by the redox front As = sy — s(—o0) is
given by

Vo \m* -

(3.20) As = fﬁlﬁ (L - —l—) = mry.
m

Since 7o = 350 M m~2 and As = 300 kg m™~* we infer that m should take the value 0.214
kg mol !, For example, potassium feldspar KAISi;Og has a molecular weight of 278,
consistent with a stoichiometric coeflicient m’ of 0.77 (as opposed to a value of one given
by Cross et al. [1]). We are, of course, blurring the distinction between reaction (to form
clay minerals) and dissolution (that can remove material from the rock).
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4. Uranium catalyzed oxidation-reduction fronts. We now return to the full problem,
where the uranium reactions (ii), (iii), (iv), and (v) are included. It transpires that the
oxidation reaction (ii) and the reduction reaction (iii), which, on combination, are
equivalent to the redox reaction (i), actually replace it. The redox reaction (i) itself does
not occur, and the uranium facilitates the reaction by splitting the single front into two
fronts. At the rear, oxidation of uranium occurs (ii); this produces U®", which is then
transported downward to the reduction front, where reaction (iii) reduces the pyrite. The
acid produced by this reaction dissolves feldspars, as indicated in the previous section.
The scheme is represented in Fig. 4. It will turn out that the oxidation front z, and the
reduction front zz are close together because of the small solubility of U*" in acidic
water. Following the analysis of § 3, it will be convenient to nondimensionalize the
system. If zo is close to zr, we can expect the length scale (zg — zp) to be such that
diffusion of Uj;, v, balances advection of U}, ; otherwise, U** cannot be effectively
transported backward. We therefore define

(4.1) z=zo(t) + Iz*,

where / is determined by (3.9), where we take ¢ = ¢, the porosity in the reduced region.
The relevant timescale is then // V, and, from § 3, we expect zp = V ~ J(¢y/19); thus

(4.2) t=lﬁt*, V= J(co/ro)V*.
JC‘O

u

&

-_—— -

/

z

FIG. 4. Redox front propagation with uranium present. Two separate fronts exist, with a solubility front
between them.
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Also, we put

(4.3) c=c¢c*, h=ch* r=rr*, u=cu*, v=10p*

' W= Dow*, X = dobox*, 5=5o— (AS)S*, ¢ = dod*,
where ¢o = 0.313 M m™, 7, = 350 M m~>, 1y = 0.265 M m™3, ¢ = 0.04, vy = 4.2 X
107°*M m™3, and w, = 0.042 M m~3. We substitute these into (2.9) and (2.10), boundary
conditions (2.5), (2.6), and jump conditions (2.13) and (2.14); in addition, reaction
equilibrium requires from (2.4) that r;, = r, = r; = 0, whence

(4.4) cr=rw=cv =0,

everywhere (except in the reaction fronts).
We obtain the equations (dropping the asterisks)

(4.5a) e[(pc) — V(¢c).] + ¢ = (¢c):,
(4.5b) e(% - V%)[u + 8¢pv] + v, = (dv.);,
(4.5¢) e[(x + ow) — V(x + ¢w).] + w. = (¢pw:):,
(4.5d) e[(dh) — V(¢h).] + h. = (¢h.). — M,
(4.5¢) ¢ =1+ s,

(4.5f) ¢ — V.= uh,

(4.5g) u,— Vu. = [K(U“‘f(h))u if v <f(h), {X= 0 ifw< 1/,

k(v — f(h)) ifv> f(h), x>0 ifw=1/p,
where
B =0b(As)/ do, 0= doo/co, &= oCo/Fo, \=Kkl/J,

u = bmkho[1]/¢o, v =1vo/Wo, « = kvo[i],

(4.6)

and [¢] is the timescale [¢] = Iry/Jcy. Using previous estimates, we have
(47) [t]1 ~700y, B~4, 6~06X10"°% e~36X1075 »~107%
A, u, and « are undetermined at present. Note that ¢ > 6 in (4.5b).
The relevant boundary conditions for these equations are, from (2.5) and (2.6),

(4.8) c—>1, (1—¢a—az){v,w,h}—>0 as z —> —oo,

(4.9) U= u, = i/co, c,w,h—=>0, v-—>f(0") as z —> +oo.

Note that the profiles in Fig. 4 satisfy the equilibrium constraints (4.4), and, by choice
of origin (zp), we have

(4.10) c=0, u=0 onz=0.

Finally, we have the jump conditions (2.13); that is, the v, ¢, w, and A are continuous
at reaction fronts, and the flux conditions (2.15) become (dimensionlessly)

4[r11V; = —[¢h:]Z,
(4.11) Efu+ Nx]ZV; = [—¢(w: + v)]12,
[—15r + 2pex]*V; = [~ ¢(4c. + 28w.)]*,
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where V; is the velocity of the relevant front (i = O or i = R). The parameters are defined
by

E = 8/5 = C(Z)/vor() ~ 60,

O =wp=uvy/co=25/¢o ~ 107,
(4.12) o 0

N = ¢0W’0/€0 ~ 0.6 X 10*‘2,

D= W()/CO ~ 0.13.

Providing that w < 1 /v in the solutions, then U®" never reaches its solubility limit, and,
in that case, we can assume that x = 0 everywhere. The validity of this assumption is
checked below.

As e, 6 < 1, it is appropriate to seek a leading-order approximation by letting e,
6 — 0, but retaining F as an O( 1) parameter for the moment. At leading order, we have

¢ = (¢c2):,

w, = (¢w;).,

h. = (¢h.). — Mh,
(4.13) ¢ — V.= uh,

E(ul - Vuz) +u, = (¢vz)29

u,—Vuz=[K(v_f)u’ v<f,
K(U"f), 'D>f;
with boundary conditions
a
c-—»l,(l—d)a—z){v,w,h}»o as z = —oo,

(4.14) c=0, u=0 onz=0,
u—->u,, c,w,h—>0, v—f(0") as z —> +oo,
and jump conditions given by (4.1).
For large time, we expect the solutions to be quasi-steady; we also suppose that u,

A ~ O(1). Although nonlinear, the problem may be simplified by defining the modified
space variable

Zdz

(4.15) ¢= J; ‘; s
whence
(4.16a) Ce = Cyg,y
(4.16b) —EVu; + v = v,
(4.160) We = Wee,

[mb(v -Nu, v<f,
(4.16d) —Vu, =

kp(v — f), v>f,

and

(417) h§-= hn—“ )\d)h, —V(Z')r: ﬂ¢h,
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with the jump conditions (4.11) being

(4.182) 4[r1tVv; = —[hd*,
(4.18b) E[ul*V; = —[v, + wl*,
(4.18¢) 15[7)1V; = [4c + 28wt

We retain the ¢’ in (4.18¢) to obtain a nondegenerate solution. We denote the position
of the reduction front by ¢ = p(z). We find that

(4.19a) c=1-—¢éf <0,
(4.19b) w = Ae’, <0,
(4.19¢) w = w, + Be’, >0,

where, to satisfy (4.18), we have

(4.20) wo =2/8, B=-2¢7"/¢, A=B+2/4§.

To satisfy the jump condition (4.18¢) at { = p, we require (as V; = V' + p there) that
(4.21) V+p=4/15.

Thus the two-front solution collapses to the solution given in § 3 as p = 0.

It is natural to illustrate the nature of the solutions by making two further simpli-
fications. If the precipitation time 1/(kvy) is small compared to the timescale [¢] ~ 700
years, then « is large, and we might expect that equilibrium (2.9a) will apply. Furthermore,
it is attractive to suppose that f is constant; i.e., the uranium solubility is independent
of the acid concentration. We find, however, that if we make both of these assumptions,
then v, = 0 when u > 0, and this implies (from (4.16c¢)) that u, = 0, and hence u = u,,
in { > p. There is then no mechanism by which uranium collected from { < 0 can be
transported forward, and it all resides between the oxidation and reduction fronts. This
leads to absurdly high concentrations of uranium between these fronts, since, in addition,
we find that p ~ & << 1 in this case. Such concentrations are not seen in practice, and
this suggests that the simplifications above cannot be realistic. We examine, in turn, the
effect of nonequilibrium precipitation kinetics and H* solubility dependence on the
solutions of our model.

4.1. Nonequilibrium precipitation. First, we suppose that x in (4.16) is finite and
that /= 1. We expect that in 0 < { < p there is a solubility front at z = zg or { = o(?),
where v = f, and we anticipate that v < f for { < ¢ and v > [ for { > ¢. At this front,
h; and w; are continuous (so that (4.19¢) applies for 0 < { < p and (4.21) is valid); in
addition, the finite rate of precipitation implies that /4 will be continuous, which, in turn,
requires that v, be continuous at o. The equations satisfied by u and v are then

[K¢(v~ Du, {<o,
—VM =
kp(v — 1), ¢> o,

”EVU;— = Vgp — Vg

(4.22)

For ease of exposition, we assume that ¢ ~ 1, as is the case if u is small. Then
(423) Ve — V¢ = KE(U_ 1), §‘> o
and

(4.24) —EVu = vy — v + constant.
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The equation for v is nonlinear, but we can simplify it by making use of the anticipated
result that p is small. It then follows that v, ~ constant on the interval (0, ¢), and, from
(4.18b), using (4.19) and (4.20), we have

(4.25) Ve~ 2/, v~2/§, 0<{<oa
(in fact, this is valid for 0 < { < p), and thus
u=0, <0,
u~2/0EV, 0<{<o.
Hence, from (4.23), we find that

(4.26)

(4.27) v=1+ Cexp (—3(VI + 4&E — 1))
in { > p, and continuity of v requires that

(4.28) I+ Cexp (—3(VI + 4E — 1)p) = 2p/9.
We anticipate that p ~ &, so that this is approximately

(4.29) C=2(p/d)— 1.

Also, v = 1 on { = o, so that, from (4.25),

(4.30) o=0/2.

At ¢ = p, (4.18b) is automatically satisfied to leading order. We determine p by
continuity of u at { = p, since (4.24) implies that

(4.31) u=u%+£7/(\/1+4:<E+1)exp(~(V1+4/<E—l)g“/2),
whence approximately, using (4.29) and (4.26) at { = p,

l ) — 2 !
(4.32) u%+m(2(p/6) (V1 + 4kE + 1)—EV (p/?),

and thus

) 5'(V1 Ak + 1 —2EVuw)
: P Vit aE—1) )

We see that p ~ ¢’ as expected, and u = O(1), with a decreasing exponential tail ahead
of the redox front. As « becomes large (that is, rapid precipitation), then p ~ §'/2,
u|,— 1/EV, and the exponential tail is over a short distance, { ~ 1/V«. This is altogether
different from the solution (with discontinuous u) for k = co. Equation (4.33) implies
that ¢ < p only if u,, < 1/EV ~ 1/16. With u,, ~ 0.8, we will, in fact, have u,, > 1/
EV . In this case, a solubility front does not exist, and the groundwater is undersaturated
in U** everywhere. It follows that, in this case, « and v are determined from

1
(4.34a) U= U, + T (v—1-1v),
1
(4.34b) Ve — Ve = kE(V — l)(u°°+E_V(v_ 1 —v;)),
with

(4.35) v—>1 as{—> o0, v=2p/8 on¢=0,
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(since p << 1), and p is determined from the continuity of ©, which implies that

1
(4.36) 2p/0'EV = u,, +I—57(v —1—v) on{=p.

An explicit solution of (4.34b) is not possible, but a perturbation expansion can be
developed if k > 1. If we put

(4.37) c=y/Ve, v=1+0/Vk,

then, at leading order, (4.34) becomes

(4.38) 6" = 6(Eu,, —6'/V),

with

(4.39) 08>0 asy— oo, 0'(0) ~ EVu,, — 1,
and

(4.40) p =5'(1 +6(0)/ V).

A first integral of (4.38) is

(4.41) Eu,Viog (1 — (0'/EVuy,)) + 0’ = —6%/2V,
where § < 0 and 6’ > 0. Applying the second condition of (4.39), we have
(4.42) 0o = —V2V (EVu,, log (EVu,,) — EVu,, + 1).

The solution given by (4.41) exists precisely for u,, > 1/EV.
We omit discussion of the acid profile, except to note that it can be found as a
quadrature.

4.2. Acid solubility dependence. Now we examine the behavior of solutions if we
assume instantaneous precipitation kinetics, k = oo, but that
(4.43) S(h)y =1+ ah,

although the results of the preceding section suggest that we should be wary of the effects
of the solubility equilibrium assumption.
The model equations for ¥ and v are now

(4.44) v=/f(h) ifu>0, u=0 ifv<f(h),
so that, if ¥ > 0, then
(445) "EVM( = Ol(h“ - h{)

We can no longer assume u to be continuous. We now find that
(4.46) u=——(h—h)+u
: EV g e

for { > p, while for 0 < ¢ < p(—4¢'), we have v ~ 2{/& as before. The equations for s
and ¢ are thus

4
(447) h(z h;—(“ >\¢h, _'B(b;: [.l.(bh,
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with (approximately, since p ~ 6 < 1)
h—>0 as{— *oo,
(4.48) ¢—>1 as{— oo,
(A3t = —16/15.

A first integral, together with the boundary conditions (4.48), and the definition of As
via the choice that ¢ = 1 + 3 as { = —oo, implies that

(4.49) u=A3/4.

Since observations suggest that 3 ~ 4, we have u ~ A. Explicit solution of (4.47) does
not seem tractable, and we satisfy ourselves with approximations for the cases of large
and small )\, each of which can be found by a regular perturbation series. The first integral
of (4.47) gives

15u

(4.50) ¢=¢‘+Z)T(h_h;),

where ¢ = ¢p* as { = oo, i€, ¢t =1,¢~ =1+ 8. Then A satisfies

15
(451) hg— = h;—g- - )\(i)ih - 'Z /.Lh(h - hg—)
If \ ~u < 1, then
16 _
(4.52) h~1—sef, o ~¢~, <0,
and

16
hexp (=15uh/4) ~ {5 exp (—4p = AT ),

(4.53) >0

, 158k At
¢~ ¢ 6 (1+(l—15uh/4))’

in this case, the acid profile is relatively steep behind zz and decays on the longer space
scale { ~ 1/ ahead of zz.

On the other hand, if A ~ 4 > 1,then h, { ~ 1/ VX, and /s approximately satis-
fies

(4.54) 0= hr; - ()\(]5i + 1745' #hg-)h,

of which a first integral is

15
= 2 uh?.
8 “

4™
15u

15u

(4.55) hy — Ve

1+

log hy

This cannot be explicitly solved, but, by a crude calculation using a Taylor series truncation
of the logarithm, we obtain

h~kexp[Vig™¢], <0,

4.56
(456) ~ kexp [-VIp™* (], >0,
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with
(4.57) k = 16
: 1SVA(Vo~ + Vo)
and
(4.58) ¢~¢ii%BV>\¢>ih in { = 0.

Since nodules of dimension 1 cm are observed, compared with the length scale / ~ 6
cm, it seems that A, ¢ > 1 may be the more relevant limit to consider. In any event,
the 4 and ¢ profiles are as shown in Fig. 4.

Finally, we compute the value of u in (0, ¢). From (4.18b) and (4.46), we have,
approximately,

EVu|,- = —ah¢| ,+ + EVu,, + ahel ,+ — 2a/6' +2/7;
that is,
(4.59) ul,- = uy, +2(1 — a)/EVY.

It is evident that the aforementioned problem, wherein u# ~ 1/, will occur here also,
unless a ~ 1. We therefore conclude that we cannot neglect nonequilibrium kinetics of
dissolution, even if « is large, as the limit k = oo is not a proper singular limit of the
equations. This may have important consequences for the dynamics in other, similar
systems.

5. Conclusions. We have produced a one-dimensional model for the reaction-dif-
fusion advection transport of uranium minerals through a porous host rock due to the
infiltration of oxygenated groundwater. Using rapid reaction rate and solid density
asymptotics [ 6], analytic expressions for the concentration of reactants and positions of
reaction fronts have been found. In the absence of a mediating agent (uranium), it is
shown that a single redox front propagates by a diffusion-controlled mechanism, as in
[4]. The one-dimensional steady-state problem may be solved explicitly to determine
the front velocity. Moreover, the front velocity predicted by this model also accurately
predicts the velocity of the oxidation front when a mediating agent is present. This will
significantly simplify the (numerical) solution of the two-dimensional fissure problem.

When the redox reaction is mediated by uranium, the front splits into two—a re-
duction front followed by an oxidation front. This situation is similar to that governing
the propagation of roll front deposits; the spacing between our oxidation and reduction
fronts is very small, however. Using the fact that the ratio of the concentrations of the
infiltrating dissolved oxygen to the native pyrite is very small (i.e., ¢ < 1), we obtain
analytic expressions (valid to leading order in ¢) for the reaction fronts and reacting
species. In particular, we show that the distance between the fronts is constant, of order
& < 1. This reflects the fact that the overall redox reaction is mediated by uranium,
and, since the ratio of mobile (aqueous) U** to oxygen (or oxygen equivalent) (i.e., §')
is very small, the reaction fronts remain very close to each other over the timescales of
relevance. We find that, if the solubility characteristics of U*" are treated as if in equi-
librium, then unrealistic results are obtained, while the inclusion of nonequilibrium ki-
netics allows a more practical answer to be obtained.

The process we have established is not specific to uranium-mediated redox reactions.
It describes any infiltration reaction situation in which the reaction rates are large and
mediated by a secondary species. For larger values of &', we have described here a mech-
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anism for concentrating (ore) deposits in extended veins. A question of interest is to see
whether such split-front solutions are morphologically stable.
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