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A GENERALIZED SECONDARY FROST HEAVE MODEL*

ANDREW C. ,FOWLEW AND WILLIAM B. KRANTZ*

Abstract. A generalized model for secondary frost heave is developed based on the one-dimensiona
model of O’Neill and Miller. Secondary frost heave arises during freezing owing to cryostatic suction effect.
that can increase the upward water permeation to facilitate ice-lens growth and increased heave. Nondi
mensionalization and scaling are used to simplify the model equations and to identify a dimensionles
group whose magnitude characterizes the nature of secondary frost heave in different soils. Computationa
problems encountered by O’Neill and Miller are avoided by recognizing the boundary layer nature of th
water permeation and by reducing the frozen fringe, wherein freezing and ice-lens growth occur, to
moving planar boundary across which jump boundary conditions are prescribed. This generalized model ca1

predict the frost heave behavior of different soils. Its predictions for the initiation time, spacing, am
thickness of sequential ice lenses agree with the results of qualitative observations. This model also can b
used to predict differential frost heave and hence may be able to predict the occurrence of patterne
ground forms influenced by secondary frost heave.

Key words, frost heave, reactive two-phase media, frozen soil, mushy zone, ice lensing
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1. Introduction. "Frost heave" refers to an uplifting of the ground surface owin
to freezing of water within the soil. It is ubiquitous in regions subject to prolonge
freezing temperatures. Its typical magnitude exceeds that which would result from the
mere expansion of water upon freezing (~ 10%). This additional heaving arises from
the freezing of water drawn upward into the soil by a mechanism of cryostatic suction,
which will be discussed in a subsequent section. The water which is drawn upwards
typically freezes in a series of discrete ice lenses separated by frozen soil. These can
range in thickness from microscopic dimensions to several centimetres in laboratory
experiments, and may be even larger in the field. A distinction is drawn in the
literature between a hypothetical situation in which there is a sharp interface between
frozen and unfrozen regions (termed primary frost heave), and the (observed) situa-
tion where there is a thin region of partially frozen soil, termed a frozen fringe,
between frozen and unfrozen soil. This situation is that of secondary frost heave
(Miller, 1978) and forms our concern in this paper. When frost heave is laterally
nonuniform, it is referred to as "differential frost heave." The latter can involve
random heaving or can be in the form of regularly spaced earth mounds which
constitute a form of patterned ground.

Frost heave is important because its potentially large magnitude and lateral
nonuniformity can cause massive damage to roads, pipelines, and structures. It can
also be beneficial; indeed, it accounts in part for why 75% of the freshwater resources
of the earth are stored as ice. It may also prove to be of value in providing an
indicator of global climate change, since the features of some forms of patterned
ground are quite sensitive to environmental conditions.
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Significant progress has been made in our. understanding of secondary frost
heave since the seminal papers by Taber (1929), (1930) and Beskow (1935). A review
of this progress has been given by Black (1991), and a review of the physics of frost
heave models was given by O’Neill(1983). Much recent effort has been centered in
the experimental and theoretical investigations of Miller and co-workers at Cornell,
and this has culminated in the development of the so-called "rigid ice" model of
secondary frost heave (O’Neill and Miller, 1985) which appears to explain many of the
most prominent features of secondary frost heave. In order to understand their
model, one must recognise two important features of the pore pressure in freezing
soils. The first may be thought of as due to chemical effects associated with clay
platelets, whereby in the presence of ice and water phases, water preferentially wets
the soil particles. This leads to the existence of a thin (adsorbed) film between soil
and ice, in which the excess molecular attraction between water and soil leads to an
anisotropic pressure tensor, in which the lateral component Pll is less than the normal
component p +/-. The difference Pd--P. --Pll is known as the disjoining pressure, and
is discussed by Vignes-Adler (1977) and Gilpin (1979), among others. It can be taken
as a function of the local film thickness h (with Pd as h 0), and an analysis of
the local lubrication dynamics of the film allows one to determine whether or not the
film thickness can go to zero. The mechanism of frost heave is then thought to occur
if the film cannot close, so that as an ice front moves downwards into unfrozen soil,
the soil particles are physically pushed downwards relative to the ice: or equivalently
the ice moves upwards.

The resultant heave is amplified by the second important feature of the pore
pressure in freezing soils, namely cryostatic suction. That is to say, an excess water flux
upwards causes heave beyond that associated with expansion on freezing, and this flux
is driven by a pressure gradient in the pore water Pw. Gold (1957) associated this pore
water pressure gradient with a surface tension force at the ice-water interface, and
Koopmans and Miller (1966) demonstrated that, by analogy with drying-wetting
processes of unsaturated soils, one could prescribe the capillary suction Pi-Pw as a
function of the local volumetric water fraction W within the frozen fringe, Pi-Pw--
f(W), where f decreases as W increases, and depends on soil type. While the
magnitude of the upward water flux (and base heave) is determined by this capillary
suction, the existence of a disjoining pressure is essential in order that soil particles
can be forced apart and thus allow ice lenses to form. However, the magnitude of this
disjoining pressure does not affect the amount of heave, but rather the film thickness
between grains.

During freezing of water-saturated soils, this results in a pressure gradient
parallel to the temperature gradient which draws water upward._As more water is
drawn upward and frozen, the resulting ice supports progressively more of the load on
the soil; this load arises from the weight of the overlying soil and any structures on
the surface. Eventually the ice pressure can support the full load, thereby permitting
the soil particles to separate. This initiates the formation of an ice lens which
increases in thickness as more water is drawn upward. Ice-lens growth is suppressed
by continued freezing within the pores which decreases the water hydraulic conductiv-
ity of the soil. In time another ice lens will be initiated which cuts off the water flow
to the ice lens above it. In this manner, the alternating layers of ice lenses and soil are
created which constitute the frost heaving process.

O’Neill and Miller articulate their model by solving a set of coupled unsteady-state
mass and energy conservation equations. The ice pressure, unfrozen water content,
and water pressure are interrelated via the Clapeyron equation appropriately modi-



1652 ANDREW C. FOWLER AND WILLIAM B. KRANTZ

fled to include cryostatic suction effects. They solve these equations using a Galerkin
finite-element algorithm. Although O’Neill and Miller’s model represents a significant
advance in our understanding of secondary frost heave, their numerical solution is
inconvenient to use. Indeed, O’Neill and Miller (1985, p. 295) comment that "As it
now stands, the model requires a great deal of computational effort under many circum-
stances.., it is possible that one might obtain results similar to those produced by this
complex model using a simpler version containing its presumably essential features."
Another disadvantage of O’Neill and Miller’s model is that its complexity obscures
exploring some of the interesting effects associated with secondary frost heave. For
example, they do not use their model to explain the markedly different behavior of
clays, silts, and sands. Clays do not exhibit significant frost heave, but can heave very
large loads. Silts can display very large frost heave, but this can be suppressed by
moderate loading. Sands, on the other hand, seldom exhibit frost heave. The physics
of secondary frost heave is not made as clear as possible because O’Neill and Miller
solve their model equations in dimensional form without assessing the parametric
dependence. A further shortcoming of O’Neill and Miller’s model is that it is
one-dimensional: as such, it cannot describe differential frost heave.

The numerical difficulties encountered by O’Neill and Miller arise in part
because of the very thin frozen fringe wherein ice-lens initiation and growth occur.
The boundary layer nature of the frozen fringe was recognized by Piper et al. (1988)
who developed a somewhat simpler numerical solution for one-dimensional secondary
frost heave. Recently Fowler (1989) developed a more systematic boundary layer
analysis of the one-dimensional frozen fringe.

This brief overview provides a rationale for the research described in this paper.
The scope and organization of this paper are as follows. In 2, we generalize the
model of O’Neill and Miller as a basis for further work on differential frost heave. In
3, we simplify these generalized equations to facilitate their solution. Nondimension-
alization and algebraic reduction of the model equations are done in 4 to ascertain
the parametric dependence of secondary frost heave. In 5, an analytical solution is
developed for unidirectional freezing, which is used to explain the markedly different
heave behavior of different soils and to assess how the heave rate depends on the
load. A special form of this analytical solution is developed for one-dimensional step
freezing which is used for qualitative comparisons with laboratory experiments.
Finally, the implications of this generalized model for differential frost heave are
assessed. In 6, the conclusions and recommendations emanating from this study are
summarized.

2. Generalized model equations. The generalized three-dimensional equations
describing secondary frost heave based on the one-dimensional model of O’Neill and
Miller will be developed here. These equations will be of general utility in describing
differential frost heave.

2.1. Physiea! system. Figure 1 shows a schematic cross-section of water-saturated
soil undergoing secondary frost heave. The z-coordinate is measured positive upwards
from the initially undisturbed ground surface. The heaved ground surface is defined
by z which is a function of time t. We also define a basal plane at zb, well below the
depth of maximum freezing, at which the temperature and water pressure are
assumed known. The plane defined by zf corresponds to the instantaneous frost-
penetration depth, below which the soil is assumed to be saturated with unfrozen
water. The plane z defines the bottom of the most recently formed ice lens. The
region between zf and z is called the "frozen fringe." Within this region, unfrozen
water is being drawn up by cryostatic suction. The next ice lens will form somewhere
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FIG. l. Schematic of cross-section of soil undergoing differential frost heave showing coordinate system,
frozen fringe, and boundary locations.

within the frozen fringe, at a plane at which the ice pressure can bear the entire load
pressure including any virtual load owing to a subatmospheric water pressure arising
from capillary pressure effects. The region above the frozen fringe consists of
alternating layers of ice lenses and soil. Water permeation is not possible above the
frozen fringe owing to the impermeable ice lenses. The soil above the lowest lens may
still contain unfrozen water within its pores owing to the dependence of the freezing
temperature on capillary suction effects. This water subsequently may freeze as
cooling progresses. We define the plane z above which negligible freezing of pore
water occurs and the unfrozen water content is nearly zero.

2.2. Energy and mass conservation equations. Now let us consider the general-
ized energy- and mass-conservation equations which apply above, below, and within
the frozen fringe. Throughout this analysis we will assume constant physical proper-
ties. Moreover, we will assume that the thermal conductivity k and heat capacity Cp
maintain the same values throughout the frozen fringe and the adjoining regions.

2.2.1. Frozen fringe. Within the frozen fringe, we have unfrozen water, ice,
and energy balances given by

(1) W+V.U=

S
(2) I + V-V

Pi

PW

dT
(3) -LS + pCp - kV2T
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in which Wt and I denote O W/Ot, respectively; U and V are the water permeation
and ice fluxes, respectively; S (mass per unit volume per unit time) is the freezing
rate; L is the heat of fusion; Pw, Pi, and p are the unfrozen water, ice, and overall
mass densitites, respectively; and W and I are the unfrozen water and ice volume
fractions, respectively, defined such that

(4) I + W= b,

where b is the porosity of the soil which is assumed to be constant.
The temperature is given by a generalization of the Clapeyron relation, to

account for the effect both of ,pore pressure and capillary suction on the freezing
temperature

(5) T=T0[I_ Pw Pi
pwL piL

where To is a reference value, Pi is the ice pressure, and Pw is the pore water
pressure.

The water permeation flux U is assumed to be given by Darcy’s law:

(6) U=- V[pw+pwgzl

in which g is the gravitational acceleration, and kh is the hydraulic conductivity which
is assumed to be given by

(7) k k0

where k0 and y are constants characteristic of the particular soil.
The ice flux V is given by

(8) V= Ivi,

where vi is the ice velocity. Clearly if there is heaving owing to ice-lens formation,
there must be a nonzero ice velocity. The ice is able to move relative to the soil, which
is stationary below the lowest ice lens, via a mechanism referred to as "thermal
regelation." Recall that freezing in a porous medium will result in the ice being
separated from the soil particles by a thin layer of unfrozen water. If a temperature
gradient is applied, this layer will freeze and thus become thinner on the cold side of a
soil particle. Hence the disjoining pressure is increased there, and thus either the
lateral pressure component is decreased, or the normal component is increased, or
both. In fact, both must occur: the water is squeezed to the cold side by the excess
lateral pressure, while the particle is squeezed in the opposite direction (i.e., up the
thermal gradient) by deficit normal pressure. By this process, thermal regelation of ice
past stationary soil particles can occur. O’Neill and Miller (1985) contend that if the
lens and pore ice are continuously connected, then the ice velocity will be independ-
ent of the spatial coordinates and only a function of time; that is

(9) v vi(t).

They refer to this as the "rigid ice approximation" which they invoke in solving their
one-dimensional model for secondary frost heave. The rigid ice approximation clearly
has to be relaxed in order to describe differential frost heave which necessarily
implies that the ice velocity depends on the spatial coordinates. In fact, there is a
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misconception in O’Neill and Miller’s assumption of rigid ice. While the ice itself may
be rigid at any instant, its averaged yelocity need not be uniform in space, since this
includes both the ice motion, and that due to the regelative process, and the latter
allows for a nonrigid redistribution of ice. Since ice moves down temperature
gradients, an appropriate substitute for (9) might then be

(10) vi Vs ATT,
where is an empirical constant. An expression of just this form has been derived by
Gilpin (1979). Note that the soil matrix velocity v is identically zero everywhere below
the lowest ice lens where thermal regelation is occurring. Equation (10) implies that
the ice velocity will not be constant unless the temperature gradient is constant; this
in turn implies that even for quasi-steady-state heat transfer, there will be a jump in
the ice velocity across the frozen fringe. Hence, these two models for thermal
regelation will yield different results; both will be explored in this paper.

2.2.2. Region above the frozen fringe. Now let us consider the conservation
equations applicable above the frozen fringe. The region between zt and z in which
freezing of pore water is still occurring can be shown to be quite thin. Therefore, we
will ignore any latent heat effects in the energy equation above the frozen fringe,
although these will be accounted for in our overall energy balance across the frozen
fringe. Hence, since the ice lenses prevent permeation, only unsteady-state heat
conduction is involved above the frozen fringe which is described by

dT
(tl) OCp - kVT.

2.2.3. Region below the frozen fringe. In the region below the frozen fringe,
there is no freezing occurring; however, both energy transport and water permeation
occur. Since the pores are saturated with unfrozen water, we have that W b and our
unfrozen water mass balance becomes

(1.2) V.U=0,
and the energy equation is given by

dT
(13) OCp - kV2T.

2.3. Initial, boundary, and auxiliary conditions. Equations (1)-(3) and (11)-(13)
then constitute the differential equations describing our secondary frost-heave model.
Equations (4), (6), and (8) imply that the conservation equations can be recast in
terms of three dependent variables: T, W, and Pw, for which appropriate initial and
boundary conditions must be specified. In addition, we need to specify auxiliary
conditions for determining the heave rate, frost-penetration velocity, and for initiating
new ice lenses. We will not specify initial conditions here, since later we will show that
quasi-steady-state can be assumed.

Equations (1) and (6) written for both the lower and upper fringe imply that four
boundary conditions are needed for Pw. These are found from the following:
(14) Pi P at z zt,

(15) [Pw =0 atz=z,
(16) [Un]+_=0 at z=zf,

(17) Pw=P= atz=zb.
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The notation ]+ denotes the jump across the boundary and U U.n, in which n is
a unit normal vector directed upward. The above introduce p, the basal value of the
ground-water (gauge) pore pressure, and P, the applied load (gauge) pressure; here
we will ignore the weight of the soil and assume that P arises solely from a load on
the surface such as some structure.

Equation (14)states that the ice pressure at the base of the lowest ice lens is
equal to the load pressure. This equation is equivalent to a boundary condition on the
unfrozen water pressure, since Pi and Pw are related via the cryostatic suction, which
for a given soil, is
(18) Pi -Pw =/(W).
The function f(W)will differ markedly depending on the soil type as illustrated in
Fig. 2. Curve a represents a fine-grained, low porosity soil such as clay which can
exhibit very large cryostatic suction. Curve b represents a more porous soil such as silt
which displays moderate suction. Curve c represents a highly porous material such as
sand which exhibits negligible suction. The difference between the curves is due to
the expression of Pi-Pw as 2yiw/rp, where Yi is the ice-water surface tension (about
33 mN m-1) and rp is a mean pore diameter, which can be expected to be related to
grain size (Miller, 1980). Hence pi-pw is larger for finer-grained soils, and as W is
reduced so the pore diameter reduces and p-p increases; it is usually considered
that some unfrozen pore water remains, no matter what the suction, hence the
asymptotes for the clay or silty soil.

An additional equation.is needed to determine the pore-water volume fraction in
(18). This is given by an overall force balance:

(19) P=Pe + (1 X)(Pi -Pw) +Pw =Pe + (1 x)f(W) +Pw

FIG. 2. Cryostatic suction f Pi Pw, as a function ofunfrozen water volume fraction, W, characteristic of
(a) --clay, (b)--silt, and (c)--sand.
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in which Pe is the effective (absolute) pressure exerted by the soil particles when they
are in contact and t’(W) is the stress-partition weighting function which might, for
example, be given by

W
(20) X= b’
although other forms are possible owing to the anisotropic nature of the water
pressure tensor and to the ice/water interfacial tension; however, all forms are such
that 1’ increases monotonically with increasing W.

Equation (2) combined with (4) and (8) imply that one boundary condition is
required for W. This is given by

(21) W=b atz=zf.
Equations (3), (11), and (13) imply that six boundary conditions are needed for T.
These are given by the following:

(22) T=T atz=zs,

(23) T-T0=- [6pw+f(W)] atz=z,

(24) [T]+-=0 atz=z,

(25.) [T]+_=0 at z=zf,

OT +

-n =0(26) at z

(27) T=Tb atz=zb,

where 3/On n. V and

(28) 3-= 1-7 ~0"1"

Equation (22) represents a prescribed subfreezing temperature T at the ground
surface. Equation (23) is the Clapeyron equation relating the freezing temperature to
the unfrozen water and ice (gauge) pressures.

Auxiliary equations are needed to determine the heave rate and the frost-
penetration velocity. These are determined from overall water mass and energy
balances across the frozen fringe. We will defer deriving these balances until we have
simplified the description of the frozen fringe in 3.

The above system of equations applies to the unsteady-state heat and mass
transport which occur between the formation of successive ice lenses. The problem
definition is completed by specifying the criterion for formation of a new ice lens. In
order for ice lenses to form discretely rather than continuously, we must have Pe >-- 0;
hence (19) implies that

(29) P-Pw >- [1 x(W)][pi-Pw] [1 x(W)]f(W).

Figure 3 plots Pw P (solid line) and -(1 x)f(W) (dotted line) as functions of v, a
coordinate measured positive downward from the lowest ice lens. Both quantities
decrease in magnitude with increasing v owing to the increase in water volume
fraction and decrease in disjoining pressure. Initiation of a new ice lens corresponds
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to the equality in (29) or to a tangency point for the two curves in Fig. 3 shown by the
vertical dashed line. Hence, our criterion for initiating a new ice lens is given by

(30) t"-Pw [ x(W)]Z(W).
Other features of Fig. 3 such as the significance of the dash-dotted line will be
discussed later. We also will discuss the implications of (30) for the distance between
consecutive ice lenses in a subsequent section.

3. Simplification of model equations. The generalized secondary frost-heave
model developed in 2 constitutes a strongly coupled nonlinear system of unsteady-
state partial differential equations which precludes an analytical solution. Even its
numerical solution in one dimension presents difficulties owing to the marked
changes occurring within the thin frozen fringe and the complexities introduced by
successive ice-lens initiation. Here we will consider appropriate simplifications of
these equations which will permit analytical solutions for some cases. First, we will
show that the frozen fringe is extremely thin, such that it can be represented by a
moving planar boundary at which jump conditions are prescribed. Additional simpli-
fications then will be made to facilitate evaluating the dependent variables at this
moving boundary.

3.1. Thin frozen fringe. Let us first establish that the frozen fringe is very thin
relative to the conduction length scale, such that it can be considered to be a moving

/\
plane at which new
ice lens is formed

-(1 -z) .-’"

-" (Pw" P)
.-__’_’__

/

instantaneous

steady
pressure
profile

FIG. 3. Graphs of (1 x f and Pw

pressure
profile

P as functions of ,, a coordinate measured downward from the
lowest ice lens, showing the conditions for ice-lens initiation and the resulting change in the instantaneous water
pressure profile.
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planar boundary. Since this is essentially a conduction process, e, the ratio of the
fringe thickness, df, to the characteristic depth of freezing, d, will be proportional to
the respective temperature changes across these regions; that is,

df [T]
(3) e--

d AT’
where AT TO -Ts, and [T] is the characteristic temperature change across the
frozen fringe. The latter can be estimated by scaling the Clapeyron relation, (5), which
governs the temperature within the fringe. This scaling indicates that

(32) IT]
pL

where r 1 bar .is the characteristic suction in the fringe. Characteristic values for
the other parameters are TO 300 K and pL 3 103 bar. This implies that
[T] 10 -1 K. Since AT~ 10 K, this implies that e~ 10-2. Hence, the fringe can be
assumed to be a free planar boundary with respect to the frozen and unfrozen regions
above and below it, respectively.

Similar scaling arguments can be used to show that the region between z and z
is quite thin. This then justifies our earlier assumption that the latent heat effects
occurring between z and z can be neglected in the energy equation for the region
above the frozen fringe (although not in the overall energy balance used to obtain the
frost-penetration velocity).

The conservation equations and boundary conditions applicable to the frozen
fi’inge now must be expressed as jump conditions. These will serve as boundary
conditions prescribed at zf for the regions above and below the frozen fringe, and will
involve evaluating dependent variables at the fringe boundaries. In order to do the
latter, it is convenient to invoke several additional simplifications which are reason-
able for the secondary frost-heave process. First, we will show that sensible heat
advection can be ignored below the frozen line.

3.2. Negligible heat advection below fringe. There is no heat advection above the
frozen fringe, since the ice lenses prevent any water permeation. For the region below
the frozen fringe, a measure of the ratio of heat advection to heat conduction is the
Peclet number defined by

IUId
(33) Pe

where d 1 rn is a characteristic freezing depth and K 10-6 m2 s -1 is the thermal
diffusivity. The characteristic magnitude of the water permeation velocity IuI can be
inferred from the overall water mass balance to be developed in 3.7 which suggests
that iUI ~lvil 10 -8 m s -1. Hence, Pe 10 -2, thus implying that sensible heat
advection can be ignored in (13).

3.3. Quasi-steady-state above and below fringe. The heat transfer above and
below the frozen fringe can be considered to be quasi-steady-state if the conductive
time scale, =d/ 106 s, is much shorter than the time scale for freezing
penetration, t= d/IVl. The magnitude of the frost-penetration velocity, IVI, can be
inferred from the overall energy balance to be developed in 3.7 (see (56)) which
suggests that NjI K[T]/df pw L. Hence, it follows that

deSt
(34) tf
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where St is the Stefan number defined by

L
(35) St =-

CpAT

Using the characteristic values L 3 x l0 J kg-, C 2 x 103 J kg- K-, and
iT 10 K, indicates that St 15; thus, Q 1.5 x 10v s. Hence, we conclude that it is
reasonable to neglect the unsteady-state terms in the energy equation above and
below the frozen fringe.

3.4. Negligible sensible heat effects wiIhin frozen fringe. In order to show that
sensible heat effects are negligible within the frozen fringe, it is convenient to
combine (1) and (3) by eliminating the freezing rate S to obtain

dT
(36) pwL[Wt + V.U] + pCp -- kV2T.

The ratio of the sensible to latent heat advection terms in (36) is given by Cp[T]/L
e/St 6.7 10 -4. Hence, sensible heat effects also may be neglected within the
frozen fringe.

3.5. Permeability boundary layer within fringe. The jump boundary conditions
will require the permeation flux evaluated at zt. Hence, we need to solve the Darcy
flow equation within the frozen fringe. This is facilitated by recognizing the
boundary-layer nature of this flow; that is, if 3’--9 in (6), most of the water-pressure
drop occurs within a thin boundary layer beneath the lowest ice lens. An equation for
the permeation flux at z can be obtained by developing asymptotic approximations
for W and Pw immediately beneath the lowest ice lens. Hence, let us expand W in a
Taylor series about zt:
(37) W= W + W’u + ...,
where u again is the normal coordinate measured positive downwards from zl,

W Wl=0 Wlz=z,, and W/--(OW/Ou)],=o -(OW/Oz)lz=z,. Hence, to first order
in u, the water permeation flux immediately beneath the lowest ice lens can be
written as follows:

(38) U exp
W

v -v
where kl is the hydraulic conductivity evaluated at z; that is,

(39) k, k0

Since U, varies over the length scale of the frozen fringe, df, whereas the water
pressure varies over the permeation boundary layer thickness, df/y, (38) can be
integrated assuming U, to be constant, in order to obtain an equation for the
water-pressure profile within the frozen fringe:

pwgWUn [(40) Pw =p YWl,kl
exp

Wt
The above must satisfy the boundary condition given by (14). The resulting equation,
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when combined with (18), then yields the desired equation for the water permeation
flux at z:
(41)

where U/= Un Iz,, and ft f().

y(f P +p)W/kt
pw gl/Vt

3.6. Quasi-stationary profiles within the frozen fringe. The repeated initiation of
new ice lenses would seem to imply that the profiles within the frozen fringe are
inherently unsteady-state and incompatible with local thermodynamic equilibrium
specified by the Clapeyron equation. An understanding of the nature of these
transients is facilitated by Fig. 3, which illustrates the phenomenology involved :in
ice-lens formation. Recall that a new ice lens will be initiated at the point of tangency
between the two curves in Fig. 3; see (30). Figure 3 illustrates schematically the shape
of Pw- P as given by (40) and (41), which arises from the value "f at v= 0 to the
asymptotic value p -P as - w. To sketch -(1 x)f, we use (37) which shows an
increase of W with ,; f(W) is monotone decreasing with W, while X is increasing
(e.g., if X= (W/)r, cf. O’Neill and Miller (1985)); thus -(1 -x)f is an increasing,
negative function, as illustrated by the dashed line. Since W varies on the length scale
of the frozen fringe, dr, whereas Pw varies on the length scale of the permeation
boundary layer, df/y, the point of tangency must occur within the permeation
boundary layer where Pw ’P and W= W. Hence, our criterion for initiating a new
ice lens becomes
(42) P-p - (1 xt)ft
where fi =f(W/) and X= x(W/). At the initiation of a new ice lens, Pi instanta-
neously decreases to the load pressure P, since the pore-ice and lens-ice pressures
must be continuous at zt. This then implies that the local values of Pi, Pw, W, and T
do not satisfy thermodynamic equilibrium as dictated by the Clapeyron equation.
Because of the near incompressibility of water, Pw can adjust rapidly to the instanta-
neous values of W and T as shown by the dash-dotted line in Fig. 3. If local
thermodynamic equilibrium is established on a time scale eq which is much shorter
than the time scale for consecutive ice-lens formation, tZens, which in turn is much
shorter than the time scale for frost penetration, tf, then the profiles within, the frozen
fringe can be considered to be quasi-stationary. The time scale tf is given by (34);
hence, we need to determine the time scales teq and ttens.

The time scale teq is obtained by scaling (36), the energy equation within the
fringe, in which the sensible heat effects now can be ignored based on {}3.4:

(43) pwg[wt + V.U] = kVZT.
The second term in the above can be assessed by combining (1), (2), and (8)which
yields

(44)
pwWt + Oi1 + V.[ pwU + Pilvi] Pw 6Wt + Pw[V’U + (1 6)V.{(b- W)vi}] =0.

Hence, (44) implies that V. U = -V .{(b- W)vi}. The scale for the conduction term
in (43) is obtained from the Clapeyron relation, (23). Hence, the energy equation
within the fringe can be written in the following form:

kr0(45) pwL[W V. {(b- W)vi}] = V. tVpw + Vf(W)].
piL
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A measure of the latent heat terms in the above is PwL[W]/teq, whereas a measure
of the conduction terms is given by kTo &r72/piLd}, where [W] is a measure of the
change in W which occurs within the permeation boundary layer. The latter can be
assessed from (37)which indicates that

df(46) [W] W- I,V , Wt’v= Wt’-- y-
3"

Hence, since 67 O(1), the time scale teq obtained by balancing the latent heat with
the conduction terms in (45) is given by

(47) teq~ Pwt kZo "-- -- ""The time scale for initiation of consecutive ice lenses is given by

(48) tlens~ IVfl
2St ).

Hence, we conclude that teq << tlens << tf, which justifies assuming that the profiles
within the frozen fringe are quasi-stationary.

3.7. Jump boundary conditions at frozen fringe. Equations (43) and (44) are of
the general form

(49) I/t -[" V" f"-0.

Conservation equations of this form, when integrated across a thin region, lead to
jump conditions expressed as

(50) ]+- Vn fn ]+-,
where Vn ----V.n and fn =- f" n, provided there is no surface source.

We will use the above formalism to complete the description of our generalized
secondary frost-heave model. This requires collapsing the frozen fringe to a plane at
which appropriate jump boundary conditions are specified. In addition, it requires
developing equations to determine the heave rate, v v[ =- Uinlz?- *i" nlz?, and the
frost-penetration rate, V V,. n. The notation z+ denotes evaluation on the ice-lens
side of Zl, as opposed to the frozen fringe side which will be denoted by z-. This
notation allows for the fact that variables such as Un, W, 3T/On, and Uin experience
discontinuities across zI. In particular, Uin will be discontinuous across z if the rigid
ice approximation is not invoked.

Note that the. frost-penetration rate, Vf, is not a smooth function of time, since
the position of the lowest ice lens moves downwards in jumps. However, since tlens
the time scale for successive lens initiation, is much shorter than tf, the time scale for
frost penetration, we can assume that Vf changes smoothly in time on the larger t
scale.

Applying the formalism indicated by (50) to (44) and (43) then yields

(51) pwW+ p(k- W)]V pwU + p,(ck- W)v,],
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Equation (51) determines U- Unlz if the quantities Wt, V, U/= Un zi-, and v/- Uin
are known. Equation (52) determines oT/Onl; if the additional quantity
is known. The latter is determined from (26) and the solution to the energy equation
below the frozen fringe. Additional equations now need to be developed to determine
the remaining quantities.

Equation (42) gives W directly. Equation 41 determines U if the quantities ft
and W/’ are known. Equation (18) gives fl directly once W/ is determined; that is

(53) ft P -Pl =f(Wt).
The quantity Wt’ can be obtained by differentiating the Clapeyron relation given by
(23) to obtain

(54) O---/- O- 6+On On zi- iL a +

where f[ c)f/OWlz; is determined by differentiating (18)with respect to W. The
quantity Opw/av]i- can be obtained by combining (38) and (41). The resulting form of
(54) then is

OTI ( ToWI’)I 6Y(f,-P+P)
Equation (55) then gives W/ in terms of previously determined quantities.

An independent equation for determining the frost-penetration rate, V, can be
obtained from a jump energy balance across the thin region between z and zi. Note
that by including the thin region between z and zi, this jump energy balance includes
the latent heat effects associated with freezing of pore water above the lowest ice lens
as well as water drawn into the lowest ice lens. This jump energy balance then yields

Equation (56) constitutes the Stefan condition for this moving boundary problem; it
gives the frost-penetration rate V in terms of previously determined quantities. Note
that or/onl is obtained from the solution to the energy equation above zi.

The quantity v/- is related to the heave rate, v =-v[, via a water mass balance
across z given by

(57) owg + ,oi(4,- w)v/- oiv?= OiVs

For the rigid ice approximation, (9) implies that

(58 v/-= v/+ Vs

and (57) gives the heave rate directly in terms of Ut. For the alternate thermal
regelation model based on Gilpin’s work, (10) implies that

(59) v/-= -a
On

Equation (59) when combined with (57) then gives the heave rate v in terms of
previously determined quantities. Note that (57) implies that there is a discontinuity
in the temperature gradient across zt; this arises owing to the latent heat effects
associated with freezing of the water permeating to the lowest ice lens. Moreover,
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note that latent heat effects associated with the freezing of pore water above the
frozen fringe imply that OT/Onlz?# OT/dn[zi.

The description of our generalized secondary frost-heave model is now complete.
This model consists of the quasi-steady-state energy equation, which must be solved
above and below the frozen fringe, subject to boundary conditions at the ground
surface and basal plane, along with jump conditions at the freezing front zf. The
latter constitute two boundary conditions expressed in terms of nine interrelated
equations. In the next section, the model equations will be nondimensionalized and
the nine equations required to specify the jump conditions at zf will be reduced to
two equations to be solved for the frost-penetration rate, Vf, and heave rate, G.

4. Nondimensionalization and reduction. In order to obtain the minimum para-
metric representation for this secondary frost-heave model, let us nondimensionalize
the describing equations using the following dimensionless variables:

T-To x VT* x* V*
AT d’ "’- [u]’

(60)
U v

u?- Iv]’ Vs*-Iv]’ It]

U

v?- [u]’

in which d -zb is the conduction length scale. Equation (56) combined with the
definition of the Stefan number given by (35) suggests that

(61) [U] .
dSt

The implicit time dependence enters through solving the equations for Vf and G to
obtain the frost-penetration depth zf and the heaved ground-surfacelocation G;
hence, we define the convective time scale as follows"

(62) [t] =d/[U].
The capillary suction as well as the other pressure variables appearing in the
describing equations are nondimensionalized by o-, a characteristic value of the
cryostatic suction; that is,

f(w)
(63) f* =

Let us now eliminate the variables U, U, ’, p, 8T/SnIz-;, and v-- from (41),
(51)-(53), and (55)-(57), and introduce the above dimensionless variables in order to
obtain the following two dimensionless equations (in which the superscript * has been
dropped with the understanding that the variables Vs, V, Ga, and G; are now
dimensionless):

[1 + 6-(1 + fi)((b- G)]Gi- (1 + )Gf
(64) Vf= 6W + 4)+/((h- W) rt(1 +/)((b W)W
(65) v a[G WlVf 1,

=-8T/On]zi, Gf=-OT/8n], and the dimensionless parameter / iswhere G
defined by

f/-N
(66)

N)
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where N is the dimensionless load defined by

P-p
(67) N=-

The dimensionless parameter /31 in equation (66) is characteristic of the particular
soil type and is defined by

’ypi LZk
(68) l---"g/,T0
The definition of the dimensionless parameters r/ and c depends on which thermal
regelation model is invoked. For the rigid ice assumption of O’Neill and Miller

(69) r/--
(1 +/)(1-b + Wt)’

(70) c rt,

whereas for the thermal regelation model based on Gilpin’s work

(71) r/---
(1 +/)’
/(1 + 8 ) +/x( 4)- W)

(72) c--

where the dimensionless parameter/z is defined by

(73) /x --- AL Pw

Equation (64) is the dimensionless Stefan condition at zf. It is essentially like an
ordinary Stefan condition, except that the heat flux from below is enhanced by the
factor proportional to /3, which is a measure of the importance of heat advection by
the incoming water flux. Equation (65) can be solved for the heave velocity G once
the frost-penetration rate Vf is known. However, (70) and (72) indicate that the heave
rate predicted by the two thermal regelation models can differ markedly for small
values of/3, unless /x is very small as well.

In order to assess the magnitude of dimensionless parameters, typical values of
the dimensional parameters are given in Table 1" The value of the empirical constant
A was determined from the work of Gilpin (1979). The values of the hydraulic
conductivity were obtained from Freeze and Cherry (1979). Table 1 indicates that the
characteristic values of/31 for the three soil types considered here are

(74) l~ C(Wl/Ch)’,
where c c 10 -1 10 for clay, c cb 102- 104 for silt, c c 107 -109 for
sand. We see that /31 is very sensitively dependent on Wt, and hence on N. Taking a
representative value of W/b 0.5, so (Wt/qb) 10-3, we thus have

/3 10-4 10-2 << 1 (clay),

(75) /3 10 -a 10 1 (silt),

/1 104-- 106 >> 1 (sand).
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TABLE
Typicalparameter values

Parameter Symbol Typical Value

ice density Pi 0.9 10 kg m-3
water density Pw 10 kg m-3
heat of fusion L 3 10 J kg-
thermal conductivity k 2 W m-1 K-
heat capacity Cp 2 kJ kg-1 K-1
temperature scale AT 10 K
hydraulic conductivity exponent 3’ 7-9
porosity 4 0.4
water volume fraction W 0.2

-2gravitational acceleration g 10 m
freezing temperature T 273 K
pressure scale o- bar
Gilpin model constant A 10-1 m s- K-
hydraulic conductivity k 10 -12 10-10 m s- (clay)

10-9 10- m s- (silt)
10 -4 10-2 m s-1 (sand)

We shall see that /3t is a type of critical parameter which characterizes the nature of
secondary frost heave in different soil types.

The typical parameter values in Table 1 indicate that /z-- 10 -2. This suggests
that the heave velocities predicted by the two different thermal regelation models
obtained by substituting either (70) or (72) into (65) can differ markedly for fine-
grained soils such as clays which are characterized by very small values of/3t.

5. Results and discussion. In this section we first will develop an analytical
solution for one-dimensional frost penetration which will permit us to assess the
principal features of secondary frost heave in different soil types. We then will
consider a special form of this solution for one-dimensional step-freezing which allows
a qualitative comparison with laboratory experiments on secondary frost heave.
Finally, we will discuss the implications of the generalized secondary frost-heave
model developed here for differential frost heave.

5.1. One-dimensional frost penetration. For one-dimensional frost penetration,
our simplified secondary frost-heave model requires a solution to the following
differential equation"

02T
(76)

Oz 2 0, zy < z < z, zb < z < z.
The dimensionless boundary conditions are given by the following:
(77) T=-I atz=zs,

(78) [T]+-=0 atz=zf,
(79) T=0 atz=zf,
(80) T=0b atz=z,
where again the superscript * on the dimensionless variables has been dropped to
simplify the notation, and the dimensionless temperature 0b is defined by

(81) 0 T0- rs
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The solution to the above system of equations written in dimensionless form is
given by

(z -z)
(82) T= -1 +

(zs_zf)
z >zf,

(z-z)(83) T= 0b (z-z,)
z <zf.

The above solutions then provide the quantities G =- OT/Onlz and GT= OT/Onl in
(64) and (65). The resulting dimensionless equations for the frost-penetration rate and
heave rate then are given by

tz A B
(84) Vf -d-]- z zf zf zt,

dzs I 1
(85) Vs d---- a + WVfz Zf
where

(1 + 6) (1 +/)(6- W)
(86) A

6W + 4)+/((h W) n(1 +/)(4) W)W

(87) B--
(1 +/)0

6W + 4+/((h- W) V(1 +/)(4) W)W

A similar description of one-dimensional secondary frost heave in terms of two
coupled ordinary differential equations was obtained by Piper et al. (1988). However,
they did not invoke jump conditions across the frozen fringe and therefore had to
solve a somewhat more complicated problem numerically. Moreover, the parameter/
is not explicit in their model and must be determined via iteration in their numerical
solution.

Equations (84) and (85) can be recast as a linear system via the following variable
transformations:

dt
(88) h =- z zf h 2 Zf- Zb,

d’r hlh2"

Equations (84) and (85) then assume the following form:

dh2
(89)

d’r -Ah2 + Bhl’

dh(90)
dr

[A + a(1 -AW/)]h2 -B(1 a l/V)h a.

The above equations can be solved explicitly for h a, h2, and in terms of exponential
functions of r, subject to appropriate initial conditions for Zs and zf. This appears to
be the first closed-form analytical solution developed to describe secondary frost
heave. It would be of interest to compare the predictions of this simplified model with
those of the numerical solution of O’Neill and Miller (1985). However, this is not
quantitatively possible at present owing to insufficient details on the numerical
algorithm and input parameters used by O’Neill and Miller. The form of (85) provides
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considerable information on the nature of frost heave in different soil types. Note
that this equation indicates that the heave rate is directly proportional to the
dimensionless parameter c. The influence of the load and soil type on c enters
through the parameters W and appearing in the definition of a given either by
(70) or (72) corresponding to the two thermal regelation models being considered
here. These two equations imply that

(91)

(92)

(93)

when /3 << 1 for (70),

when/3 << 1 for (72),

when /3 >> 1 for both (70) and (72).

Hence, the influence of the load and soil type on the heave rate is directly related to
their effect on the parameter/, which enters through the parameters W, ft- N, and
f/’ appearing in the definition of /3 given by (66). Let us now examine how the load
and soil type affect each of these parameters appearing in /3.

The influence of load and soil type on W/ is determined from (42)which shows
that W is a monotonically decreasing function of increasing load. Define the satura-
tion S at the lowest lens as

(94) S W/b,

and choose the representative functions f and X as

(1 -S)p

(95) f= sq X S

where we expect 0 <p < 1, q > 0, r > 0. S as a function of N is then determined from

(96)
(1 sr)(1 -S)p

=N,
Sq

and is depicted in Fig. 4.
Since the heaving parameter a ~//(1 +/), and /~ cS, we see that a de-

creases rapidly with applied load. The heave rate is modulated by the square-

FIG. 4. Variation ofsaturation S l/Vt/ 49 with load N.
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bracketed term in (66), which can be written as /m, where

1
(97) /m (W/xt){ln(1/fl)},

For the choices X and f in (95), this gives

(98) j[3
qS +pS-(r-1)/(1 S) 6T’

whose behaviour depends on the sizes of p, q, 6 and 3’. In Fig. 5 we plot the typical
behaviour of /m aS a function of N, using (96). Fig 5(a) is appropriate for q > qc
(= {V/- + f6-}2 for r 1), and may be appropriate to clay-rich soils, while Fig. 5(b)
is appropriate for q < qc, and may be expected for sandy soils. The right-hand dashed
portion of Fig. 5(b) is absent if q 0 i.e., f(0) is finite (e.g., for sands) but in any case
is irrelevant, since we see that when /3 w, then W/ becomes large. In this case the
approximation which determines W in (42) becomes inaccurate. The dotted portion is
then inapplicable. A more accurate calculation shows that a terminal lens forms, and
the model breaks down. Similarly, the approximation becomes invalid as W/ 0, i.e.,
/m + 0. This is practically irrelevant since the dimensionless unsaturated effective
pressure N= (P-p)/o will be nonzero (and in reality depends on the porosity b).

In Fig. 6, we indicate schematically our results for heave rate. We have put a
vertical line at a nominal value N No > 0 corresponding to zero load. There is a
nominal association between soil type and the behaviour of/3m, and Fig. 6 represents
the situation where we suppose sand and silt have /m as in Fig. 5(b) (low and medium
p, q) while clay has the behaviour of Fig. 5(a). If the p, q values for silt are higher
than those for sand, then the corresponding N value (N= Nc) where /3 --’) is
higher. Then Fig. 6 is consistent with the statements: sands do not generally heave
(No > Nc); silts heave a lot, but only small loads (N < No); clays heave slowly, but
indefinitely large loads. Obviously these conclusions are malleable, but are consistent
with the overall observations. The dotted portions of the curves are unreliable, as the
approximation in (42) breaks down, and the overall trend is a decrease in heave rate
with increasing load.

5.2. Step-freezing analysis. Let us now consider the implications of the frost
heave model developed here for step-freezing experiments in which a soil initially at a
uniform temperature is suddenly subjected to a constant subfreezing surface tempera-
ture. Experiments of this type have been used by Tabor (1929), (1930), Feldman
(1988), and others to study the characteristic thickness and spacing of ice lenses in
frost heave. The general observations are that the ice-lens thickness increases
monotonically and that the ice-lens spacing increases to a constant value as the
freezing front penetrates further into the soil.

We will consider step-freezing in a clay for which a --/3 << 1, thus implying that
z is quite small relative to zb and zf. Hence, (84) and (85) simplify to the following:

dzf A
(99) Vf= dt zf

(100) Vs d--7- oz

B

zf+l’
1 dzf
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m

(a)

Im \

,,,I >
1 N

(b)

FIG. 5. Variation of [Jm defined by (98) with N (a) clay-type soil; (b) silt or sand type.

The initial conditions for step-freezing are zf z -0. Note that the above equations
are nondimensionalized using the dimensionless variables defined by (60), where the
superscript * has been dropped.

A general solution to (99) can be obtained; however, in order to elucidate the
physics more clearly we will develop asymptotic solutions for very short and very large
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NO

FIG. 6. Schematic heave rates for clay, silt, and sand.

times. For very small values of zf, the solutions to the above equations are given by

(101) zf = (2At)1/2,
2t 1/2

(102) z = a(1 -AWt) --which correspond to similarity solutions at small times. The corresponding solutions
for the frost-penetration rate and heave velocity are given by

(o3) A)1/2
(104) v =

a(1 -AW/)
(2At)/2

At very large times, dzf/dt O. Hence, the solutions to (99) and (100) are given by

A 1
(105) zf--, A+B 1+0b

A+B
(1.06) z

A
at = (1 + Ob)at.

The corresponding solutions for the frost-penetration rate and heave velocity are
given by

(107) Vf=0
(108)
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These solutions for short and long times appear to agree with the numerical solution
of O’Neill and Miller (1985) both functionally (the 1/2 and behaviour is similar) and
quantitatively, although a precise comparison with experimental studies is not possible
owing to a lack of relevant data used in the earlier experiments. Numerical solutions
of (84) and (85) have been given by Fowler and Noon (1993).

We now seek to use the asymptotic solutions developed above in order to infer
the thickness and spacing of the ice lenses. The scaling analyses in 3.1 and 3.6 imply
that dl, the dimensionless spacing between consecutive ice lenses, is given by

eK
(109) d --(a/Us)

where K is a complicated function of W, and is O(1). This result can be obtained for

d by determining the distance from the lowest ice lens at which the slopes of the
quantities p- P and -[1 x]f are equal within the fringe (i.e., see Fig. 3). If t is
the time at which the nth ice lens is initiated, then the time between initiation of
consecutive ice lenses, t- t-, is determined from the following:

(110) ft; ]V[ dt dI.
at-I

If t/ -t-1 is very small, then the frost penetration rate Vf is approximately constant
between the formation of consecutive ice lenses and is given by

(111)

The local ice-lens thickness h is given by

-re ]v]dt.(112) h

If t -t-1 is very small, then the heave rate is approximately constant between the
formation of consecutive ice lenses and h is given by

(113) hl[Vs[tl.

Let us consider the behavior of dl, l, and h at short frost-penetration times.
Equation (109) indicates that the spacing between consecutive ice lenses, dl, increases
in time since from equation (107), d c (a/vs) /2. The behavior of and h at
short times can be obtained by substituting (103) and (104) into (111) and (113).
We then conclude the following secondary frost heave behavior for short frost-
penetration times:

(114) dl(e/y)t/2,

2t )
1/2

(115) d --a(1 -AW)d
(116) h =

A

That is, for short frost-penetration times, the interlens spacing, time of formation, and
local ice-lens thickness all increase with increasing time. These predictions are in
agreement with step-freezing experiments.
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At very long frost-penetration times, Vy 0, thus implying that zf becomes
constant. Equation (109) then implies that d becomes constant as well. The behavior
of tt and ht at long times can be obtained by substituting (107) and (108) into
equations (110) and (112). The following behavior then is inferred for very long
frost-penetration times:

(117) dz --, ( eK/y)(-z),
(118) t o,

(119) h a(1 + Ob)t oe.

That is, for very long frost-penetration times, the interlens spacing tends to a constant
and the time of formation as well as the local ice-lens thickness tends to infinity. This
predicted behavior also is observed during step-freezing experiments.

5.3. Differential frost heave. Thus far we have considered the implications of our
generalized model for the special case of one-dimensional (nondifferential) secondary
frost heave. This generalized model also can describe three-dimensional (differential)
secondary frost heave. In this case one must solve the quasi-steady-state form of
Laplace’s equation for the temperature subject to boundary conditions given by
(77)-(80) and the Stefan and heave conditions given by (64) and (65). The solution to
the differential frost-heave problem is beyond the scope of this paper. However, we
can provide some discussion on how the one-dimensional equations must be devel-
oped in order to provide insight into differential frost heave.

It can be shown that the generalized secondary frost-heave model developed here
contains a potential instability mechanism whereby differential frost heave can occur.
This instability mechanism might explain the striking regularity of some forms of
patterned ground such as earth hummocks which are known to be accompanied by
secondary frost heave (see Krantz et al. (1988) and Krantz (1990).

In the case of differential frost heave, an additional equation is needed to relate
the deformation of the frozen soil to the stress acting on it. It is reasonable to assume
that the soil remains incompressible, that the frozen region above zf behaves
elastically, and that the elastic strains respond quasi-statically to lens production. A
tractable model for small variations in the local heave rate based on thin shell theory
is given by

0P
(120)

Ot -Evi’

where E is a dimensionless group which is proportional to the modulus of elasticity.
More complex models could certainly be used, although information on the required
material properties may be difficult to obtain. In addition, the O’Neill-Miller pre-
scription of ice velocity as u -ui(t) is no longer viable, and must be replaced by a
different model such as Gilpin’s equation (59).

iI. Conclusions. In this paper we have generalized the one-dimensional sec-
ondary frost heave model of O’Neill and Miller to describe differential frost heave.
We have achieved considerable simplification while retaining the essential features of
O’Neill and Miller’s model by nondimensionalizing and scaling the describing equa-
tions in order to asses the principal terms. This scaling indicated why O’Neill and
Miller commented that solving their model equations required a "... great deal of
computational effort...". The frozen fringe, wherein all the active freezing and
ice-lens formation occur, is quite thin. Moreover, the pressure drop which drives the
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water permeation within the fringe is confined to an extremely thin boundary layer. A
computational scheme which does not recognize these two features of secondary frost
heave necessarily will be quite inefficient and difficult to implement. We averted these
difficulties by using proper asymptotics to describe the permeation boundary layer
and by reducing the frozen fringe to a moving planar boundary across which jump
boundary conditions are prescribed.

The nondimensionalization indicated that secondary frost heave is characterized
by one dimensionless parameter, namely /3 defined by (68). The markedly different
secondary frost heave behavior of clays, silts, and sands can be explained solely in
terms of this parameter.

The generalized model developed here is amenable to an analytical solution
which appears to describe all the principal features of step-freezing experiments. It
predicts the gradual increase in the time required to initiate consecutive ice lenses
and in the thickness of subsequent ice lenses. It also predicts that the interlens
spacing initially increases and eventually become constant. These predictions are in
agreement with step-freezing experiments.

Our model provides considerable insight into the coupled mechanisms operative
in secondary frost heave. We see that the latter arises because of cryostatic suction
effects which can cause upward permeation of additional water which contributes to
ice-lens growth. The cryostatic suction increases with decreasing unfrozen water
content because of the increasing curvature of the water-ice interface. The functional
relation between the suction and unfrozen water content is characteristic of the
particular soil. Sands, silts, and clays display a progressively more marked increase in
suction with decreasing water content. An increase in load causes a decrease in the
unfrozen water content as dictated by the Clapeyron relation and thereby an increase
in the suction. However, an increase in load also makes it more difficult to initiate a
new ice lens since a larger disjoining pressure, and hence suction, is required to cause
separation of the soil grains. The implications of these two opposing effects of an
increase in load are that new ice lenses are initiated most easily for clays, which
exhibit secondary frost heave under nearly all load conditions, but are rarely seen in
sands. The magnitude of frost heave depends on the hydraulic conductivity, which is
smallest for clays and largest for sands. For this reason, clays exhibit relatively small
heave. The largest frost heave is exhibited by silts which can display significant
suctions while maintaining reasonably large permeation rates.

An interesting potential application of our generalized model is to the study of
spatial instabilities of secondary frost heave. The generalized equations developed
here provide a framework for exploring this instability mechanism which is of
considerable interest since it may describe forms of patterned ground known to be
influenced by differential frost heave.

Further studies of secondary frost heave should be directed toward considering
more complex soil behavior allowing for elastic deformation and compressibility of
the soil. The model developed here also can be extended to incorporate solutal effects
on the freezing temperature and the influence of nonsaturated soils on secondary
frost heave.
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