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ABSTRACT. By using a simple paramecterized model of thermomechanically
coupled flow in cold ice sheets, together with a physically based sliding law which
includes a description of basal drainage, we show that relationships between ice flux
and ice thickness can realistically be mulu-valued, and hence that hydraulically
induced surges can occur. We term this mechanism hydraulic run-away, as it relies on the
positive feed-back between sliding velocity and basal melt production. For this feed-
back to operate, it is essential that water pressure increases with water storage. This is
consistent with various recent idecas concerning drainage under ice sheets, be it
through a system of canals, a distributed film or a subglacial aquifer. For conlined
flows, such as valley glaciers (c.g. Trapridge Glacier) or topographically constrained
ice strcams (e.g. Hudson Strait in the Laurentide ice sheet), which are underlain by
sufficiently deformable sediment, we can expect thermally regulated surges to occur,
while in a laterally unconfined drainage basin (such as that which flows into the Ross

Ice Shelf), we might expect ice streams to develop.

1. INTRODUCTION

The idea of a thermally regulated mechanism of glacier
surges stems from Robin (1955). The concept is very
simple. If an ice sheet is {rozen at the base, then the ice
flux is very small and it will thicken in time due to the
surface accumulation. As it does so, the insulation
afforded by the ice allows the base to warm until it
reaches the melting point. At this point, the ice can slide
and the resultant increased ice flux, il large enough, will
draw-down the ice. In principle, this can re-freeze the
base, so that a cvclic oscillation ensues. Clarke and others
(1977) and Yuen and Schubert (1979) extended this idca
by invoking thermal run-away: the thermomechanical
coupling between ice flow and temperature through the
temperature-dependence of the flow law causes a multip-
le-valued relation between ice flux and thickness.

To understand the import ol this, consider the
(lumped) mass-conservation cquation

h=a—-Q (1.1)

where h = dh/dt,a is accumulation rate, Q is propor-
tional to ice {lux and & is mean ice thickness. If Q) is a
multi-valued (e.g. S-shaped) function of h, such that
W(Q) <0 for Q< Q< Qp then, if Qc<a< Qu,
periodic oscillations will occur which are manifested as
surges, with quiescent phases on the lower (slow) branch

Q < Q. being punctuated by rapid surges on the upper

(fast) branch @Q > @Q,,. This mechanism has been
elaborated by Fowler (1987h).

However, thermal run-away may not be realistically
possible in ice sheets and glaciers. Most simply, the multi-

valuedness occurs when the basal temperature is above
the melting point and so is unphysical. Indeed, Fowler
and Larson (1980) showed that, with realistic thermal-
boundary conditions, the (unique) steady state was
linearly stable, in contrast to the situation for Equation
(1., il Qe < a < Q.

Nevertheless, Robin’s basic concept retains its
conceptual validity and, indeed, 1s likely to be relevant
to the surges of Trapridge Glacier (Clarke and others,
1984). Nlore recently, a similar concept has becn
advanced by NacAveal (1993a) to explain hypothetical
surges ol the Hudson Strait ice stream which are thought
to have occurred during the Last Ice Age (Andrews and
Tedesco, 1992; Clark, 1994), and for which indirect
evidence exists in the deep-sea sediment record
(Heinrich, 1988; Bond and others, 1992; Grousset and
others, 1993). In a simple model, MacAyeal (1993Dh)
described the oscillation by postulating that, when the
base of the ice 1s molten, it relaxes to a dynamic state
corresponding to modern ice-strecam dynamics, as
evidenced in West Antarctica.

As a description, this is fine but it involves an
assumption, namely that a temperate base is sufficient
to cause fast glacier flow in the Hudson Strait ice stream;
clearly, this may not be the case, as is attested by the
existence of non-streaming parts of the West Antarctic ice
sheet which appear to be wet-based (eg. Ice Stream C)
and the plentiful glaciers with temperate bases which do
not surge (e.g. Trapridge Glacier at the present time).
The purpose of this paper is therefore to examine the
interplay between thermal regime and basal sliding in
greater detail, with a view to substantiating MacAveal’s
vision of the Hudson Strait surges.



2. ICE-SHEET MODEL

In seeking a simple but realisic model for ice-sheet
motion, we make use of a lumped parameter version of a
boundary-layver theory developed by Fowler (1992),
based on an original idea due to Nye (1939), and
subsequently developed by Lliboutry (1981). This is that
large ice sheets have dynamics which can be character-
ized by “shear lavers™ near the base where the shear is
largest due to the high stresses and high temperatures
there. In addition, relatively high velocities cause thermal
gradients to be elevated in a thermal boundary layer near

the base, with the shear layver Iving inside this. Because of

the boundary-laver nature of the flow, 1t is possible to
produce a paramecterized model which encapsulates the
dynamics.

Physics of the model
We begin by describing the physical processes and their

follows this. The
horizontal motion of ice sheets is driven by the shear

cffects: the mathematical detail

stresses at depth generated by the surface slope of the ice
(i.e. 1ce flows down the “hill”™ generated by its surface).

This flow 1s thermally activated by the dependence of

viscosity on temperature, and this dependence is
sulficienty strong that one can ellectively consider that
all the shear takes place where the ice 1s warmest, i.¢. near
the hed. We call the region near the bed where the shear
is concentrated a shear laver and, in this layver, the
horizontal velocity u rises from its value w, (the basal
shding velocity) at the bed o a far field (i.c. far from the
hed) value us, which is esssentially independent of depth.
Also i this laver, frictonal heat causes an imbalance
between the basal heat flux from the bed to theice ¢, and
the heat flux delivered from the shear laver to the ice
above, ¢pr. Approximate relationships between  these
variables can be derived.

An important constituent of  the model 15 the
determination of the heat [lux into the plug flow of ice
above the shear layer. If u, is very small, this should be
conductive (and thus gt x h='. where his ice thickness
but, il ux is very large. we expect a thin thermal
boundary laver to exist near the base, though we can
show that the shear laver lies within this thermal
boundary laver (see Fig. 1). In this case, we find
4T X tsd, and in our simple model we simply add the
conductive to the convectively induced heat transfer.

We thus propose relations between g, ¢, e . w1, and
h based on the dynamics of ice, which involve the basal
shear stress 7 and the basal temperature 7j,. We have four
such relations and, in order to find an expression for the
horizontal ice flux Q = huy, we require two further
relations amongst the variables. T'hese follow from our
description of the sliding process at the base. If the base is
frozen, then w, = 0 and gy 1s the presceribed geothermal
heat flux. However, if the base 1s temperate, then we
prescribe Ty, =T,,, the melung temperature, and a
suitable sliding law relating 7 1o wy,. This relation also
involves the effective pressure N (ice-overburden pressure
minus subglacial drainage water pressure), which must be
determined by a suitable drainage theory. In particular,

N will depend on the water supply Q. which is itsell
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Fig. 1. Schemalic representation of an ice sheel, based on
conditions in the Laurenlide ice sheel. "Lhe location of basal
shear and thermal houndary layers is also indicated.

related to the ice flow, being proportional to the excess
heat generated at the bed (geothermal plus friction minus
heat lost to the cold ice above).

The shiding law is crucial o our conclusion that a
multi-valued ice flux vs depth relation is possible and
indeed likely. When the bed is temperate, sliding occurs
but, if the velocity is low, then litde frictional heat is
generated and there is little water flow. Crucial to our
results is the notion that the eflective pressure N decreases
as water supply increases. This savs that as water pressure
imcereases, the hyvdraulic flow mcreases, which makes
sense, but is also contrary to the drainage characteristics
of Rothlisherger channels: the hypothesis ON/IQy < 0 is
based on recent theories of drainage over deformable
sediment beds. With this assumption, low values of Qy
correspond to high N, or low water pressures, and for
sliding of ice over a deformable dll, we expect that the
hasal velocity wy, Increases as water pressure increases, 1.c.
N decreases (the tll becomes more mobile). Thus, low uy,
implies low @y implies high N, which is consistent with
the assumption of Tow wy,.

However, as theice thickness increases, the conductive
heat flux into the ice decercases and the water supply
increases. An increase of Qy leads to a decrcase of N and
therefore enhances sliding. A\ positive feed-hack exists,
because the increased sliding v
water production via {rictional heat production, and in
fact we find thatthe result is a run-away, in the sense that,
for sufliciently large ice thickness, the “slow™ mode (low
u, low Qy, high N) is not viable and a fast hranch (high
wyy,, high Qy, low NV takes over. \s a consequence, we find
a multiple-valued relation lorice [lux @ as a function of
ice thickness h.

Mathematical model

The geometry we consider is shown in Figure 1. To lix
ideas, we  consider specifically a test section of the
Laurenude ice sheet which extends from an ice divide
down the outet of Hudson Strait, bhut the concept is
applicable elsewhere such as for flowlines extending south
imto the ice lobes which termmated the ice sheet in the
Great Plains area of North America. T'o the south of the

o
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divide, the Canadian shield provides a hard base and we
conceptualize the ice here as being relatively stable.
North of the divide. the test section we consider lies over
Hudson Bay and is channelized into the ice stream in
Hudson Strait. Let the horizontal ice velocity he u and
the vertical coordinate be z (with z=0 as the base)
Glen’s flow law may be written in the approximate form
appropriate for a shearing flow

Ju E

A" exp

e al
— e T-T)| @

where we use the Frank-Kamenetskii (1933) approxim-
ation (for |T =T,

exp(—E/RT). Here, Ay, is the rate factor at the pressure-
melting temperature Ty, E is the activation energy, R is
the gas constant and 7 is the hasal shear stress, which can
be taken as constant through the shear layer.

In the thermal bhoundary laver, heat advection
balances conducton hut, within the thinner basal shear
laver, we can ignore heat advection, so that the
temperature is given approximately by

0= kT,, + Tu, (2.2)

where subscripts denote partial derivatves, thus
u, = Ju/dz, etc.: henee, integrating with respect to z,

qr — gn = T(Ux‘ - “b) (23)

where gy is the heat flux delivered from the shear layer 1o
the thermal boundary laver of the ice sheet. g, is the basal
heat flux at z =0, and us and wy, are the far-field and
hasal velocities.

An integral relation between heat flux and 7 s
obtained by using Lquation (2.1) in Equation (2.2).
Muluplying Equation (2.2) by T, and integrating, we
obtain

5 g PhAr™ RIS

qr —aqy = exp

E

_ 2.4
I?T“{"(Th Tw)| (2.4)

where we have used the fact that the exponential term
tends o asvmptotically small values when z extends
bevond the shear layer (Fowler, 1992).

The basal shear stress is given by 7 = pgh sin «, where
pis density, g is gravity, hi is ice depth and sine is the
surface slope. In our parametric approach, we take li as
the divide height, 1 as the length of the test section (the

h/l, so that

7= pgh?/l. (2.5)

diameter of Hudson Bay) and we take sin e =

In reality. use must change from zero at the divide to a
large value at the outlet. ITn our lumped approach, it is
taken to be an average value. Then the mean depth is
h/2, the area of the test section is %//1, while the ice-
drainage flux is %huw It follows that mass conservation
can be expressed as d Elh] Jdt =la — %/1 U, whence

h=2a— (hux /1) (2.6)

where a is the average accumulaton rate over Hudson

Bay. In general, 1t mav depend on the atmospheric
acliabatic lapse rate, in which case @ would be a function
ol the mcan ice depth h/2.

In the thermal boundary layer, shear heating is
neghgible (it 1s concentrated in the warmer shear layer),
so that (since the boundary-laver temperature relaxes
quickly to a steady state)

pep(uTy + wTy) = kT, (2.7

where x is the horizontal coordinate (sce Fowler (1992)
for further details). The temperature prolile necessarily
evolves with @ and it is indeed possible (with © = ux.
w = 0, T, = constant, for example) to find a similarity
solution for T (indeed, this can even be donc if wuy =

Use(x)). With T =T, on z=0 and T=Ty as z —

(i.c. outside the boundary layer), the similarity solution is

Y (p(’pux)%f

T T, -

and f(&) = erfe(§)), whence the average heat flux
delivered o the thermal boundary ld\t‘l from the shear
laver) is —f'(0) x [p(l,uxl./[] (Th, — T). Since —f'(0) =
2/\/7. we thus have

v = V) pepuskfI1H(Ty — To) + (K/W)(T, ~ T3)

d

(2.8)

where we simply add the second term to include the heat
flux due to conduction when h or uy is small (T, is the
surface temperature). Notice that a simpler approach to
obtain g7 would be to take a linear temperature profile
through the thermal boundary laver thickness 61, thus
the first term would be g = k(Ty, — Ta )ér, where from
Lquation (‘l) 7), we would dimensionally estimate 6p =
(M pepus )2
multiplicative factor and is probably just as good.

The Equatons (2.3), (2.4), (2.5), (2.6) and (2.8)
provide five equations for the unknowns s, gy, 7, h and

This gives the same result without the pre-

qr- However, the variables wy,, Tj, and Ty remain o he
prescribed. The temperature T at the edge of the
thermal boundary laver is derived from the divide
temperature at an earlier time. Since heat conduction
may be small (as measured by the smallness ol
compared to the ice depth), the surface temperature is
simply advected downwards. However, we will assume for
simplicity that the surface (divide) temperature is
constant, and thus we prescribe

T, = a- (29)

Basal conditions

Finally, we consttute the basal values of T and w. There
arc four possible states of the basal system which we will
consider.
(1) Lrozen base
We prescribe

u, = 0. q, = G, while Ty, < T, (2.10)

where G is the prescribed geothermal heat flux.



(i1)  Sub-temperate hase
When the base reaches the pressure-melting point, sliding
is initiated, but at first there is no net water production

(we ignore any possible flux from the surface). In this
case, we have
T, =Tw, g = G + Tup, while 0 < up, < w,”  (2.11)

where w,” is the “fully  developed™ sliding  velocity

detatled next.

(i) Temperale base
When 0 < ¢y, < G + Tuy, then
occurs. This is the sliding commonly preseribed using a

“fully developed™ sliding

“sliding law™ of the form 7 = f(u,. N), where N is the
eflective basal water pressure (= p; — py. where pj is ice-
overburden pressure and py is basal water pressure).
Shiding theories for hard beds developed in the 1960s and
1970s led to that enunciated by Lliboutry (1979). In its
simplest expression, this gives 7/N = f(w,/N") (Lli-
boutry, 1987), where nois the exponent in Glen's law.
When fis a power law, we have the relation

7 =cu) N,

consistent with Lliboutry’s result il nr + 5 = 1), derived
theoretically by Fowler
1/4, s~ 1/4.

and others (
(2.12), with (a
}'(';n% (I bar =

1987a), with typical values r =
Laboratory experimental results of Budd
1979) are also consistent with I(]lhl[l()ll
u 111011 INIRA=ESE= 1/3 ¢ 0.18m™ bard
107 Pa, 1 vear = 3 x 1075); at low N, more
appropriate values were 7 = s = 1. Bindschadler (1983
also found some consistency with Equation (2.12) using
measurements on Variegated Glacier and indeed found a
similar value of ¢.

However, these results apply for ice sliding over a
lumpy bed, where the principal resistance is due to the
flow past the bumps. For the situation of relevance here,
where the principal resistance is due to deformation of a
laver of saturated subglacial sediment, a simple shiding
law 1s just

T = nuy/hr (2.13)

where i is the viscosity of the dll and A is its depth. The
cllective water-pressure dependence arises through influ-
ence on the tll viscosity. A\ law proposed by Boulton and
Hindmarsh  (1987) based on seven measurements at
Breidamerkurjokull is & = AT'N b in which case we
could write Lquation (2.13) in the form ol Equation
(2.12), with r=1/a=0.75,
(Aht)™". Boulton's law is controversial, however, and
values ol 7 zm(l N appropriate

s=bla=1.4 and c=

[ce Stream B (T =
or dll
| .

observed.

0.13 har, N = 0.5 bar) give a velocity of 9m vear
of thickness 8m, as opposed to the 500 m vear
Alley and others (1987) estimated the viscosity ol ull
under Iee Stream B as 10" Pas.

Despite concerns with the Boulton-Hindmarsh rheol-
ogy, itis the simplest type of rheology which mimics the
cllect which increasing water pressure has, namely o
decrease till viscosity. However, it suffers
conceptual limitaton. Since the actual deformation of till
involves particles moving round and past cach other,

'.()Zi' er ana A/U MNson . ] Lermall) reguiated surges o VI’[‘(’ sheels
Fowler and o Thermally regulated surges o heet

dilation is necessary to accommodate the flow. Therelore.
it is only realistic o suppose that the viscosity 1) =
NPJAT tends to zero as N — 0 for an unconfined low
(when it dilates to a slurry). For flow in a confined
channel (such as a tll laver). delormation causes dilation
and consequently normal stresses. so that it is properly a
non-Newtonian material. The simplest way in which a
non-zero viscosity at N =0 can be included is to replace
N in Equation (2.12) by N + Ny, so that

T = (,'ll,},"(xV() + 1\’)'s (2.1-1)

There is little 1o constrain such an Ny but a least-squares
fit to Boulton and Hindmarsh's limited data vields Ny =
0.045 bar, comparable to the vield stress, and suggests
that normally a relationship such as Equation (2.12) may
suflice, although there is very little 1o constrain the choice
ol ¢,r and s.

The cflective pressure N depends on the volume [lux
Q of water through the drainage system. Here we are
concerned with the draimage from a tll-hased system. for
which Walder and Fowler (1994) suggested that a svstem
ol “canals™ scoured from the ull will exist, within which
function of Q: since @

increases downstream, N will decrease and so also will the

N is essentally a (decreasing
viscosity, as is inferred for Iee Stream B (Alley and others,
1987). Taking into account basal topography. we then
expect a retcular network of interwoven canals with
spacing controlled by the wavelength of topographic
variability.

The existence of a basal system of canals is by no
means certain. A modilied viewpoint is that the water
simply ponds and drains as a patchy but connected
Alley, 1989).
corresponding hvdraulic system has heen proposed and
uscd by Alley (1990):
states and indeed the crucial point is that the basal

water [ilm sliding law based on the

he also found multiple dynamic

velocity inereases with the water supply. Thus, while the
precise quantitative nature of the basal hvdrology is of
importance, from the pointol view ol the sliding Law, it is
only a detail.

The excess heat production at the bed is G+ 7w, — G
and this procduces a downward melt velocity of (G + 7wy,
—agn)/pw L. where Lis Latent heat and py is the density of
water. If the spacing of an assumed reticular drainage
network is wq. then the flux of water per channel is given
(in parameterized form) by

(G + 1wy, —
Pl

)l

Q, = (2.15)

and N is given by a relation such as that of Walder and
FFowler (1994). TIor
grained sediments, they put (with sina = h/l)

canals mcised into relatvely fine-

L
' D¢hs o
N=——— (2.16)
Q.
where Dg is a “characteristic™ size of suspended grains in
| 1
I.1 x 107 bars 3. 2\ representa-
. . 5 1 B
tuve value of Dy might be Dy = 0.1mm = 10 "m, in

the water flow and ¢ ~

. c1 3 . 3
which case a slope of 10 7 and a water flux of Tm”s

gives N = 0.3 bar. Tt must be emphasized that Equation

[
(@1
~I
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(2.16) 1s possibly a crude representation and the
relationship itself’ describes only one possible drainage
scenario; others are arguably just as plausible.

In using Equation (2.12) or Equation (2.14), together
with Equations (2.13) and (2.16), to prescribe 7 in terms
of uy. we have to consider what happens as Qy — 0.
Equation (2.16) cannot strictly apply for small @y, since
itimplies that N — oo as Qw — 0. In fact, for very small
values of Qw, N will increase rapidly from zero (flotation)
at the onset of channelized {low to a value N = p, where p
is a critical effective pressure relating creep properties of
till to those of ice (Walder and Fowler, 1994). Based on
the Boulton-Hindmarsh rheology, p ~ 8bar, while for
less viscous till; p could be higher. At any rate, this
suggests that the correct limiting value of N to use as
Qw — 0is p. A practical way to model this is to define Q“.
via

p=—=t (2.17)

and then replace Qw in Equation (2.16) by (Qy + (Z)w).
Since we expect QW to be “small”, there is litde difference
made in doing this. We then use Equation (2.12) and the
fully developed sliding velocity uy," is defined by

T=cuy' p’. (2.18)

Now in lact, since Q. 1s “small’” and p s “large’, we

b) W b
have that wy" 1s also small, and in practice we can ignore
the sub-temperate region ((ii) above) altogether. We thus

take the shding law in the form

T = cuy N?, (2.19)
/ ¢

N = % (2.20)
0 “,Zi

Qw _ (G + Tuy, — ql))lw(l (221)

pw L

while Qy > 0, and note that as Q — 0, then (formally
N — oc and up, — 0. The second of these allows for a
continuous join to the frozen regime where w, = 0.

Molten base

A further regime is possible, which we simply ignore. If

the heat flux to the ice reaches zero, i.e. il ¢, = 0, then a
basal laver of temperate ice forms (c.g. Hutter and
others, 1988), and in this case the whole ice-dynamics
model must change, since the ice viscosity depends on
moisture content (Lliboutry, 1976). In such a situation,
moisture is procduced within the ice and draiage ol this
water to the basal system can only enhance the
instability we envisage. However, it is not specifically
included in our model and is in fact unlikely to occur
with the present assumptions.

3. ANALYSIS

The Equations (2.3), (2.4), (2.3), (2.6), (2.8) and (2.9),
together with the boundary conditions (2.10) or (2.14),

[&7])
(S]]
e}

2.15) and (2.16), are scaled by choosing

Uy oo ~ (U], T ~ [T],h ~ [h], t ~ [t],
Ty =Ty~Tox —Tuw~Ta— Ty NAT7

a

Qw ~ [Qw],N ~ [N],a~ [a], g1, ~G; (3.1)

(that is to say, we define dimensionless variables u*, 7%,
ete. by writing u = [u]u*, 7 = [7]7%; in the sequel, we drop
the asterisks for convenience). We choose balances via

G = [r][ul,
Ghwyg (:'Ds[h]%
w| = s V| = T 1
0 =2 = Sl

[ _ 2a] = R0y (7] = pglh)/t. (3.2)

(1] l
From these we derive
G
1= [l = 2lal/1),
[7] = G/[u], (3.3)

and for values

G~005Wm?2 p~103kgm 3 g~ 10ms 2,

[a] ~ 10 cmyear !, I ~ 2000 km, (3.4)
we find
(k] ~750m. [u] ~ 500 myear', [7] ~ 0.03 bar,
[t] ~ 3750 year. (3.5)

These values are approximately representative ol fast-
flowing ice swreams and are perhaps relevant to the
conditions of a temperate bed. The corresponding
dimensionless model equations are

qrt =g + 2 hBe T,

qr = gy, + }12(ux = Up)s

T=Hn,
h=a— huy,
qr = pausd (T, — T.) + (/) (T, = T,).  (3.6)
together with
g =1,u,=0, if T), <0, (3.7)
or
T,=0.  7=pzuy N°,
Qw =1+ h*w, — qu,
N=ht/Qy, if Qs >0. (3.8)
The parameters are defined by
D EAT, = kA [r]" T RT,2
R G’E
2 [pepklu] IAT
et et
s KAT [N o)



and we use values
k=21Wm 'K R=83Jmol
An=53x10"PkPa3s7! n =3,
E=139kJmol ', p=91Tkgm"
I =2000km, [a] = 0.1myear ', ¢, = 2009 J kg "K'

39=98ms?,

G=0.05Wm ? AT =30K. (3.10)
We then have
A~ 6.7, o~ 1.5x107Y
fo~ 3.7, 6~ 1.7 (3.11)

and g3 is rather uncertain. Comparison ol observed
= L n |
stresses ~0.15 bar and velocities 300 myear * at Ice

Stream B would suggest p13 ~ 5, for example.
Cold approximation
We use the lact that jrp < 1 to approximate the relations

in Equations (3.6) and (3.7). We have that g7 =
and then

qn = 1,

6(1 — 1))

U, R ;Llh,(’(‘,'m"‘. 1~ ;
)

(3.12)

where we take T, = —1 as constant (more generally it

might be a function of k). Thus ‘T, =1 —(h/6) and the

ice (lux is

Q = i h" exp[=M{1 — (h/6)}]. (3.13)

[t mcreases monotonically with A unul Ty, = 0, which is at
h =6, and where Q = j1;6" ~ 0.66 x 10 *. Thus, the ice
is virtually stagnant if the base is frozen.

Temperate approximation

When Ty, reaches zero at the hase, we adopt the temperate

conditions (3.8), which gives

n? =l + 2k’

qgr = b + hz(“oc - uh)-
gr = jrausd + (8/h),
2 o3 Hauy .
14+ h%w, — (1])15/ POR s/)ﬁ) (3.14)
These imply, successively, gt = ¢y, = ¢, say, Un & Wy, = U,
say, and thus we have to solve
h =a— hu,
. " Ly’
[1+ h2u — pau? — (8/h)]* = hi is/G) (3.15)

These cquations are valid providing 0 < g, < 1 + h?uy,

the dimensionless version ol 0 < ¢y, < G 4+ Tw,, corres-
I'rom Equations (3.14),
and w, = us — h%/q. The cold

ponding to a temperate base).
qr — Gh X /11}18/(1
temperate transition is when wy, = 0, so the temperate
conditions are valid if u, >0, i.e. u> /11/1‘5/([
(since also g1 when w, =0)u> juh® and,

equiv-
alently
since the transition occurs when h & 6, this is u > i1 65.

K. T,, = 273K,
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The temperate-molten transition is when ¢ = 0. How-
cver, the third ol Equations (3.14) implies that ¢ > 0, so
basal molten zones do not occur.

Denote the lef't-
and righthand sides as P(h,u), R(h, u) and also put p = 1
+h?u — ,uz'zﬁ —&/h, thus P=p"3 For given u> 0,p
and hence P is monotone increasing with positive b, while

that in this model,
We now consider Equation (3.15).

R is monotone decreasing (we assume s < 12). Therelore,
there is a unique positive h for each value of u.

Alternatively, [ix a value of A > 0. The lunction p is a
quadratic in wh with no roots il h > he =( (‘)z+/12)
+6]/2, two positive roots il & <h < he and one positive
root il h < 6. On the other hand, R increases with u and,
since pt = RY% oc (w3)*/* then il r > 5/3 (as we assume)
R > P for large enough u1 (since P~ u? as uf — ). By
considering intersections of P and R, we then see that for
large g3 there will be a unique value of w (given h) for
h > &, while for small 23, u(h) will be multi-valued. The
two diflerent possibilities are illustrated in Figure 2, using
values given in Equation (3.11) for gy = 1.0 and 3 =
20.0. For the values in Equation (3.11) we find that a
multi-valued flux/depth relation occurs if pz < o
= 16.98. The lefthand nose of the curve, at h =h,,, is
to the left of the cold—temperate vansition (1.e. h = 6) if
g < = 2.01.

An analytic approximation to the relation can be
obtained when gz is small. In that case. we can
approximate the solution of Equations (3.15) as follows.

ice lux @

h=h

Q=Qm

107

TEMPERATE
—--—---—— TEMPERATE2
T 2 3 7 B

depth b

Fig. 2. Two flux curves for the parameters i lqualion
(3.11). together wilh yr3 = 1 (multi-valued) and pz = 20
(single-valued). With pg =1, the slow nose is al
h = h. =286, and the fast nose is al h = hy,, =1.44.
These correspond to  depths of 2145 and 1080 m,
At he, the welocitty 1s 0.034 (~17m
year "), while at the same value on the fast hranch it is
1.18 x 107 (~ 290 km year "or 2ems /). At hy,, the
velocity is 5.24 (~ 2.6 kmyear ' ). One can show that the

respectively.

consequent swrge duralion ts approxemately 0.03, corres-
ponding to 116 vears (based on Equation (3.5)).
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The fast branch is

u~ Ch? (3.16)

where

34 +s)

O = o 38r=s) _ ,
. “ 2(3r — s)

Ly y

(3.17)

for example, il r=s=1/3, then C'~ ;1._-;_9/?, o =~ 10, so
we expect Equations (3.17) to be accurate even for
moderately low pg. The lower and middle branches are
given by
1
u?

[,12 +{puo? + 6% — (20— 5)?}%}. (3.18)

1
~ 2h?
so the nose 15 at b = he as deflined belore. At the upper
(i.e. larger Q) nose, h = hy,, w > 1 and Equation (3.13) is
approximated by

3fs,3rfs
R2u — pau? = l?ius, (3.19)
el Gl
and it [ollows {rom this that at the nose
h=he~pd, un~pgt (3.20)
where
v= (12— 5s + 24r)/2s. (3.21)

If r=2s=1/3, then v~ 27, so that again we expect
he <6 for moderately low . In particular, the
magnitude of the surging velocity depends sensitively on
[IRE

We sce that the sliding law can give rise to a

phenomenon which we may term hydraulic run-away. If

h reaches h, then there is an unstable transition to a

fast-sliding mode by the enhanced production of

meltwater, although the ice above remains cold. We
thus have a mechanism for relaxation oscillations of the
ice sheet.

4. DISCUSSION

The paramcterized model presented here is of course

crude but nevertheless it encapsulates the basic physics of

sliding over deformable sediments and shows that
thermally regulated surging is a leasible phenomenon.
Hydraulic run-away relies on two features. First, sliding is
enhanced by increased water production. Thus, the
increase in [rictional heating with velocity i1s a positive
feed-back. Countering this is the negative feed-back due
to the increase in heat flux from the base with increased
velocity. At low uy, the second of these dominates, since
gy ~ uh%, but at higher values of w, frictional heating
predominates and a fast-shding mode becomes possible.
As applications, we consider the Hudson Strait mega-
surges to be a prime example (MacAyeal, 1993a, b). We
should also like to consider whether thermally regulated
surging of Trapridge Glacier can be looked at from the
same point of view. In this case, the base 1s temperate and
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basal water 1s evacuated subglacially as ground-water
flow. Currently, the glacier would reside on the slow
branch. A difference in the valley-glacier case is that basal
meltwater is likely to be mainly surface-derived and
whether the positive feed-back of ice velocity on water
pressure can operate is unclear.

Lastly, we consider sheet flow over a deformable bed,
i.e. where the width of the flow is much greater than the
depth and where the flow is fed from a stable catchment:
we have in mind the Siple Coast of Antarctica. Suppose
upstream that Q(h) is a monotone function (e.g. due to
lack of a basal till cover) but that downstream we have
Q = Q(h) as in Figure 2. With conditions of continuity of
Q@ and h at the join, we conjecture that, if this Q valuc lies
on the unstable part of the downstream @(h) curve, a
uniform flow is laterally unstable and will break up into
[ast- and slow-moving parts, and that these are precisely
ice strcams. A study of this postulated instability is
delerred to future work.
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