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Ice-sheet surging and ice-stream formation

A.C. FOWLER AND C. JOHNSON
Mathematical Institute, Oxford University,

ABSTRACT. A simplified model of ice-sheet hehaviour is described. It combines
the assumptions of rapid ice flow, high viscous activaton cnergy and realistic
sediment-based sliding dynamics to form a non-linear diffusion-type equation which
can display relaxation oscillations analogous to those of surging glaciers, and which
may be relevant to large-scale surges of the Hudson Strait and Cabot Strait ice streams

of the Laurentide ice sheet.

When the physics of this model 1s applied to a laterally extensive umdirectional ice
flow, such as that in the Siple Coast ol Antarctica, an appropriate mechanism may
exist for the spontaneous generation of ice streams.

1. INTRODUCTION

Heinrich events are sequences in the sedimentary record
ol the North Atdantic which indicate periods when large
amounts of ice-rafted debris were scoured from Hudson
Bay and Hudson Strait and transported out to the ocean
Heinrich, 1988: Bond and others, 1992;
Grousset and others, 1993). The simplest interpretation of

on icchergs

these sequences (and others described by Bond and Lotu
(1995)) is that they occur via repeated, uasi-periodic
surges of the Laurentide ice sheet (Andrews and Tedesco,
1992; Clark, 1994), and specifically of the Hudson Bay ice
dome draining through Hudson Strait. MacAyeal (1993)
has suggested a simple mechanism whereby this could
occur, and Fowler and Johnson (1993) have shown that
this concept is compatible with theoretical descriptions of
1ce Nlow over wet, deformable sediment.

The concept of ice-sheet surges is highlighted by the
existence of ice streams, for example in Antarctica, which
are relatively fast outlet tlows. Their notable feature,
particularly on the Siple Coast, is their lateral variability.
That is to sav, the ice streams which drain into the Ross
Ice Shelf divide the drainage basin into regions of fast and
slow flow. This is suggestive of a lateral instability, as is
also the fact that drainage of ice sheets generally seems 0
occur through localized ice streams. Again, a principal
feature of the Siple Coast ice streams is that they may be
underlain by a laver of wet, deformable sediment (Alley
and others, 1987).

In this paper, we extend Fowler and Johnson's (1995)
crude model in two wavs. First, we allow for spatal
variation in the variables, thus deriving a non-linear
diffusion-type equation, whose surging solutions we
describe. Sccondly, in laterally extensive flows (such as
on the Siple Coast, for example), we allow for lateral

68

spatial dependence of the variables and we show how the
resulting model may result in the spontaneous generation
ol'ice streams. Payne (1993) has also found oscillations in
an ice-sheet model with thermally activated flow and
shding, although the mechanism is diflerent

proposed here. In other work, he also found that laterally
extensive flows are subject to streaming instability
personal communication from A. J. Payne).

2. ICE-SHEET MODEL

We follow the development of Fowler and Johnson
(1993), who described an approximate model of ice-sheet
dynamics, based on the (asymptotic) limits of strong
temperature-dependent variation of viscosity and small
thermal diffusivity.

sheet of thickness h(x,t) (2 is lowline distance, t is time
undergoing plug flow: the horizontal velocity is u(x,t),
where u is just the sliding velocity, shearing is negligible
and we are assuming that the bed is at the melting point,
mainly for convenience.

Mass conservation implies

hy + (hu), = a (2.1)

where a is the accumulation rate and subscripts x and ¢
denote partial derivatives. The sliding  velocity w s
determined by a sliding law of the form prescribed by
Fowler and Johnson (1993). If the hasal shear stress is 7
and the heat flux

then the heat delivered to the interface is G + Tu — g,
where G is the gecothermal heat flux. We assume it is
constant, having a value G =0.05 W m *. If the resulting
water supply is distributed across a channelized system
with inter-branch spacing wq, then the water flux per



channel ncreases in the direction ol ice low according to

dQ (G+7u—quy

-9 29
x pwL (2.2)

where pyis water density and L is the latent heat.

Walder and Fowler (1994) developed a theory which
implied that, for ice sheets moving over wet sediment, the
effective pressure N (overburden ice pressure minus water
pressure) would be related 1o Q by

N=c"/@ (2.3)
where ¢* was given by
)
¢ = Dyh, s, (2.4)
_i . o
¢~ 1.1 x 10" bar 573, and D is the characteristic

suspended-sediment grain-size. 'The sliding law is taken
in the lorm

—
]
[ ]

~—

T=cu N°

where values 0 < 7,5 < 1 are probably appropriate. The
coellicient ¢ 1s a constant which measures how “sticky™
the bed is. High values of ¢ mean that the bed has high
friction. The shear stress is

T = —pyhh, (2.6)

and the cooling rate may be determined by a thermal
boundarv-layver analysis.
Specilically, the temperature T satisfies

Wl — U T = kT, (2.7)

where the base i1s taken as z =0, ~ is the thermal
diffusivity and the vertical velocity is w = —zu' = —zdu/
dx by continuity (since w = u(r.t)). It uh?®/xl > 1,
where [ is the horizontal length scale, then it is
appropriate to solve Equation (2.7) with

T=Tyonz=0, T — Ty as z— oc, (2.8)

where Ty is the prescribed surface temperature, which we
take to be constant. A\ similarity solution is appropriate
and we find that the basal cooling is given by (Fowler and
Johnson, 1995

q=—h— = AT +— (2.9)

JT pepk u kAT
dz |,_g ™) & h

where AT =Ty — Ta. p is ice density, ¢, is the specific
heat, A is the thermal conductivity and

= / wda.
)

(2.10)
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The second term 1s added to represent conductive cooling
when w — 0.

The seven Equations (2.1), (2.2), (2.3). (2.5), (2.6).
(2.9) and (2.10) determine the variables hou, Q. 7.9. N
and €. We non-dimensionalize the variables by choosing
scales [N, [4], cte., where we deline

=10 =

i _ ]
o ~ Tul’

[e] =i

7| [t wgl
g = e,
N
(7] = c[u] [N]".
[7] = pglh)* /1.
la) = [7][u].
(€] = [u]l. (2.11)

cre, we cheat a bit, hecause the values of ¢, ¢ anc
H cheat a bit, | tl | f c |
particularly wq are very uncertain, even if appropriate.
Therelore, we argue as follows. A value of ¢ can be
I'herefor ry foll \ vl [ e I
imferred from present conditions on lee Stream B,
. - = 1

Antarctica, where 7=0.13bar, « =5300myear ', N =
0.4 har (Bentley, 1987), thus

B 0.15 bar
~ [500 mvear=1)"[0.4 bar]”’

G

The value of ¢ is taken from Equation (2.4), choosing
|h,! ~ 1073, Dy = 107" m. Thus,

(2.13)

. _L
¢ ~0.32 barms7i.

We have no estimate of wq, so we use [N] = 0.4 bar o
determine wq. We then lind [rom Equation (2.11) that

[ pgM\T
] = <(~I[N]‘“>

where M = [a]l. We choose 1= s = L rather arbitrarily,

(2.14)

and for values

[a] 2000 k. p = 917 kg =3,
g=98ms%  [N] =04 bar. (2.15)

0.2 m year ', |

and ¢ given by Equadon (2.12), we lind A7 =4 x 107
m?vear ' and

(4] = 258 m year™ (2.16)

We then have. with pye = 107 kgm L =335k] kg '
¢ =2kJkg 'K ' AT =530K. k=21Wm 'K '
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;o2
G =0.05Wm -,
M
[h] = = ~ 1550 m,
[u]

)
[t] = m ~ (.78 x 10* years,

2
(7] = @ ~ 0.11 bar,

Q) = {¢"/[N]}* ~ 2m3s !,
_ P“’L[Q]

=T

[q) = [7][u] ~ 0.09Wm~2,

(€] = [u]l ~ 5.2 x 10¥m?* year™'.

~ 3.7km,

(2.17)

When the equations are non-dimensionalized with these
scales, we obtain

he + (uh), = a,
Q: =v+71u—q,

N =1/Q3,
T=u"N°¥
7= —hh,,

q=Pu/&+ A h,
a= /I uwdx
0

where the parameters are defined by

kAT
A= g~ O
B G
7= kg

ﬁ:<mﬁMYﬁa”ll

(2.18)

~ (.55,

(2.19)

The equations can be written in the form

hy + (hu), = a,
u = Q5(—hh,),
Ou

([T uda}?

Q:=7v—uhh; - —AMh, (2.20)

where

R=1/r=2 S=s/3r=1/3. (2.21)

It should be emphasized that the values of the parameters
are not set in stone and we illustrate our thesis with
dilfering values below.

3. ANALYSIS
Fowler and Johnson (1995) analysed a parameterized

version of Equation (2.20) by replacing derivatives by a
heuristic integration. In effect, the second two equations
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g 1. Multi-valued velocily vs stress at values X =10,
vy =18, 3=237. This choice of paramelers is distin-
guished from the estimates in Equation (2.19) by historical
accident. In fact, by rescaling w and T in Equation (3.4), it
is easy lo show that the shape of the curve depends only on
B/, v=(R+2~-5)/2(R+1)=11/18 here. Ior
Equation (2.19), B/~4" = 1.7, while for the present values,
B/~ = 2.6. Examination of other values suggests that
F(7) is multi-valued approximately for 3/v* 2 2.

were replaced by
u = QSh?®,

Q=r+uh?— b — A/h (3.1)

and elimination of Q) indicated that w(h) could be multi-
valued. When Equation (2.20); is solved with such a flux
law, periodic surges result (on the convective time-scale,
here ~8000 years). In this section, we explore how these
results extend to spatially dependent versions of this
model.

First, we extend the model in Equation (2.20) to apply
to an entire ice sheet with a single divide at x = 0.
Evidently, we have

hy + (uh), = a,
U= —QS}I,R|}II|R71,IVI-,
Blul

Q: =v—uhhy ——
{fou (lx}%

—Mh (3.2)

However, the model is most easily discussed forz > (0. We
denote Equation (2.20)9 as u = f(7,Q), so that

hi + uhy + hfo{y +7u— ﬁu/él/Q — A/ h} = hf:(hhe),
(3.3)

where f; =0f/0r, fo=0f/@8Q. Since £ and Q are
essentially quadratures, this has the apparent character of
a degenerate non-linear diffusion equation, since
Of/07 > 0. The degeneracy refers to the vanishing
diflusion coeflicient when h = 0.

We discuss the full z-dependent model further in
scction 4; here, let us take a parameterized version of
Equation (2.20), where we replace Q, by Q and € by uwin
Equation (2.20)3. Then (with A =0)

U= (2STR,

Q=v+ur— B (3.4)
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Fig. 2. Schematic sequence of an ice-sheet surge following
the semi-parameterized model ( Equation (3.5)). In the
quiescent phase, the ice sheel thickens (AB — A'B’) on
the lower branch of the u vs T curve. At B', u jumps te the
top branch and this region of fast flew prepagates rapidly
backwards te G, se that the activated region GH slumps
Jorward. The resulting stump at G causes increased stress
there and the surge region is likely to prop agate backwards
to F. Following the surge, the quiescent phase resumes.

whenee we have u = F(7). It is easy to sce by graphical
considerations that F(7) will typically be multi-valued
since Q = 7 M58 = 7_5/3(211/2)67‘/5, (Fig. 1). This is
analogous to but more realistic than the parameterized
model of Fowler and Johnson (1995) (who also took
7= h?). The multi-valuedness arises through the con-
flicting roles of w in water production. A slow mode is
possible where @ is small, because low ) means low u and
also low u means cooling is effective at preventing much
water production. However, at the same parameter
values, it is possible (o have high @ and high u. The
large w is maintained by the high @ which is produced by
frictional heating, cooling heing less relatively eftective at
high w.

What is the eflect of this partial parameterization?
From Equation (3.2), we have

3]
hy =a— D [hF(=hh.)] (3.5)
whence
0
hy + Fh, = a+ hF'—(hh,), (3.6)
o

which is a non-linear convective—diffusion equation, with
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the distinguishing feature that dF/dr = F' <0 on the
middle branch of Figure 1: negative diffusion!

If the ice balance b(z) = fol‘a(.r)(lm Is an increasing
function, then (with h decreasing) b/h is also, and the
steady-state solution of Equation (3.5), with hh, =
—f71(b/h), will have (moving outwards from the divide)
three regions of slow flow (lower branch of Figure 1),
transition (middle branch) and fast flow (top branch).
Because of the negative diffusion, the transition region is
violently unstable and the ice sheet must oscillate.

For a marine ice sheet with b # 0 at the margin, the
shear stress is (formally) infinite (this is also true for a
land-based ice sheet with b =0 at the margin) and it is
questionable whether the time-dependent problem is well
posed. However, for the situation where the ice drains
into an ice shelf, we will have b and h non-zero at the ice-
shect/ice-shelf” transition and thus 7 is finite there. We
conjecture that the way in which the ice sheet oscillates is
as follows. Let the values of 7 at the lefthand and
righthand noses of Figure 1 be 7 and 7, (7 < 7). [f the
ice shectis shallow, we suppose 7 < 71 everywhere. As the
ice sheet thickens, 7 increases until 7 = 7 at the front.
Then w jumps to the top branch by a rapid transient in
activation

o

the drainage system and we surmise that an
wave’ passes upstream (Fowler, 1987), shifting the region
with 7= <7 <7y to the fast branch. The resulting
activated ice now surges forward, lowering the ice
thickness until the stress is lower than 7_ evervwhere. A
repetition of the build-up can then occur. The sequence of
events is portrayed in Figure 2. We imagine that the
advancing marginal ice pushes the ice shelf forward
through compressive stresses, while the draw-down of the
inland ice will cause migration backward of the activated
region to the divide (or extensional failure and ice-cliff
formation and collapse).

4. ICE STREAMS

We now return to the full one-dimensional model
(Equation (2.20)). It is easy to compute the steady state
and an example is shown in Figure 3. It should be noted

1600 T T T T T T T T T
1400 - E
1200 |- —
1000 [ 2
h (m) 800 [ E
600 | B
400 B

200 =

0 I | I | 1 ] | 1 I
0 50 100 150 200 250 300 350 400 450 500
z (km)

Fig. 3. Steady-state ice sheet frem the full ene-dimensional
model ( Equation (2.20) ). The accumulation function a is
taken as zero. Initial values are h =2,€ =0.1, Q = 0.1,
u =10.0 and parameler values are v =10.2, A =0.56.
Note that h — 0 (se uw — oc) in a finite distance.
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in this figure that no accumulation or ablation is applied,
thus the mass flux is constant. Therefore, the decrease of h
to zero (and blow-up ol u) represents a runaway in .
This indicates that the mechanism present in the
parameterized model is sdll present in the full system.
While the parameterized version can easily be shown to
be unstable, this is less obvious for the full problem,
although if we write Equation (3.3) in the form

o+ ull = R folhe + hfoly — Buf? — AJh] =
hf.(hh,).. — (4.1)

then we see that the positive feed-back term 7w, which
produces the term —uh? foh,, may cause the advection
velocity to be negative. It is plausible that this may lead
o instability in the same sort of way as belore. In this
section, we propose a model to examine the eftect of the
possible instability in a laterally extensive (low.

In order to do this, we write the approximate drainage
lux Q = (¢*/N)* in a suitable vector form. In the
derivation of this relation (Walder and Fowler, 1994),
one has that @ is preportional o the square of the
hydraulic head gradient (which is roughly sgsina),
where o is the ice-surface slope. However, a more
accurate expression is pgsina + ON/dx, so that the
drainage law is more accurately

c\3 ON]? )
Q= <N> [IJ”/’E} (4.2)

where 1) = 1/pgsina. An appropriate vector form of this

is
o\ 9
Q= (’\7) %X + ¢ VN|(x + ¢V N) (4.3)

where X is a unit vector downslope. Since 1p VNI < 1,
we approximate the downslope and cross-stream water

N\ 3 * 3 ON
Q)= <(V> . QL= (%) P oy (4.4)

fluxes as

where y is the lateral space variable. Conservation of

water [lux now takes the form (in steady flow)

dQ)  (G+T1u—qlwg 9Q L
or pw L dy

and, i we non-dimensionalize as before, but choosing

QL ~ Y[N][Q]/d, and choosing a lateral space scale
d ~ {1 N]}2, (1.6)

then Equation (4.5) becomes

(')Q” B Q|
E =y+TU—(— 01/ (47)
with
1 1 ON 1 10Q
Q=5 Qu =—2Q L. (18)

N =Ny T 3%y

Equation (+.7) thus takes the diflusive form (Q) = Q

Q 10 100
b w—gt-a Q3L . 19
or Y TTET 4T 5y, Dy (4.9)

with [ =400 km (appropriate to the Siple Coast area),
[N] =0.4bar, p=917kgm™ sina=10"% then
¢ ~0.11 Pa'm and thus d ~42km, comparable 10 the
width of ice streams.

The variation of Q with ysuggests that we should also
allow for lateral variation of h. Indeed, one can posit a
model similar to Equation (4.9) for h based on an almost
parallel flow but one then linds that the lateral diffusion
cocllicient for h is large, whenee we can deduce (just as for
a valley glacier) that h = h(x, t) and thus mass conserva-
tion leads 1o the (dimensionless) relation

L
h/ udy = M" (4.10)
Jo

where L is the (scaled) width of the flow area and A* is
the scaled mass flux. We are assuming a prescribed value
of M* at x =0 with no accumulation, so that the mass
flux A" is constant in z. As belore,

u = Q%(—hh,)",

Bu
g=——+A/h.

{ [ uda}

Insofar as parameterized versions of this model show some

(4.11)

o—

signatures of run-away associated with multiple steady
states, we might expect an initially laterally inhomoge-
neous flow to develop “hot spots™ as z increases,

corresponding to ice streams.

umly

y km

1000

g, 4. Formation of ice streams from a laterally non-
wiiform nitial condition. The parameter values are
y=02. =1 A=0.36 (which are more appropriate
values for the Siple Coast ice streams) and the model s
itegrated forward with initial thickness of 1500 m and
velocity 1 myear '. The initial condition for Q is crilical
and is taken (dimensionlessly) as Q =0.05 wilh five
perturbations  superimposed.  The  precise location and
number of the ice streams generated depends sensitively on
the initial prescreption of Q chosen but the streaming itself
s a robust phenomenon, providing v is low enongh (or i3 is
high enough) that Q can decrease to a minimum. and parts
of the bed are frezen.



Figure 4 shews the result of a numerical computation,
in which we can see the development of ice “‘streams™
frem an initially inhemegenceus state. While the nature
of the medel and of the cemputatien is preliminary, it is
an indication that the hydraulic run-away mechanism
could be responsible for the existence of Antarctic ice
streams.

5. DISCUSSION

In this paper we extend the parameterized model of

hydraulic run-away developed by Fowler and Johnson
(1995) in two ways. First, we give versions which allew fer
spatial variability. Fer parameterized water {lux and
spatially variable basal shear stress, the selutiens will
escillate in a periedic, surge-like fashion. Secendly, fer
laterally unconfined flows, uniform flows can spontan-
eously break up to form ice streams. We therefore suggest
that for ice sheets moving over wet, deformable sediments,
ice streaming is a natural censequence ef canal-type
drainage dynamics.
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