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ABSTRACT. By using a simple paramet erized model of thermomech anically 
coupled flow in cold ice sheets, toge ther with a physical ly based sliding law which 
includes a description of basal drainage, we show that relationships between ice flux 
and ice thickness can realistically be m ul t i -valued, and hence t h a t  hydraulically 
ind uced s urges can occur.  'vVe term t his m echanism h)draulic TllIl-aWa), as i t  relies on the 
positive feed-back bet ween sliding veloc i t y  and basal melt production.  For t his feed­
back to operate, it is esse n tial  that water p ressure increases with water storage. This is 
consiste n t  with various recent ideas concerning drainage under ice sheets, be it 
t hrough a system of canals,  a distri buted film or a subglacial aquifer. For confined 
flows, such as valley glaciers (e.g. Tra p r i dge Glacier) or topographically cons trained 
ice s tream s  (e.g. Hudson S trait in the Laurentide ice sheet) , which are u n de rlain by 
sufficie n t ly deformable sediment, we c a n  expect thermally regulated surges to occur, 
while in a laterally unconfined drainage basin (such as that which flows into t he Ross 
Ice Shel!), we might expect ice stream s  to develop. 

1. INTRODUCTION 

The idea of a t hermally regulated mec h a nism of glacier 

surges s tems from Robin (1955) . The concept is very 

simple. If an ice sheet is  frozen at the base, then t he ice 

flux is very small and it will t hicken in time due to the 

surface accumula tion.  As it does so, the i nsulation 

afforded by the ice allows t he base to warm until  i t  

reaches the mel ting poin t .  A t  this poin t ,  t h e  ice can slide 

and t he resul tant  increased ice flux , if la rge enough, wil l  

draw-down the ice.  In principle, this can re-freeze the 

base, so t h a t  a cyclic oscillation ensues . C l a rke and others 

(1977) and Yuen and Sch ubert (1979) e x t e nded this idea 

by invoking thermal run-away: the t hermomechanical 

coupling between ice Oow and tempera t u re t h rough t he 

tempera ture-dependence of t he Oow law c a u ses a multip­

le-valued relation between i ce flux and t hick ness. 

To understand the im port of this, consider t he 

( lumped ) mass-conservation equation 

h=a-Q (1.1 ) 

where h = dh/dt, a is accumulation rate, Q is propor­

tion al to ice Oux and h is mean ice thic k ness. rf Q is a 

mul t i-valued (e.g. S-sh a ped) function of h, such that  

h'(Q) < 0 for Qc < Q < Qm t h e n ,  i f  Qc < a < Qm, 
periodic oscillations will occur which a re manifested as 

surges, with quiescen t phases on the lower (slow) branch 

Q < Qc being punctuated by rapid surges on the upper 

(fas t )  b r a n c h  Q> Qm. Thi s mec h a n i s m  has been 

elabora ted by Fowler (1987b) . 

However, t hermal run -away may not be realistically 

possible in ice sheets and glaciers. Most sim p l y, the m u l t i-
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valuedness occurs when the basal temperature is above 

the melt i ng poin t and so is u nphysical. Indeed, Fowler 

and Larson ( 1 980) showed that,  with realis t i c  t hermal­

boundary condi t ions, the ( u nique) steady s t ate  was 

linearly s table, in con trast to t he situation for  Equat ion 

(1 .1) ,  if Qc < a < Qm. 
Nevert h e l ess,  R o b in's b asic concep t re t ains its  

conceptual v a l idity and, i ndeed, is  l ikely to be relevant 

to the surges of Trapridge Glacier (Cl arke a n d  others, 

1984) . More recently, a similar  concept h a s  been 

advanced by MacAyeal (1993a) to explai n  h y pothetical 

surges of the Hudson Strait ice s t ream which a re t h ought 

to  have occ urred during t h e  Last Ice Age (Andrews and 

Tedesco, 1992; Clark, 1994 ) , and for which indi rect 

evidence exis t s  i n  t h e  d e e p - sea sed i m e n t  record 

(Hei n rich, 1988; Bond and others, 1992; Grousset and 

others, 1993) . In a simple model, MacAyea l  (1993b) 

described t he oscillation by postulating that, when t h e  

base o f  the i c e  is  mol ten, i t  relaxes to a dyna m ic state 

c orrespondi n g  t o  mod e r n  ice-stream d y n a m ics, as 

evidenced in '!\Test At1larctica .  

As a description, t his i s  fine but i t  i nvolves an 

assumption , namely that a tem perate base is sufficient 

to cause fast glacier flow in the Hudson Strait ice s t ream; 

clearly, t h is m ay not be t he case, as is  attested by the 

existence of non-streami ng parts of t he \N est Antarctic ice 

sheet which appear to be wet - b ased (e.g. I ce Stream C) 

and the ple nt iful glaciers with temperate bases which do 

not surge (e . g .  Trapridge Glacier at the present time) . 

The purpose of this paper is t herefore to examine the 

in terplay bet w een thermal regime and basal sliding in 

greater det ail, with a \·iew to s u bstantiating MacAyeal's 

vision of t h e  Hudson Strait s u rges. 



2. ICE-SHEET M ODEL 

In seeking a simple but realistic model for ice-sheet 
motion, we make use of a lumped parameter version of a 
boundary-layer theory de\'eloped by Fowler (1992), 
based on an original idea due to N ye (1959), and 
subsequently developed by Lliboutry (1981). This is that 
large ice sheets have dynamics which can be character­
ized by "shear layers" near the base where the shear is 
largest due to the high stresses and high temperatures 
there. In addition, relati\'ely high velocities cause thermal 
gradients to be elevated in a thermal boundary layer near 
the base, with the shear layer lying inside this. Because of 
the boundary-layer nature of the flow, it is possible to 
produce a parameterized model which encapsulates the 
dynamics. 

Physics of the tnodel 

We begin by describing the physical processes and their 
effects; the mathematical detail follows this. The 
horizontal motion of ice sheets is dri\'en by the shear 
stresses at depth generated by the surface slope of the ice 
(i.e. ice flows down the "hill" generated by its surface). 
This flow is thermally acti\ 'ated by the dependence of 
viscosity on temperature, and this dependence is 
sufficiently strong that one can effeClively consider that 
all the shear takes place where the ice is warmest, i.e. near 
the bed. \Ve call the region near the bed where the shear 
is concentrated a shear laver and, in this layer, the 
horizolllal veloci ty u rises from its val ue Ub (the basal 
sliding \ 'elocity) at the bed to a far field (i.e. far from the 
bed) \'alue ux, whieh is esssentially independent of depth. 
Also in this layer, frictional heat causes an imbalance 
between the basal heat flux from the bed to the ice qb, and 
the heat flux delivered from the shear layer to the ice 
above, qT. Approximate relationships between these 
\'ariables can be derived. 

An important constituent of the model is the 
determination of the heat flux into the plug flow of ice 
above the shear layer. rfuoc is very small, this should be 
conduCli\ 'e (and thus qT ex h-\ where h is ice thickness) 
but, if Ux is very large, \\'e expeCl a thin thermal 
boundary layer to exist near the base, though we can 
show that the shear layer lies within this thermal 
boundary layer (see Fig. I). In this case, we find 
qT ex u 1, and in our simple model we simply add the 
conductive to the convectively induced heat transfer. 

\Ne thus propose relations between qT, qb, UOC, Ub and 
h based on the dynamics of ice, which involve the basal 
shear stress T and the basal temperature 11,. \\re have four 
such relations and, in order to find an expression for the 
horizontal ice flux Q � huoc, we require two further 
relations amongst the \ ariables. These folio\\' from our 
descri ption of the sliding process at the base. If the base is 
frozen, then u" = 0 and qb is the prescribed geothermal 
heat flux. However, if the base is temperate, then we 
prescribe 71, = �n, the melting temperature, and a 
suitable sliding law relating T to Ub. This relation also 
involves the effective pressure N (ice-overburden pressure 
minus subglacial drainage water pressure), which must be 
determined by a suitable drainage theory. In particular, 
N will depend on the water supply Qw, which is itself 

Fowler and Johnson: Thermally regulated surges oJ ice sheets 

IHudson Bal'l 

ice dome 
[Hudson Straitl 

- - - - -

lbcnnal boundary layer 
ice strec:un 

� __ . --------:-'1'm 
----- � �....,.....,.... � 

\"" " "  ",m�"",� 
till 

bedrock 

Fig. 1. Schematic represenlatioll oJ an ice sheet, based on 

cOlldilions ill the Laurentide ice sheel. The location oJ basal 

shear and Ihennal boundary la)las is also indicated. 

related to the ice flow, being proportional to the excess 
heat generatcd at the bed (geothermal plus friction minus 
heat lost to the cold ice abO\ ·e). 

The sliding law is crucial to our conclusion that a 
multi-valued ice flux vs depth relation is possible and 
indeed likely. When the bed is temperate, sliding occurs 
but, if the velocity is low, then little frictional heat is 
generated and there is little water flow. Crucial to our 
results is the notion that the cffective pressure N decreases 
as water supply increases. This says that as water pressure 
increases, thc hydraulic flow increases, which makes 
sense, but is also contrary to the drainage characteristics 
ofRothlisberger channels: the hypothesis aN /[)QI\' < 0 is 
based on recent theories of drainage oyer deformable 
sediment beds. With this assumption, low values of Q". 
correspond to high iV, or low water pressures, and for 
sliding of ice o\ 'cr a deformable till, we expect that the 
basal velocity Ub increases as water pressure incrcases, i.e. 
N decreases (the till becomes more mobile). Thus, low 'Lib 
implies low QI\' implies high N, which is consistent with 
the assumption of low Ub. 

However, as the ice thickness increases, the conductive 
heat flux into the ice dccreases and the water supply 
increases. An increase of Qw leads to a decrease of Nand 
therefore enhances sliding. A positive feed-back exists, 
because the increased sliding \ ' Clocity causes enhanced 
water prod uction via frictional heat prod uction, and in 
fact wc find that the result is a run-away, in the sense that, 
for sufTiciently large ice thickness, thc "slow" mode (Iow 
'Ub, low Qw, high N) is not viable and a fast branch (high 
Ub, high Qw, low N) takes O\·er. As a consequence, we find 
a multiple-\'alued relation for ice flux Q as a function of 
ice thickness h. 

Mathetnatical Inodel 

The geometry we consider is shown in Figure I. To fix 
ideas, we consider specifically a test section of the 
Laurentide ice sheet which extends frOI11 an ice divide 
down the ou tlet of Hudson Strai t, but the concept is 
applicable elsewhere such as for flo\\'lines extending south 
into the ice lobes which terminated the ice sheet in the 
Great Plains area of North America. To the south of the 
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di\'ide, the Canadian shield provides a hard base and wc 
conceplUalize the ice hel-e as being relatively stable. 
\"onh of the divide. the test section \I'e consider lies over 
Hudson Bay and is channclized inlo the ice stream in 
Hudson Strait. Let the horizontal ice \'clocity be u and 
the vertical coordinate be z (with z = 0 as the base). 
Glen's flow law may be written in the approximate form 
appropriate for a shearing flow 

where we use the Frank Kamenetskii (1955) approxim­
ation (for IT - 7;111 « 7;11) to simplir)· the Arrhenius term 
exp( -E / RT). Here, Am is the rate facLOr at the pressure­
melting tcmperature 7;11' E is the activation energy, R is 
the gas conSlant and T is the basal shear stress, which can 
be taken as constant through the shear layer. 

In the thermal boundary layer, heat advection 
balances conduction but, within the thinner basal shear 
layer, we can ignore heat adveclion, so that the 
temperature is given approximately by 

0= kTzz + TUz (2.2) 

where subscripts denote partial derivatives, thus 
Uz = au/az, etc.; hence, integrating with respect to z, 

(2.3) 

where qT is the heat flux dcli\'Cred from the shear layer to 

lhe thermal boundary layf'r of tht' ict' sheet, qb is the basal 
heat flux at z = 0, and Uex; and Ub are the far-field and 
basal "eloci ties. 

An integral relation between heat flux and T is 
obtained by using Equation (2.1) in Equation (2.2). 
i\lultiplying Equation (2.2) by Tz and integrating, we 
obtain 

(2.4) 

where we ha\'e used the fact that the exponential term 
tends to asymptotically small \'alues when z extends 
beyond the shear layer (Fowler, 1992). 

The basal shear stress is gi ven by T = pgh sin a, where 
p is densi ty, g is gravity, h is ice depth and sin a is the 
surface slope. In our parametric approach, we take h as 
the divide heigh t, 1 as the length of the test section (the 
diameter ofR udson Bay) and we take sin a � h/ l, so that 

T = pgh2/l. (2.5) 

In reality, Ux must change ri-om zero at the di\'ide to a 
large value at the outlet. In our lumped approach, it is 
taken to be an a\'erage value. Then the mean depth is 
h/2, the area of the test section is �lh, while the ice­
drainage flux is �h:uoo. Tt follows that mass conservation 
can be expressel as d[�lh]/dt = la -1huex;, whence 

h = 20, - (hu,:x)l) (2.6) 

where a is the average accumulalion rate over Hudson 
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Bay. In general, it may depend on the atmospheric 
adiabatic lapse rate, in which case a would be a function 
of the mean ice depth h/2. 

In the thermal boundary layer, shear heating is 
negligible (it is concentrated in the warmer shear layer), 
so that (since the boundary-layer temperature relaxes 
quickly to a steady state) 

(2.7) 

where x is the horizontal coordinate (see Fowler (1992) 
for further details). The temperature profile necessarily 
evoh-es with x and it is indeed possible (with u = uoo, 

w = 0, Tb = constant, for example) to find a similarity 
solution for T (indeed, this can even be done if Uoo = 

uoo(x)). With T = Tb on z = 0 and T = Too as z ---> 00 

(i.e. outside the boundary layer), the similarity solution is 

(and 1(0 = erfe(�)), whence the average heat flux 
deli\'ered LO the thermal bouT)dary layer (from the shear 
layer) is -1'(0) x [pcpuoc k/l]"(11, - Too). Since -1'(0) = 

2/ jii, we thus have 

qT = (2/ J7f) [pcpuCXJk/ l] 1 (11) - Too) + (k/ h) (Tb - Ta) 
(2.8) 

where we simply add the second term to include the heat 
flux due to conduction when h or Uoc is small (Ta is the 
surface temperature). Notice that a simpler approach to 

obtain qT would be to take a linear temperature profile 
through the thermal boundary layer thickness bT, thus 
the first term would be qT = k(Tb - Too)bT, where from 
Equation (2.7), we would dimensionally estimate bT:::::: 

1 
(kl/ pCpuoo)2. This gives the same result without the pre-
multiplicative factor and is probably just as good. 

The Equations (2.3), (2.4), (2.5), (2.6) and (2.8) 
provide five equations for the unknowns uoo, qb, T, hand 
qT. Howe\'er, the variables Ub, Tb and Too remain to be 
prescribed. The temperature Too at the edge of the 
thermal boundary layer is derived from the divide 
temperature at an earlier time. Since heat conduction 
may be small (as measured by the smallness of bT 
compared to the ice depth), the surface temperature is 
simply advected downwards. However, we will assume for 
simplicity that the surface (divide) temperature is 
constant, and thus we prescribe 

(2.9) 

Basal conditions 

Finally, we constitute the basal values ofT and u. There 
are four possible states of the basal system which we will 
consider. 

(i) Frozen base 
We prescribe 

Ub = 0, qb = G, while Tb < Tm 

where G is the prescribed geothermal heat flux. 

(2.10) 



(ii) Sub-temperate base 

VVhen the base reaches the pressure-melting point, sliding 
is initiated, but at first there is no net water production 
(we ignore any possible flux from the surface). In this 
case, we have 

(2.11) 

where Ub* is the "fully developed" sliding \'elocity 
detailed next. 

(iii) TemjJerate base 

When 0 < qb < G + TUb, then "fully developed" sliding 
occurs. This is the sliding commonly prescribed using a 
"sliding law" of the form T = f(Ub, N), where N is the 
effective basal water pressure ( =  Pi - Pw, where Pi is ice­
overburden pressure and Pw is basal water pressure). 
Sliding theories for hard beels developed in the 1960s and 
1970s led to that enunciated by L1iboutry (1979). In its 
simplest expression, this gives T/ N = f(Ub/ N") (L1i­
boutry, 1987), where n is the exponent in Glen's law. 
"Vhen f is a power law, we have the relation 

(2.12) 

(consistent with L1iboutry's result ifnr + s = 1), deri\"Cd 
theoretically by Fowler (1987a), with typical values T::::O 
1/4, s::::o 1/4. Laboratory experimental results of Budd 
and others (1979) are also consisten t wi th Eq uation 
(2.12), with (at high N) r = s = 1/3, c::::o 0.18 m-� bar1 

1 5 -
yearJ (I bar = 10 Pa, I year = 3 x 10' s); at low N, more 
appropriate values were r = s = 1. Bindschadler (1983) 
also found some consistency with Equation (2.12) using 
measurements on Variegated Glacier and indeed found a 
similar value of c. 

However, these results apply for ice sliding OHr a 
lumpy bed, where the principal resistance is due to the 
flow past the bumps. For the situation of rclevance here, 
where the principal resistancc is due to deformation of a 
layer of saturated subglacial sediment, a simple sliding 
la w is just 

(2.13) 

where T} is the viscosity of the till and hT is its depth. The 
effective water-pressure dependence arises through influ­
ence on the till viscosity. A law proposed by Boulton and 
Hindmarsh (1987) based on seven measurements at 
Breidamerkurjokull is E = AToN-b, in which case we 
could write Equation (2.13) in the form of Equation 
(2.12), with T = I/a ::::OO.75, s = b/a ::::OI.4 and c= 
(AhT)-T Boulton's law is contrO\'ersial, howe\'er, and 
values of T and N appropriate to Ice Stream B (T = 
0.15 bar, N = 0.5 bar) give a velocity 01'9 m year 1 for till 
of thickness 8 m, as opposed to the 500 m year 1 obsen·ed. 
Alley and others (1987) estimated the \'iscosity of till 
under Ice Stream B as 1010 Pa s. 

Despite concerns with the Boulton-Hindmarsh rheol­
ogy, it is the simplest type of rheology which mimics the 
effect which increasing water pressure has, namely to 
decrease till viscosity. However, it suffers one important 
conceptual limitation. Sincc thc actual deformation of till 
involves particles moving round and past each other, 
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dilation is necessary to accommodate the flow. Therefore, 
it is only realistic to suppose that the viscosity T} = 
Nb / ATo-1 tends to zero as N ---+ 0 for an unconflned flow 
(when it dilates to a slurry). For flo\l' in a confined 
channel (such as a till layer), deformation causes dilation 
and consequently normal stresses, so that it is properly a 
non-Newtonian material. The simplest way in which a 
non-zero \'iscosity at N = 0 can be included is to replace 
N in Equation (2.12) by N + No, so that 

T = cu,;(No + N)'. (2.14) 

There is little to constrain such an No but a least-squares 
fit to Boulton and Hindmarsh's limited data yields No = 
0.045 bar, comparable to the yield stress, and suggests 
that normally a relationship such as Equation (2.12) may 
suffice, although there is \'ery lillle to constrain the choice 
of c, rand s. 

The effective pressure N depends on the \'olume !lux 
Q of \I'ater through the drainage s\·stem. Here \I'e are 
concerned \I'ith the drainage fi-om a till-based system, for 
which Walder and Fowler (1994) suggested that a system 
of "canals" scoured from the till will exist, within which 
N is essentially a (decreasing) function of Q; since Q 
increases downstream, N will decrease and so also will the 
\'iscosity, as is inferred for Ice Stream B (Alley and others, 
1987). Taking imo accoulll basal topography. we then 
expect a reticular network of interwovcn canals with 
spacing controlled by the wa\'e1ength of topographic 
variability. 

The existence of a basal system of canals is bv no 
means certain. A modified viewpoint is that the wa[('I" 
simply ponds and drains as a patchy but connected 
water film (Alley, 1989). A sliding law based on the 
corresponding hydraulic system has been proposed and 
used by Alley (1990); he also found multiple dynamic 
states and indeed the crucial point is that the basal 
velocity increases with the water supply. Thus, \\·hile the 
precise quantitative nature of the basal hydrology is of" 
importance, from the point of\"iew of the sliding la\\", it is 
only a detail. 

The excess heat production at the bed is G + TUb - % 
and this produces a downward melt \'Clocit\· of (G + Tlit, 
-qIJ)/ p",L, where L is latent heat and PI\" is the density of 
water. rf the spacing of an assullled reticular drainage 
net\\'ork is Wrl, then the !lux of \\'cHer per channel is gi\'en 
(i n parameterized form) by 

Q", 
= 

(G + TU" - q,,)lwd 
p\\"L 

(2.15 ) 

and N is gi\'en by a relation such as that of \\'alder and 
Fowler (1994). For canals incised into rclati\'ely fine­
grained sediments, they put (with sin 0::::0 hill 

(2.16) 

where Ds is a "characteristic" size of suspended grains in 
the water flow and c/::::o I. I x 10" bar s �. f\ represen ta­
tive \'alue of Ds might be Ds = O.l mm = 10 Im, in 
which case a slope of 10 :l and a water flux of I m3 s 1 
gives N::::o 0.3 bar. It must be emphasized that Equation 
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( 2 . 1 6 ) is poss i b ly a crude r e p resenta t i o n  a n d  t h e  
relationship i tself describes only one possi ble drainage 
scenario;  o thers are arguably j u s t  as plausible.  

I n  using E q u a tion (2. 1 2 ) or E q u ation (2 . 1 4 ) ,  toge t h er 
w i t h  Eq uations ( 2 . 1 5 ) and (2 . 1 6) ,  to prescribe 7 in terms 
o [  Ub, we have to consider w h a t  h appens as QIV � O.  

E q uation ( 2 . 1 6) cannot stric t l y  apply for small Qw, si nce 
i t  i m plies that N � 00 as Qw ---> O. In fact ,  for very small  
values of Qw , N will  increase r a p i d ly from zero ( flo t ation) 
a t  t h e  onset o[ channelized flow to a value N ;:::; p, where p 

is a crit ical elTective pressure rela ti ng creep propert i es of 
t i l l  to t hose of ice (Walder a n d  Fowler, 1 994) . Based on 
t h e  Bo u l ton- H in d marsh rheology, p ;:::; 8 bar, w h i l e  for 
l ess viscous t i l l ,  p could be h i g her.  At any rate,  t his 
s uggests t h a t  the correct l i m i t i n g  val ue of N to use as 
Qw � 0 is p. A practical way to m odel this is to define Qw 
v i a  

(2 . 1 7) 

a n d  then replace QIV in Equat ion (2 . 1 6) by (Qw + QIV) ' 
Since we expect QIV to be "sm a l l " ,  t here is l i ttle d i fference 
m ade in doing t hi s .  We then use E q u ation (2 . 1 2 ) and the 
fu l ly developed sliding velocity Ub* is  defined by 

(2 . 18) 

Now in fac t ,  s ince QIV is "small" and p is " l a rge",  we 
h ave that  Ub* i s  a lso sma l l ,  and i n  p ractice we can ignore 
t h e  sub- temperate region ( ( i i ) a bove) al together. \Ve t h us 
take the sliding law in the for m  

7 = cUI/iVs , 
clDshb 

N = -,--, , 
l"Q",3 

Qw = 
(G + 7Ub - qb) lwd 

PwL 

(2 . 19) 

(2 .20) 

(2 . 21) 

while QIV > 0, and note t h a t  as Qw � 0, then (formal ly) 
N � 00 and Ub � O. The second o[ these al lows [or a 
continuous join to the frozen regim e  where Ub = O .  

Molten base 

A further regi m e  is possi ble,  w h i c h  we simply ignore.  If 
t h e  h ea t  fl ux to the ice reaches zero, i . e .  if % = 0, t hen a 
b asal  l ayer of tem perate ice for m s  (e .g .  H u t t e r  and 
o t h ers, 1 988) , and in this case the whole ice-dynam ics 
model  must c h ange, since the ice viscosi t y  depends on 
moistu re con t e n t  ( L1ibou try, 1 9 76 ) . In such a sit u ation,  
mois tu re is prod u ced wi t h i n  the ice and drainage o f  this 
w a te r  t o  t h e  basal  system c a n  only e n h a n c e  t h e  
i ns t a b i l i ty w e  e nvisage. H owever,  i t  is n o t  spec i fically 
i n cl uded in our model and is  i n  fac t  unlikely t o  occur 
with the pres e n t  assumpt ions .  

3. ANALYSIS 

T h e  Eq uations ( 2 . 3 ) ,  (2 .4) ,  ( 2 . 5 ) , ( 2 . 6 ) ,  (2 .8)  and (2 .9) , 

together with t h e  boundary conditions (2 . 1 0) or ( 2 . 1 4) ,  

558 

(2 . 1 5 ) a n d  (2 . 1 6) ,  a r e  scaled b y  choos i ng 

Ub , 'Uoo cv [U] , 7 "-'  [7] , h cv rh] , t "-' [t ] ,  
Tb - Tm cv Too - T.n "-' Ta - T.11 "-' i1T , 

( t h a t  is to say, we define d imensionless  variables u* , 7
*

, 

etc .  by wri t ing U = [u]u* ,  7 = [T]T* ; in t h e  sequel,  we drop 
t h e  ast e risks for convenience) . We choose balances via 

G = [T] [U] , 

[Qw] = 
GlWd

, 
Pw L 

[h] _ [ ]  _ [h] [u] 
[t] - 2 a -

l ' 

From t h ese we derive 

G [h] = 2pg[a] , 

[T] = G/[u] , 

and for val ues 

, 
[N] = c'Ds [h]" 

, " 
l6 [QIVP 

[7] = pg[hf Il. 

[u] = 2l [a] / [h] , 

G "-' 0.05 vV rn-2 , p  "-' 103 kg rn-3 , g  "-' 10 rn s-2 , 

[a] "-' 10 crn year- 1 , l "-' 2000 km, 

we fi n d  

[h] "-'750 rn, [u] "-' 500 rn yearl , [7] "-' 0 .03 bar, 

[t] cv 3750 year. 

(3 .2 ) 

(3 .3 )  

(3 .4)  

(3 .5 )  

T h es e  val ues are a p proximately representative o f  [as t ­
flow i n g  i c e  streams and are perh a p s  relevant to t h e  
c o n d i t io n s  o [  a t e m p e rate b e d .  T h e  correspon d i n g  
d i m e nsionless model e q u a tions are 

qT2 = qb2 + 2/-Ll h8eAT" , 
qT = qb + h2(uoo - Ub), 
T = h2 , 

h = a -huco , 
qT = JL2uco1(Tb -Ta) + (olh) (n -Ta) ,  (3 .6 )  

toget her w i  t h  

o r  

qb = 1,  Ub = 0 ,  i f  Tb < 0,  

Tb = 0 ,  T = JL3Ub NS , 
Qw = 1 + h2ub - qb , 

N = htIQ), if Qw > o .  

T h e  p arameters are d efined by 

(3 .7 )  

(3 .8) 

(3 .9)  



and we use va l u es 

k = 2 . 1  W m� l K� I , R = 8.3 J mol�1 K-I , 7;11 = 273 K ,  

A m  = 5 .3  X 1O� 15 kPa -3 
S- I , n = 3, 

E = 139 kJ mol- I , p = 91 7 kg m�3 , g  = 9.8 m s�2 , 

1 =  2000 km, [a] = O . l myear� I , cp = 2009 J kg� 1 K - I , 

G = 0.05 W m�2 , f1T = 30 K.  ( 3 . 1 0) 

'Ve then have 

,\ � 6 .7 ,  -6 JLI � 1 .5 x 10 , 

JL2 � 3 .7 , 8 � 1 . 7  ( 3 . 1 1 )  

and JL3 is rather  uncertai n .  Com parison o f  observed 
s t resses '" 0 . 1 5  bar and velocities 500 m year I at I ce 

Stream B w o u l d  suggest JL3 � 5 ,  for example.  

Cold approxiInation 

We use the fac t  t h a t  JLI « 1 to a p proximate t h e  rel a tions 
in Equations ( 3 . 6 )  and ( 3 . 7 ) . W e  have that qT � qb = I,  
and then 

(3 . 1 2) 

w h ere we t ake Ta = - 1  as cons tan t  ( more generally it 

m i ght be a fu n c t i o n  of h) . Thus I Tb l  = 1 - (hI8)  a n d  t he 

ice nux is 

Q � JLI h7 exp [ - '\ { l - ( hI8) }] .  (3 . 1 3 )  

I t  increases monoLOnically with h unt i l  Tb = 0, w h i c h  i s  at 
h :::;, 8, and where Q :::;, JLl 87 '" 0 .66 x 1 0 4 .  Thus,  t h e  ice 

is v i rtual ly s tagnal 1 l  if the base is frozen.  

TelTIperate approxilTIation 

''''hen Tb reach es zero at the base , we adopt the tem perate 
condi tions ( 3 . 8 ) , w h ich gives ( wit h  IT" I = 1 )  

qT2 = qb2 + 2JLI h8 , 

qT = qb + h2 (ucc - Ub ) ,  

qT = J L2Uoo� + (8Ih) ,  

[ 2 ]
'/3 _ JL3UI;' 1 + h Ub - qb - h2�(8/G) . (3 . 14 )  

These i m p l y ,  s uccessively, qT :::;, qb  = q ,  say, Uoo :::;, Ub = 'U, 

say,  and thus we have to solve 

h = a - hu, 
,. 

[ 2 � ( I  ) ] '/3 _ JL3U 
1 + h U - JL2U- - 8 h - h2- (8/6) . (3 . 15)  

These eq uations a re valid providing 0 < qb < 1 + h2ub 
( the dimensionless version of 0 < qb < G + TUb , corres­

ponding to a t e m perate base) . From Eq u ations ( 3 . 1 4) ,  
qT - qb :::;' JL 1 h8Iq a n d  ub :::;, uoo - JL l h6Iq. T h e c o l d  

temperate tra n s i t ion is when Ub = 0, so t h e  tem perate 
condi t ions are val id if Ub ?: 0 ,  i .e .  U >  JLl h6 Iq; e q u iv­
alent ly  (si nce a lso q :::;, 1 when Ub = 0) U > J L I  h6 and , 

since the t ransi t ion occurs when h :::;, 8, this i s  U > J-L1 8G 

Fowler and Jolll7son:  Thermally regulated surges oJ ice sheets 

T h e  t em perate-mo l ten t ransition is when q = O. H o w ­
ever, t he third o f  E q  u a tions (3 . 1 4) i m  p li es that q > 0 ,  so 
t h a t  in t h is mode l ,  basal  molten zones d o  not occur . 

'Ne now conside r E q  u ation ( 3 . 1 5 ) .  Denote the l ert­
and r igh thand sides a s  P(h,  u) ,  R(h, u) and also put p = 1 
+h2U - JL2u� - 8Ih ,  thus  p = ps/3 . For given u > O, p  
and h ence P is monotone increasing w i t h  posit ive h, w h i l e  
R i s  m onotone dec reasing (we assume 8 < 12) . Therefo re ,  
t h ere i s  a unique pos i tiv e  h for each v a l ue of u .  

A l t ernatively ,  f i x  a v a l ue of h > O. The fu nc tion p is a 

q u a d ra t i c in u1 w i t h  no roots i f  h >  he = [ (82 + /j} )1 

+ 8] /2 ,  two posi t ive roots if 8 < h < he and one posi t i ve 
root if h < 8. On t h e  o t h er hand, R increases with u a n d ,  
since p� = R3/2s IX (d)3rj.' ,  then i f T  > 813  (as w e  assu m e ) 

1 . 1 I I 
R > P for large enough u'i (sll1ce p2 � U2 as u'i --7 00 ) . By 

considering intersec tions of P and R, vve then see t h a t  for 

large 1-£3 there w i l l  be a u n ique val u e  of u (gi\'en h ) for 

h >  15, while for sm a l l  J-L3 , u(h) wil l  be m u l t i-val ued . T h e  
two d i fferent possi b i l i t i e s  are i l l ustrated i n  Figure 2 ,  using 

values gi"en in Eq u a tion (3 . 1 1 ) for J-L3 = 1 .0 and J-L3 = 

20 .0 .  For the va l ues i n  E q uation ( 3 . 1 1 )  we find t h a t  a 
m u l t i - v a l ued fl u x /d e p t h  rela t i on o c curs if JL3 < J-L* 
:::;, 1 6 . 98 .  The lefth a n c! nose of the c u rve,  at h = hll l '  i s  
to t h e  left o f  the cold-t e m perate trans i t ion ( i .e .  h :::;, 15) i f  

JL3 < f1 :::;, 2 .01 . 
An analytic a p p ro x i m ation to t h e  relation can b e  

o b t a i ned when JL3 is s m a l l .  In t h a t  case. we c a n  
approximate the s o l u t i o n  of Equa tions ( 3 . 1 5 ) as fol l o w s .  

ice flux Q 
10' 

10' 

10 

. ./" 
.. /., 

./ 

./ .. 

........ ------- -- COLD 

/' 
/' 

/' 

---- TEHPERATE 
-" '-" -- -- TEMPERATE2 

depth h 

� .. 

Fig. 2. Two flux curves Jor !he jJarameters in Equation 

( 3. 11) . together with J-L3 = 1 (lnulli-valued) and JL3 = 20 

( single-valued) . With J-L3 = l ,  the slow nose is at 

h = he = 2.86, and Ihe Jasl nose is at h = hi l l  = 1.44 . 

These corresjJond to dejJ!hs oJ 2 145 and 1080 m ,  

TesjJectivelj" A !  he ,  the velocity is 0 .034 ( rv 17 m 

year ' ) , while at the same value on the fast branch it is 

1 . l8 x Jrf ( � 590 kmyear ' or 2 cm s  I) . A l  hl1 l '  the 

veLocilJ1 is 5.24 ( � 2.6 km year ') .  One can show Ihat the 

consequent surge duration is ajJfJ1'oximate/y 0 .03, cones­

jJonding 10 116years (based on Equation (3.5) ) .  
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The fast  branch is 

where 

U �  ChG. 

C _ �3/(3T�8) 3(4 + 8) 
- !-l3 

, a  = 2 (37" - 8) ' 

( 3 . 16) 

(3 . 1 7) 

for exam ple,  i f  r = 8 = 1 /3 , then C � !-l3�9/2 , a :::::; 10 ,  so 

we expect E q ua tions ( 3 . 1 7 ) to be acc u r a t e  even for 

moderately low !-l3 . The l o w e r  and middle b ranches are 

given by 

1 1 [ 2 2 2 1] U2 = 2h2 !-l2 ± {!-l2 + 15 - (2h - 15) } z , (3 . 1 8) 

so the nose is at h = he as d efined before. A t  t h e upper 

( i .e .  larger Q) nose, h = h m , u » 1 and Eq u a ti o n  ( 3 . 1 5) is 

approxi m a ted by 

IJ. 3/su3'I' 2 1 ,...3 h U - !-l2U2 = 
-'---;;-l-(2-_---:,2c:-) , 
hs 6 

and i t  follows from this t h a t  a t  the nose 

where 

v = ( 1 2  - 58 + 247") /28. 

(3 . 19)  

(3.20) 

(3 .2 1  ) 

I f  r = 8 = 1/3, then v � 27,  so that agall1 we expect 

he < 15 fo r moderately l o w  !-l3 . I n  p a r t i c u l a r, t h e  

magni tude o f  the surgi ng ve l oc i ty depends s e n s itively on 

!-l3 · 
We s e e  t h a t  the sl id i n g  law can give r i se to a 

p h enome non which we m a y  t erm hydraulic run-away. I f  

h reac h es he , then there i s  a n  u nstable t r a ns i tion t o  a 

fas t-sl i d i ng mode by t h e  e n h anced p ro d u c t ion of 

mel tw at er,  a l th o u gh the i c e  a bove rema i n s  cold . We 

thus h ave a m echanism for r e l a x ation osc i l l a t ions of t he 

i c e  s h ee t .  

4 .  DISCUSSION 

The param e terized model p resen ted here i s  o f  course 

crude b u t  n evertheless it enc apsulates the b a s i c  physics of 

s l i d i n g  o v e r  deform a b l e  s e d i m e n ts and s h ows t h a t  

thermally regu la ted surging i s  a feasi ble p henomenon . 

Hydraulic run-away relies o n  two features. First ,  sliding is 

enhanced by i ncreased water produ c tio n .  T h us, the 

i ncrease in fri c tional hea t i n g  with veloc i t y  is a posit ive 

feed-bac k .  Countering t h i s  is t h e  negative fee d-back due 

to the i nc rease in heat Dux from the base w i t h  increased 

veloc i t y .  At low Ub , the second of these d o m i n a tes, since 

qb � uJ, b u t  at h igher val u es of Ub frict ional  heating 

predom i n a t e s  and a fas t-slid in g  mode becomes possible. 

As appl ications, we con si d er the Hudson S trait mega­

surges to be a prime exam p l e  (MacAyeal ,  1 993a,  b ) .  We 

should also l i k e  to consider w hether therm a l l y  regulated 

surging o f  Trapridge Glaci e r  can be looked at from the 

same poi n t  of view. In t h i s  case,  the base i s  t e mperate and 
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basal  water is  evacuated subglacially as ground-water 

flow. Cu rren t l y ,  t h e  glacier would reside on t h e  slow 

branch.  A di fference in the val ley-glacier case i s  t h a t  b asal 

mel twater i s  l i k e l y  to be mainly surface-derived and 

w h ether the p o s i t i v e  feed-back of ice veloci ty on water 

p ressure can opera te is u nclear. 

Lastly, we consider sheet flow over a deform a ble bed , 

i . e .  where the wid t h  of the flow is much greater t h a n  the 

depth and where the flow is fed fro m  a stable c a t c h m e n t :  

w e  have in m i n d  t h e  Siple Coast o f  Antarct ica .  S u p pose 

u ps tream that Q(h )  is a monoton e  fu nction ( e . g .  d ue to 

l a c k  of a basal t i l l  cover) b u t t h a t  downstream we have 

Q = Q ( h )  as in F i g u re 2. With condi t i ons of con t i n u i t y  of 

Q and h at t h e  j o i n ,  we conjecture t h at ,  if  this Q v a l u e  lies 

o n  the unstable p a r t  of the downstream Q(h) c u rve, a 

u n i form flow i s  l at e rally unstab l e  a n d  will  break u p  i n to 

fas t - and slow-movi ng parts, and t h a t  these are precisely 

ice s treams. A s t udy of this pos t u la ted i nst a b i l i ty is  

d e ferred to fu t u re work . 
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